DL-Art-School/codes/models/audio/tts/ctc_code_generator.py
2022-05-24 14:02:33 -06:00

121 lines
4.7 KiB
Python

from random import random
import torch
import torch.nn as nn
import torch.nn.functional as F
from models.audio.tts.unet_diffusion_tts7 import CheckpointedLayer
from models.lucidrains.x_transformers import Encoder
from trainer.networks import register_model
from utils.util import opt_get
class CheckpointedXTransformerEncoder(nn.Module):
"""
Wraps a ContinuousTransformerWrapper and applies CheckpointedLayer to each layer and permutes from channels-mid
to channels-last that XTransformer expects.
"""
def __init__(self, **xtransformer_kwargs):
super().__init__()
self.transformer = XTransformer(**xtransformer_kwargs)
for xform in [self.transformer.encoder, self.transformer.decoder.net]:
for i in range(len(xform.attn_layers.layers)):
n, b, r = xform.attn_layers.layers[i]
xform.attn_layers.layers[i] = nn.ModuleList([n, CheckpointedLayer(b), r])
def forward(self, *args, **kwargs):
return self.transformer(*args, **kwargs)
class CtcCodeGenerator(nn.Module):
def __init__(self, model_dim=512, layers=10, max_length=2048, dropout=.1, ctc_codes=256, max_pad=120, max_repeat=30):
super().__init__()
self.max_pad = max_pad
self.max_repeat = max_repeat
self.ctc_codes = ctc_codes
pred_codes = (max_pad+1)*(max_repeat+1)
self.position_embedding = nn.Embedding(max_length, model_dim)
self.codes_embedding = nn.Embedding(ctc_codes, model_dim)
self.recursive_embedding = nn.Embedding(pred_codes, model_dim)
self.mask_embedding = nn.Parameter(torch.randn(model_dim))
self.encoder = Encoder(
dim=model_dim,
depth=layers,
heads=model_dim//64,
ff_dropout=dropout,
attn_dropout=dropout,
use_rmsnorm=True,
ff_glu=True,
rotary_pos_emb=True,
)
self.pred_head = nn.Linear(model_dim, pred_codes)
self.confidence_head = nn.Linear(model_dim, 1)
def inference(self, codes, pads, repeats):
position_h = self.position_embedding(torch.arange(0, codes.shape[-1], device=codes.device))
codes_h = self.codes_embedding(codes)
labels = pads + repeats * self.max_pad
mask = labels == 0
recursive_h = self.recursive_embedding(labels)
recursive_h[mask] = self.mask_embedding
h = self.encoder(position_h + codes_h + recursive_h)
pred_logits = self.pred_head(h)
confidences = self.confidence_head(h).squeeze(-1)
confidences = F.softmax(confidences * mask, dim=-1)
return pred_logits, confidences
def forward(self, codes, pads, repeats, unpadded_lengths):
if unpadded_lengths is not None:
max_len = unpadded_lengths.max()
codes = codes[:, :max_len]
pads = pads[:, :max_len]
repeats = repeats[:, :max_len]
if pads.max() > self.max_pad:
print(f"Got unexpectedly long pads. Max: {pads.max()}, {pads}")
pads = torch.clip(pads, 0, self.max_pad)
if repeats.max() > self.max_repeat:
print(f"Got unexpectedly long repeats. Max: {repeats.max()}, {repeats}")
repeats = torch.clip(repeats, 0, self.max_repeat)
assert codes.max() < self.ctc_codes, codes.max()
labels = pads + repeats * self.max_pad
position_h = self.position_embedding(torch.arange(0, codes.shape[-1], device=codes.device))
codes_h = self.codes_embedding(codes)
recursive_h = self.recursive_embedding(labels)
mask_prob = random()
mask = torch.rand_like(labels.float()) > mask_prob
for b in range(codes.shape[0]):
mask[b, unpadded_lengths[b]:] = False
recursive_h[mask.logical_not()] = self.mask_embedding
h = self.encoder(position_h + codes_h + recursive_h)
pred_logits = self.pred_head(h)
loss = F.cross_entropy(pred_logits.permute(0,2,1), labels, reduce=False)
confidences = self.confidence_head(h).squeeze(-1)
confidences = F.softmax(confidences * mask, dim=-1)
confidence_loss = loss * confidences
loss = loss / loss.shape[-1] # This balances the confidence_loss and loss.
return loss.mean(), confidence_loss.mean()
@register_model
def register_ctc_code_generator(opt_net, opt):
return CtcCodeGenerator(**opt_get(opt_net, ['kwargs'], {}))
if __name__ == '__main__':
model = CtcCodeGenerator()
inps = torch.randint(0,36, (4, 300))
pads = torch.randint(0,100, (4,300))
repeats = torch.randint(0,20, (4,300))
loss = model(inps, pads, repeats)
print(loss.shape)