DL-Art-School/codes/models/gpt_voice/gpt_audio_segmentor.py
2021-08-17 09:09:11 -06:00

104 lines
3.8 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as F
from munch import munchify
from models.gpt_voice.lucidrains_gpt import Transformer
from models.tacotron2.taco_utils import get_mask_from_lengths
from models.tacotron2.text import symbols, sequence_to_text
from trainer.networks import register_model
from utils.util import opt_get
class ResBlock(nn.Module):
def __init__(self, chan):
super().__init__()
self.net = nn.Sequential(
nn.Conv1d(chan, chan, kernel_size=5, padding = 2),
nn.BatchNorm1d(chan),
nn.ReLU(),
nn.Conv1d(chan, chan, kernel_size=5, padding = 2),
nn.BatchNorm1d(chan)
)
def forward(self, x):
return F.relu(self.net(x) + x)
class MelEncoder(nn.Module):
def __init__(self, channels, mel_channels=80):
super().__init__()
self.channels = channels
self.encoder = nn.Sequential(nn.Conv1d(mel_channels, channels//4, kernel_size=7, padding=3),
ResBlock(channels//4),
ResBlock(channels//4),
nn.Conv1d(channels//4, channels//2, kernel_size=5, stride=2, padding=2),
nn.BatchNorm1d(channels//2),
nn.ReLU(),
ResBlock(channels//2),
ResBlock(channels//2),
ResBlock(channels//2),
nn.Conv1d(channels//2, channels, kernel_size=5, stride=2, padding=2),
ResBlock(channels),
ResBlock(channels),
ResBlock(channels)
)
def forward(self, x):
return self.encoder(x)
class GptSegmentor(nn.Module):
MAX_MEL_FRAMES = 2000 // 4
def __init__(self, layers=8, model_dim=512, heads=8):
super().__init__()
self.model_dim = model_dim
self.max_mel_frames = self.MAX_MEL_FRAMES
self.mel_encoder = MelEncoder(model_dim)
self.mel_pos_embedding = nn.Embedding(self.MAX_MEL_FRAMES, model_dim)
self.gpt = Transformer(dim=model_dim, depth=layers, seq_len=self.MAX_MEL_FRAMES, heads=heads,
attn_dropout=.1, ff_dropout=.1, non_causal_sequence_partition=self.MAX_MEL_FRAMES)
self.final_norm = nn.LayerNorm(model_dim)
self.stop_head = nn.Linear(model_dim, 1)
def forward(self, mel_inputs, termination_points=None):
mel_emb = self.mel_encoder(mel_inputs)
mel_emb = mel_emb.permute(0,2,1).contiguous()
mel_emb = mel_emb + self.mel_pos_embedding(torch.arange(mel_emb.shape[1], device=mel_emb.device))
enc = self.gpt(mel_emb)
stop_logits = self.final_norm(enc)
stop_logits = self.stop_head(stop_logits)
if termination_points is not None:
# The MEL gets decimated to 1/4 the size by the encoder, so we need to do the same to the termination points.
termination_points = F.interpolate(termination_points.unsqueeze(1), size=mel_emb.shape[1], mode='area').squeeze()
termination_points = (termination_points > 0).float()
# Compute loss
loss = F.binary_cross_entropy_with_logits(stop_logits.squeeze(-1), termination_points)
return loss.mean()
else:
return stop_logits
@register_model
def register_gpt_segmentor(opt_net, opt):
return GptSegmentor(**opt_get(opt_net, ['kwargs'], {}))
if __name__ == '__main__':
gpt = GptSegmentor()
l = gpt(torch.randn(3,80,94),
torch.zeros(3,94))
print(l.shape)
#o = gpt.infer(torch.randint(high=24, size=(2,60)))
#print(o.shape)