DL-Art-School/codes/scripts/extract_subimages_with_ref.py

285 lines
11 KiB
Python

"""A multi-thread tool to crop large images to sub-images for faster IO."""
import os
import os.path as osp
import numpy as np
import cv2
from PIL import Image
import data.util as data_util # noqa: E402
import torch.utils.data as data
from tqdm import tqdm
import torch
def main():
split_img = False
opt = {}
opt['n_thread'] = 7
opt['compression_level'] = 90 # JPEG compression quality rating.
# CV_IMWRITE_PNG_COMPRESSION from 0 to 9. A higher value means a smaller size and longer
# compression time. If read raw images during training, use 0 for faster IO speed.
opt['dest'] = 'file'
opt['input_folder'] = 'F:\\4k6k\\datasets\\images\youtube\\images_cook'
opt['save_folder'] = 'F:\\4k6k\\datasets\\images\\youtube_massive_cook'
opt['crop_sz'] = [512, 1024, 2048] # the size of each sub-image
opt['step'] = [256, 512, 1024] # step of the sliding crop window
opt['exclusions'] = [[],[],[]] # image names matching these terms wont be included in the processing.
opt['thres_sz'] = 128 # size threshold
opt['resize_final_img'] = [.5, .25, .125]
opt['only_resize'] = False
opt['vertical_split'] = False
opt['input_image_max_size_before_being_halved'] = 5500 # As described, images larger than this dimensional size will be halved before anything else is done.
# This helps prevent images from cameras with "false-megapixels" from polluting the dataset.
# False-megapixel=lots of noise at ultra-high res.
save_folder = opt['save_folder']
if not osp.exists(save_folder):
os.makedirs(save_folder)
print('mkdir [{:s}] ...'.format(save_folder))
if opt['dest'] == 'lmdb':
writer = LmdbWriter(save_folder)
else:
writer = FileWriter(save_folder)
extract_single(opt, writer)
class LmdbWriter:
def __init__(self, lmdb_path, max_mem_size=30*1024*1024*1024, write_freq=5000):
self.db = lmdb.open(lmdb_path, subdir=True,
map_size=max_mem_size, readonly=False,
meminit=False, map_async=True)
self.txn = self.db.begin(write=True)
self.ref_id = 0
self.tile_ids = {}
self.writes = 0
self.write_freq = write_freq
self.keys = []
# Writes the given reference image to the db and returns its ID.
def write_reference_image(self, ref_img, _):
id = self.ref_id
self.ref_id += 1
self.write_image(id, ref_img[0], ref_img[1])
return id
# Writes a tile image to the db given a reference image and returns its ID.
def write_tile_image(self, ref_id, tile_image):
next_tile_id = 0 if ref_id not in self.tile_ids.keys() else self.tile_ids[ref_id]
self.tile_ids[ref_id] = next_tile_id+1
full_id = "%i_%i" % (ref_id, next_tile_id)
self.write_image(full_id, tile_image[0], tile_image[1])
self.keys.append(full_id)
return full_id
# Writes an image directly to the db with the given reference image and center point.
def write_image(self, id, img, center_point):
self.txn.put(u'{}'.format(id).encode('ascii'), pyarrow.serialize(img).to_buffer(), pyarrow.serialize(center_point).to_buffer())
self.writes += 1
if self.writes % self.write_freq == 0:
self.txn.commit()
self.txn = self.db.begin(write=True)
def close(self):
self.txn.commit()
with self.db.begin(write=True) as txn:
txn.put(b'__keys__', pyarrow.serialize(self.keys).to_buffer())
txn.put(b'__len__', pyarrow.serialize(len(self.keys)).to_buffer())
self.db.sync()
self.db.close()
class FileWriter:
def __init__(self, folder):
self.folder = folder
self.next_unique_id = 0
self.ref_center_points = {} # Maps ref_img basename to a dict of image IDs:center points
self.ref_ids_to_names = {}
def get_next_unique_id(self):
id = self.next_unique_id
self.next_unique_id += 1
return id
def save_image(self, ref_path, img_name, img):
save_path = osp.join(self.folder, ref_path)
os.makedirs(save_path, exist_ok=True)
f = open(osp.join(save_path, img_name), "wb")
f.write(img)
f.close()
# Writes the given reference image to the db and returns its ID.
def write_reference_image(self, ref_img, path):
ref_img, _, _ = ref_img # Encoded with a center point, which is irrelevant for the reference image.
img_name = osp.basename(path).replace(".jpg", "").replace(".png", "")
self.ref_center_points[img_name] = {}
self.save_image(img_name, "ref.jpg", ref_img)
id = self.get_next_unique_id()
self.ref_ids_to_names[id] = img_name
return id
# Writes a tile image to the db given a reference image and returns its ID.
def write_tile_image(self, ref_id, tile_image):
id = self.get_next_unique_id()
ref_name = self.ref_ids_to_names[ref_id]
img, center, tile_sz = tile_image
self.ref_center_points[ref_name][id] = center, tile_sz
self.save_image(ref_name, "%08i.jpg" % (id,), img)
return id
def flush(self):
for ref_name, cps in self.ref_center_points.items():
torch.save(cps, osp.join(self.folder, ref_name, "centers.pt"))
self.ref_center_points = {}
def close(self):
self.flush()
class TiledDataset(data.Dataset):
def __init__(self, opt):
self.split_mode = opt['vertical_split']
self.opt = opt
input_folder = opt['input_folder']
self.images = data_util._get_paths_from_images(input_folder)
def __getitem__(self, index):
if self.split_mode:
return (self.get(index, True, True), self.get(index, True, False))
else:
# Wrap in a tuple to align with split mode.
return (self.get(index, False, False), None)
def get_for_scale(self, img, crop_sz, step, resize_factor, ref_resize_factor):
thres_sz = self.opt['thres_sz']
h, w, c = img.shape
if crop_sz > h:
return []
h_space = np.arange(0, h - crop_sz + 1, step)
if h - (h_space[-1] + crop_sz) > thres_sz:
h_space = np.append(h_space, h - crop_sz)
w_space = np.arange(0, w - crop_sz + 1, step)
if w - (w_space[-1] + crop_sz) > thres_sz:
w_space = np.append(w_space, w - crop_sz)
index = 0
tile_dim = int(crop_sz * resize_factor)
dsize = (tile_dim, tile_dim)
results = []
for x in h_space:
for y in w_space:
index += 1
crop_img = img[x:x + crop_sz, y:y + crop_sz, :]
# Center point needs to be resized by ref_resize_factor - since it is relative to the reference image.
center_point = (int((x + crop_sz // 2) // ref_resize_factor), int((y + crop_sz // 2) // ref_resize_factor))
crop_img = np.ascontiguousarray(crop_img)
if 'resize_final_img' in self.opt.keys():
crop_img = cv2.resize(crop_img, dsize, interpolation=cv2.INTER_AREA)
success, buffer = cv2.imencode(".jpg", crop_img, [cv2.IMWRITE_JPEG_QUALITY, self.opt['compression_level']])
assert success
results.append((buffer, center_point, int(crop_sz // ref_resize_factor)))
return results
def get(self, index, split_mode, left_img):
path = self.images[index]
img = cv2.imread(path, cv2.IMREAD_UNCHANGED)
if img is None or len(img.shape) == 2:
return None
h, w, c = img.shape
if max(h,w) > self.opt['input_image_max_size_before_being_halved']:
h = h // 2
w = w // 2
img = cv2.resize(img, (w, h), interpolation=cv2.INTER_AREA)
#print("Resizing to ", img.shape)
# Uncomment to filter any image that doesnt meet a threshold size.
if min(h,w) < 512:
return None
# Greyscale not supported.
if len(img.shape) == 2:
return None
# Handle splitting the image if needed.
left = 0
right = w
if split_mode:
if left_img:
left = 0
right = w//2
else:
left = w//2
right = w
img = img[:, left:right]
# We must convert the image into a square.
dim = min(h, w)
if split_mode:
# Crop the image towards the center, which makes more sense in split mode.
if left_img:
img = img[-dim:, -dim:, :]
else:
img = img[:dim, :dim, :]
else:
# Crop the image so that only the center is left, since this is often the most salient part of the image.
img = img[(h - dim) // 2:dim + (h - dim) // 2, (w - dim) // 2:dim + (w - dim) // 2, :]
h, w, c = img.shape
tile_dim = int(self.opt['crop_sz'][0] * self.opt['resize_final_img'][0])
dsize = (tile_dim, tile_dim)
ref_resize_factor = h / tile_dim
# Reference image should always be first entry in results.
ref_img = cv2.resize(img, dsize, interpolation=cv2.INTER_AREA)
success, ref_buffer = cv2.imencode(".jpg", ref_img, [cv2.IMWRITE_JPEG_QUALITY, self.opt['compression_level']])
assert success
results = [(ref_buffer, (-1,-1), (-1,-1))]
for crop_sz, exclusions, resize_factor, step in zip(self.opt['crop_sz'], self.opt['exclusions'], self.opt['resize_final_img'], self.opt['step']):
excluded = False
for exc in exclusions:
if exc in path:
excluded = True
break;
if excluded:
continue
results.extend(self.get_for_scale(img, crop_sz, step, resize_factor, ref_resize_factor))
return results, path
def __len__(self):
return len(self.images)
def identity(x):
return x
def extract_single(opt, writer):
dataset = TiledDataset(opt)
dataloader = data.DataLoader(dataset, num_workers=opt['n_thread'], collate_fn=identity)
tq = tqdm(dataloader)
for spl_imgs in tq:
if spl_imgs is None:
continue
spl_imgs = spl_imgs[0]
for imgs, lbl in zip(list(spl_imgs), ['left', 'right']):
if imgs is None:
continue
imgs, path = imgs
if imgs is None or len(imgs) <= 1:
continue
path = path + "_" + lbl
ref_id = writer.write_reference_image(imgs[0], path)
for tile in imgs[1:]:
writer.write_tile_image(ref_id, tile)
writer.flush()
writer.close()
if __name__ == '__main__':
main()