DL-Art-School/codes/models/archs/SRResNet_arch.py
XintaoWang 037933ba66 mmsr
2019-08-23 21:42:47 +08:00

56 lines
2.1 KiB
Python

import functools
import torch.nn as nn
import torch.nn.functional as F
import models.archs.arch_util as arch_util
class MSRResNet(nn.Module):
''' modified SRResNet'''
def __init__(self, in_nc=3, out_nc=3, nf=64, nb=16, upscale=4):
super(MSRResNet, self).__init__()
self.upscale = upscale
self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
basic_block = functools.partial(arch_util.ResidualBlock_noBN, nf=nf)
self.recon_trunk = arch_util.make_layer(basic_block, nb)
# upsampling
if self.upscale == 2:
self.upconv1 = nn.Conv2d(nf, nf * 4, 3, 1, 1, bias=True)
self.pixel_shuffle = nn.PixelShuffle(2)
elif self.upscale == 3:
self.upconv1 = nn.Conv2d(nf, nf * 9, 3, 1, 1, bias=True)
self.pixel_shuffle = nn.PixelShuffle(3)
elif self.upscale == 4:
self.upconv1 = nn.Conv2d(nf, nf * 4, 3, 1, 1, bias=True)
self.upconv2 = nn.Conv2d(nf, nf * 4, 3, 1, 1, bias=True)
self.pixel_shuffle = nn.PixelShuffle(2)
self.HRconv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.conv_last = nn.Conv2d(nf, out_nc, 3, 1, 1, bias=True)
# activation function
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
# initialization
arch_util.initialize_weights([self.conv_first, self.upconv1, self.HRconv, self.conv_last],
0.1)
if self.upscale == 4:
arch_util.initialize_weights(self.upconv2, 0.1)
def forward(self, x):
fea = self.lrelu(self.conv_first(x))
out = self.recon_trunk(fea)
if self.upscale == 4:
out = self.lrelu(self.pixel_shuffle(self.upconv1(out)))
out = self.lrelu(self.pixel_shuffle(self.upconv2(out)))
elif self.upscale == 3 or self.upscale == 2:
out = self.lrelu(self.pixel_shuffle(self.upconv1(out)))
out = self.conv_last(self.lrelu(self.HRconv(out)))
base = F.interpolate(x, scale_factor=self.upscale, mode='bilinear', align_corners=False)
out += base
return out