240 lines
11 KiB
Python
240 lines
11 KiB
Python
import os
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torchvision
|
|
from torch.utils.checkpoint import checkpoint_sequential
|
|
|
|
from models.archs.arch_util import make_layer, default_init_weights, ConvGnSilu, ConvGnLelu
|
|
from utils.util import checkpoint
|
|
|
|
|
|
class ResidualDenseBlock(nn.Module):
|
|
"""Residual Dense Block.
|
|
|
|
Used in RRDB block in ESRGAN.
|
|
|
|
Args:
|
|
mid_channels (int): Channel number of intermediate features.
|
|
growth_channels (int): Channels for each growth.
|
|
"""
|
|
|
|
def __init__(self, mid_channels=64, growth_channels=32):
|
|
super(ResidualDenseBlock, self).__init__()
|
|
for i in range(5):
|
|
out_channels = mid_channels if i == 4 else growth_channels
|
|
self.add_module(
|
|
f'conv{i+1}',
|
|
nn.Conv2d(mid_channels + i * growth_channels, out_channels, 3,
|
|
1, 1))
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
|
for i in range(5):
|
|
default_init_weights(getattr(self, f'conv{i+1}'), 0.1)
|
|
|
|
|
|
def forward(self, x, identity=None):
|
|
if identity is None:
|
|
identity = x
|
|
x1 = self.lrelu(self.conv1(x))
|
|
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
|
|
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
|
|
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
|
|
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
|
|
return x5 * 0.2 + identity
|
|
|
|
|
|
class RRDBWithBypassAndLatent(nn.Module):
|
|
def __init__(self, mid_channels, growth_channels=32, latent_dim=256):
|
|
super(RRDBWithBypassAndLatent, self).__init__()
|
|
self.latent_process = nn.Sequential(nn.Linear(latent_dim, latent_dim//2, bias=False),
|
|
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
|
nn.Linear(latent_dim//2, mid_channels, bias=False),
|
|
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
|
nn.Linear(mid_channels, mid_channels, bias=True))
|
|
self.latent_join = nn.Sequential(ConvGnLelu(mid_channels*2, mid_channels*2, activation=True, norm=False, bias=False),
|
|
ConvGnLelu(mid_channels*2, mid_channels, activation=False, norm=False, bias=False))
|
|
self.rdb1 = ResidualDenseBlock(mid_channels, growth_channels)
|
|
self.rdb2 = ResidualDenseBlock(mid_channels, growth_channels)
|
|
self.rdb3 = ResidualDenseBlock(mid_channels, growth_channels)
|
|
self.bypass = nn.Sequential(ConvGnSilu(mid_channels*2, mid_channels, kernel_size=3, bias=True, activation=True, norm=True),
|
|
ConvGnSilu(mid_channels, mid_channels//2, kernel_size=3, bias=False, activation=True, norm=False),
|
|
ConvGnSilu(mid_channels//2, 1, kernel_size=3, bias=False, activation=False, norm=False),
|
|
nn.Sigmoid())
|
|
|
|
def forward(self, x, original_latent):
|
|
b, f, h, w = x.shape
|
|
latent = self.latent_process(original_latent)
|
|
b, l = latent.shape
|
|
latent = latent.view(b, l, 1, 1)
|
|
latent = latent.repeat(1, 1, h, w)
|
|
out = self.latent_join(torch.cat([x, latent], dim=1))
|
|
out = self.rdb1(out, x)
|
|
out = self.rdb2(out)
|
|
out = self.rdb3(out)
|
|
bypass = self.bypass(torch.cat([x, out], dim=1))
|
|
self.bypass_map = bypass.detach().clone()
|
|
return out * 0.2 * bypass + x
|
|
|
|
|
|
class RRDBNetWithLatent(nn.Module):
|
|
def __init__(self,
|
|
in_channels,
|
|
out_channels,
|
|
mid_channels=64,
|
|
num_blocks=23,
|
|
growth_channels=32,
|
|
blocks_per_checkpoint=4,
|
|
scale=4,
|
|
latent_size=256):
|
|
super(RRDBNetWithLatent, self).__init__()
|
|
self.num_blocks = num_blocks
|
|
self.blocks_per_checkpoint = blocks_per_checkpoint
|
|
self.scale = scale
|
|
self.in_channels = in_channels
|
|
self.latent_size = latent_size
|
|
first_conv_stride = 1 if in_channels <= 4 else scale
|
|
first_conv_ksize = 3 if first_conv_stride == 1 else 7
|
|
first_conv_padding = 1 if first_conv_stride == 1 else 3
|
|
self.conv_first = nn.Conv2d(in_channels, mid_channels, first_conv_ksize, first_conv_stride, first_conv_padding)
|
|
self.body = make_layer(
|
|
RRDBWithBypassAndLatent,
|
|
num_blocks,
|
|
mid_channels=mid_channels,
|
|
growth_channels=growth_channels,
|
|
latent_dim=latent_size)
|
|
self.conv_body = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1)
|
|
# upsample
|
|
self.conv_up1 = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1)
|
|
self.conv_up2 = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1)
|
|
self.conv_hr = nn.Conv2d(mid_channels, mid_channels, 3, 1, 1)
|
|
self.conv_last = nn.Conv2d(mid_channels, out_channels, 3, 1, 1)
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
|
|
|
# 8-layer MLP in the vein of StyleGAN.
|
|
self.latent_encoder = nn.Sequential(nn.Linear(latent_size, latent_size),
|
|
nn.BatchNorm1d(latent_size),
|
|
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
|
nn.Linear(latent_size, latent_size),
|
|
nn.BatchNorm1d(latent_size),
|
|
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
|
nn.Linear(latent_size, latent_size),
|
|
nn.BatchNorm1d(latent_size),
|
|
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
|
nn.Linear(latent_size, latent_size),
|
|
nn.BatchNorm1d(latent_size),
|
|
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
|
nn.Linear(latent_size, latent_size),
|
|
nn.BatchNorm1d(latent_size),
|
|
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
|
nn.Linear(latent_size, latent_size),
|
|
nn.BatchNorm1d(latent_size),
|
|
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
|
nn.Linear(latent_size, latent_size),
|
|
nn.BatchNorm1d(latent_size),
|
|
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
|
nn.Linear(latent_size, latent_size),
|
|
nn.BatchNorm1d(latent_size),
|
|
nn.LeakyReLU(negative_slope=0.2, inplace=True))
|
|
|
|
for m in [
|
|
self.conv_first, self.conv_body, self.conv_up1,
|
|
self.conv_up2, self.conv_hr, self.conv_last
|
|
]:
|
|
default_init_weights(m, 0.1)
|
|
|
|
def forward(self, x, latent=None, ref=None):
|
|
if latent is None:
|
|
latent = torch.randn((x.shape[0], self.latent_size), dtype=torch.float, device=x.device)
|
|
latent = checkpoint(self.latent_encoder, latent)
|
|
if self.in_channels > 4:
|
|
x_lg = F.interpolate(x, scale_factor=self.scale, mode="bicubic")
|
|
if ref is None:
|
|
ref = torch.zeros_like(x_lg)
|
|
x_lg = torch.cat([x_lg, ref], dim=1)
|
|
else:
|
|
x_lg = x
|
|
feat = self.conv_first(x_lg)
|
|
body_feat = feat
|
|
for bl in self.body:
|
|
body_feat = checkpoint(bl, body_feat, latent)
|
|
body_feat = self.conv_body(body_feat)
|
|
feat = feat + body_feat
|
|
# upsample
|
|
feat = self.lrelu(
|
|
self.conv_up1(F.interpolate(feat, scale_factor=2, mode='nearest')))
|
|
if self.scale == 4:
|
|
feat = self.lrelu(
|
|
self.conv_up2(F.interpolate(feat, scale_factor=2, mode='nearest')))
|
|
else:
|
|
feat = self.lrelu(self.conv_up2(feat))
|
|
out = self.conv_last(self.lrelu(self.conv_hr(feat)))
|
|
return out
|
|
|
|
def visual_dbg(self, step, path):
|
|
for i, bm in enumerate(self.body):
|
|
torchvision.utils.save_image(bm.bypass_map.cpu().float(), os.path.join(path, "%i_bypass_%i.png" % (step, i+1)))
|
|
|
|
|
|
# Based heavily on the same VGG arch used for the discriminator.
|
|
class LatentEstimator(nn.Module):
|
|
# input_img_factor = multiplier to support images over 128x128. Only certain factors are supported.
|
|
def __init__(self, in_nc, nf, latent_size=256):
|
|
super(LatentEstimator, self).__init__()
|
|
# [64, 128, 128]
|
|
self.conv0_0 = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
|
|
self.conv0_1 = nn.Conv2d(nf, nf, 4, 2, 1, bias=False)
|
|
self.bn0_1 = nn.BatchNorm2d(nf, affine=True)
|
|
# [64, 64, 64]
|
|
self.conv1_0 = nn.Conv2d(nf, nf * 2, 3, 1, 1, bias=False)
|
|
self.bn1_0 = nn.BatchNorm2d(nf * 2, affine=True)
|
|
self.conv1_1 = nn.Conv2d(nf * 2, nf * 2, 4, 2, 1, bias=False)
|
|
self.bn1_1 = nn.BatchNorm2d(nf * 2, affine=True)
|
|
# [128, 32, 32]
|
|
self.conv2_0 = nn.Conv2d(nf * 2, nf * 4, 3, 1, 1, bias=False)
|
|
self.bn2_0 = nn.BatchNorm2d(nf * 4, affine=True)
|
|
self.conv2_1 = nn.Conv2d(nf * 4, nf * 4, 4, 2, 1, bias=False)
|
|
self.bn2_1 = nn.BatchNorm2d(nf * 4, affine=True)
|
|
# [256, 16, 16]
|
|
self.conv3_0 = nn.Conv2d(nf * 4, nf * 8, 3, 1, 1, bias=False)
|
|
self.bn3_0 = nn.BatchNorm2d(nf * 8, affine=True)
|
|
self.conv3_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
|
|
self.bn3_1 = nn.BatchNorm2d(nf * 8, affine=True)
|
|
# [512, 8, 8]
|
|
self.conv4_0 = nn.Conv2d(nf * 8, nf * 8, 3, 1, 1, bias=False)
|
|
self.bn4_0 = nn.BatchNorm2d(nf * 8, affine=True)
|
|
self.conv4_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
|
|
self.bn4_1 = nn.BatchNorm2d(nf * 8, affine=True)
|
|
final_nf = nf * 8
|
|
|
|
# activation function
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
|
|
|
self.linear1 = nn.Linear(int(final_nf * 4 * 4), latent_size*2)
|
|
self.linear2 = nn.Linear(latent_size*2, latent_size)
|
|
|
|
def compute_body(self, x):
|
|
fea = self.lrelu(self.conv0_0(x))
|
|
fea = self.lrelu(self.bn0_1(self.conv0_1(fea)))
|
|
|
|
#fea = torch.cat([fea, skip_med], dim=1)
|
|
fea = self.lrelu(self.bn1_0(self.conv1_0(fea)))
|
|
fea = self.lrelu(self.bn1_1(self.conv1_1(fea)))
|
|
|
|
#fea = torch.cat([fea, skip_lo], dim=1)
|
|
fea = self.lrelu(self.bn2_0(self.conv2_0(fea)))
|
|
fea = self.lrelu(self.bn2_1(self.conv2_1(fea)))
|
|
|
|
fea = self.lrelu(self.bn3_0(self.conv3_0(fea)))
|
|
fea = self.lrelu(self.bn3_1(self.conv3_1(fea)))
|
|
|
|
fea = self.lrelu(self.bn4_0(self.conv4_0(fea)))
|
|
fea = self.lrelu(self.bn4_1(self.conv4_1(fea)))
|
|
return fea
|
|
|
|
def forward(self, x):
|
|
fea = checkpoint(self.compute_body, x)
|
|
fea = fea.contiguous().view(fea.size(0), -1)
|
|
fea = self.linear1(fea)
|
|
out = self.linear2(fea)
|
|
return out |