DL-Art-School/codes/models/clip/clvp.py
2022-05-11 21:14:18 -06:00

194 lines
7.3 KiB
Python

from random import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import einsum, distributed
from torch.distributed import get_world_size
from models.arch_util import AttentionBlock
from models.lucidrains.x_transformers import ContinuousTransformerWrapper, Encoder
from trainer.networks import register_model
from utils.util import opt_get, checkpoint
def exists(val):
return val is not None
def masked_mean(t, mask):
t = t.masked_fill(~mask, 0.)
return t.sum(dim = 1) / mask.sum(dim = 1)
class CollapsingTransformer(nn.Module):
def __init__(self, model_dim, output_dims, heads, dropout, depth, mask_percentage=0, **encoder_kwargs):
super().__init__()
self.transformer = ContinuousTransformerWrapper(
max_seq_len=-1,
use_pos_emb=False,
attn_layers=Encoder(
dim=model_dim,
depth=depth,
heads=heads,
ff_dropout=dropout,
ff_mult=1,
attn_dropout=dropout,
use_rmsnorm=True,
ff_glu=True,
rotary_pos_emb=True,
**encoder_kwargs,
))
self.pre_combiner = nn.Sequential(nn.Conv1d(model_dim, output_dims, 1),
AttentionBlock(output_dims, num_heads=heads, do_checkpoint=False),
nn.Conv1d(output_dims, output_dims, 1))
self.mask_percentage = mask_percentage
def forward(self, x, **transformer_kwargs):
h = self.transformer(x, **transformer_kwargs)
h = h.permute(0,2,1)
h = checkpoint(self.pre_combiner, h).permute(0,2,1)
if self.training:
mask = torch.rand_like(h.float()) > self.mask_percentage
else:
mask = torch.ones_like(h.float()).bool()
return masked_mean(h, mask)
class ConvFormatEmbedding(nn.Module):
def __init__(self, *args, **kwargs):
super().__init__()
self.emb = nn.Embedding(*args, **kwargs)
def forward(self, x):
y = self.emb(x)
return y.permute(0,2,1)
class CLVP(nn.Module):
"""
Contrastic Language-Voice Pretraining model for generating embedding that can be used to associate text and
speech clips.
"""
def __init__(
self,
model_dim=512,
transformer_heads=8,
dropout=.1,
num_text_tokens=256,
text_enc_depth=6,
text_mask_percentage=0,
conditioning_enc_depth=4,
mask_conditioning_percentage=0.5,
mel_channels=80,
mel_codes=None,
speech_enc_depth=6,
speech_mask_percentage=0,
latent_multiplier=4,
distributed_collect=False,
):
super().__init__()
latent_dim = latent_multiplier*model_dim
self.temperature = nn.Parameter(torch.tensor(1.))
self.cond_emb = nn.Sequential(nn.Conv1d(mel_channels, model_dim//2, kernel_size=5, stride=2, padding=2),
nn.Conv1d(model_dim//2, model_dim, kernel_size=3, stride=2, padding=1))
self.conditioning_transformer = CollapsingTransformer(model_dim, model_dim*2, transformer_heads, dropout, conditioning_enc_depth, 0)
self.masked_conditioning_latent = nn.Parameter(torch.randn(1,model_dim*2), requires_grad=True)
self.mask_conditioning_percentage = mask_conditioning_percentage
self.text_emb = nn.Embedding(num_text_tokens, model_dim)
self.text_transformer = CollapsingTransformer(model_dim, latent_dim, transformer_heads, dropout, text_enc_depth, text_mask_percentage, use_rms_scaleshift_norm=True)
self.to_text_latent = nn.Linear(latent_dim, latent_dim, bias=False)
self.distributed_collect = distributed_collect
if mel_codes is None:
self.speech_emb = nn.Conv1d(mel_channels, model_dim, kernel_size=5, padding=2)
else:
self.speech_emb = ConvFormatEmbedding(mel_codes, model_dim)
self.speech_transformer = CollapsingTransformer(model_dim, latent_dim, transformer_heads, dropout, speech_enc_depth, speech_mask_percentage)
self.to_speech_latent = nn.Linear(latent_dim, latent_dim, bias=False)
def get_grad_norm_parameter_groups(self):
return {
'conditioning': list(self.conditioning_transformer.parameters()),
'text': list(self.text_transformer.parameters()),
'speech': list(self.speech_transformer.parameters()),
}
def forward(
self,
text,
mel_input,
mel_cond,
return_loss=False
):
device = text.device
text_emb = self.text_emb(text)
speech_emb = self.speech_emb(mel_input).permute(0,2,1)
unused_params = []
if random() < self.mask_conditioning_percentage:
enc_cond = self.masked_conditioning_latent
unused_params.extend(list(self.cond_emb.parameters()) + list(self.conditioning_transformer.parameters()))
else:
cond_emb = self.cond_emb(mel_cond).permute(0,2,1)
enc_cond = self.conditioning_transformer(cond_emb)
unused_params.append(self.masked_conditioning_latent)
enc_text = self.text_transformer(text_emb, norm_scale_shift_inp=enc_cond)
enc_speech = self.speech_transformer(speech_emb)
text_latents = self.to_text_latent(enc_text)
speech_latents = self.to_speech_latent(enc_speech)
text_latents, speech_latents = map(lambda t: F.normalize(t, p=2, dim=-1), (text_latents, speech_latents))
temp = self.temperature.exp()
if self.distributed_collect:
collective = [torch.zeros_like(text_latents) for _ in range(torch.distributed.get_world_size())]
torch.all_gather(collective, text_latents)
text_latents = torch.cat(collective, dim=0)
collective = [torch.zeros_like(speech_latents) for _ in range(torch.distributed.get_world_size())]
torch.all_gather(collective, speech_latents)
speech_latents = torch.cat(collective, dim=0)
if not return_loss:
sim = einsum('n d, n d -> n', text_latents, speech_latents) * temp
return sim
sim = einsum('i d, j d -> i j', text_latents, speech_latents) * temp
labels = torch.arange(text_latents.shape[0], device=device)
loss = (F.cross_entropy(sim, labels) + F.cross_entropy(sim.t(), labels)) / 2
# Involve probabilistic or possibly unused parameters in loss so we don't get DDP errors.
extraneous_addition = 0
for p in unused_params:
extraneous_addition = extraneous_addition + p.mean()
loss = loss + extraneous_addition * 0
return loss
@register_model
def register_clvp(opt_net, opt):
return CLVP(**opt_get(opt_net, ['kwargs'], {}))
if __name__ == '__main__':
clvp = CLVP()
clvp(torch.randint(0,256,(2,120)),
torch.randn(2,80,100),
torch.randn(2,80,95),
return_loss=True)
nonloss = clvp(torch.randint(0,256,(2,120)),
torch.randn(2,80,100),
torch.randn(2,80,95),
return_loss=False)
clvp = CLVP(mel_codes=8192)
clvp(torch.randint(0,256,(2,120)),
torch.randint(0,8192,(2,150)),
torch.randn(2,80,95),
return_loss=True)
print(nonloss.shape)