Much faster clipping

This commit is contained in:
Luke Benstead 2023-04-26 20:50:43 +01:00
parent 1a678d2c8d
commit 0f65eab86a
2 changed files with 215 additions and 183 deletions

View File

@ -9,8 +9,7 @@
#define likely(x) __builtin_expect(!!(x), 1)
#define unlikely(x) __builtin_expect(!!(x), 0)
#define SQ_BASE_ADDRESS (uint32_t *)(void *) \
(0xe0000000 | (((uint32_t)0x10000000) & 0x03ffffe0))
#define SQ_BASE_ADDRESS (void*) 0xe0000000
GL_FORCE_INLINE bool glIsVertex(const float flags) {
@ -51,21 +50,18 @@ GL_FORCE_INLINE void _glPerspectiveDivideVertex(Vertex* vertex, const float h) {
const float f = _glFastInvert(vertex->w);
/* Convert to NDC and apply viewport */
vertex->xyz[0] = __builtin_fmaf(
VIEWPORT.hwidth, vertex->xyz[0] * f, VIEWPORT.x_plus_hwidth
);
vertex->xyz[1] = h - __builtin_fmaf(
VIEWPORT.hheight, vertex->xyz[1] * f, VIEWPORT.y_plus_hheight
);
vertex->xyz[0] = ((vertex->xyz[0] * f) * 320) + 320;
vertex->xyz[1] = ((vertex->xyz[1] * f) * -240) + 240;
vertex->xyz[2] = f;
/* Orthographic projections need to use invZ otherwise we lose
the depth information. As w == 1, and clip-space range is -w to +w
we add 1.0 to the Z to bring it into range. We add a little extra to
avoid a divide by zero.
*/
vertex->xyz[2] = (vertex->w == 1.0f) ? _glFastInvert(1.0001f + vertex->xyz[2]) : f;
if(vertex->w == 1.0f) {
vertex->xyz[2] = _glFastInvert(1.0001f + vertex->xyz[2]);
}
}
GL_FORCE_INLINE void _glSubmitHeaderOrVertex(volatile uint32_t* d, const Vertex* v) {
@ -91,37 +87,29 @@ GL_FORCE_INLINE void _glSubmitHeaderOrVertex(volatile uint32_t* d, const Vertex*
d += 8;
}
static inline void interpolateColour(const uint32_t* a, const uint32_t* b, const float t, uint32_t* out) {
const static uint32_t MASK1 = 0x00FF00FF;
const static uint32_t MASK2 = 0xFF00FF00;
const uint32_t f2 = 256 * t;
const uint32_t f1 = 256 - f2;
*out = (((((*a & MASK1) * f1) + ((*b & MASK1) * f2)) >> 8) & MASK1) |
(((((*a & MASK2) * f1) + ((*b & MASK2) * f2)) >> 8) & MASK2);
}
static inline void _glClipEdge(const Vertex* v1, const Vertex* v2, Vertex* vout) {
/* Clipping time! */
static inline void _glClipEdge(const Vertex* const v1, const Vertex* const v2, Vertex* vout) {
const static float o = 1.0f / 255.0f;
const float d0 = v1->w + v1->xyz[2];
const float d1 = v2->w + v2->xyz[2];
const float sign = ((2.0f * (d1 < d0)) - 1.0f);
const float epsilon = -0.00001f * sign;
const float n = (d0 - d1);
const float r = (1.f / sqrtf(n * n)) * sign;
float t = fmaf(r, d0, epsilon);
const float t = (fabs(d0) * (1.0f / sqrtf((d1 - d0) * (d1 - d0)))) + 0.000001f;
const float invt = 1.0f - t;
vout->xyz[0] = fmaf(v2->xyz[0] - v1->xyz[0], t, v1->xyz[0]);
vout->xyz[1] = fmaf(v2->xyz[1] - v1->xyz[1], t, v1->xyz[1]);
vout->xyz[2] = fmaf(v2->xyz[2] - v1->xyz[2], t, v1->xyz[2]);
vout->w = fmaf(v2->w - v1->w, t, v1->w);
vout->xyz[0] = invt * v1->xyz[0] + t * v2->xyz[0];
vout->xyz[1] = invt * v1->xyz[1] + t * v2->xyz[1];
vout->xyz[2] = invt * v1->xyz[2] + t * v2->xyz[2];
vout->uv[0] = fmaf(v2->uv[0] - v1->uv[0], t, v1->uv[0]);
vout->uv[1] = fmaf(v2->uv[1] - v1->uv[1], t, v1->uv[1]);
vout->uv[0] = invt * v1->uv[0] + t * v2->uv[0];
vout->uv[1] = invt * v1->uv[1] + t * v2->uv[1];
interpolateColour((uint32_t*) v1->bgra, (uint32_t*) v2->bgra, t, (uint32_t*) vout->bgra);
vout->w = invt * v1->w + t * v2->w;
const float m = 255 * t;
const float n = 255 - m;
vout->bgra[0] = (v1->bgra[0] * n + v2->bgra[0] * m) * o;
vout->bgra[1] = (v1->bgra[1] * n + v2->bgra[1] * m) * o;
vout->bgra[2] = (v1->bgra[2] * n + v2->bgra[2] * m) * o;
vout->bgra[3] = (v1->bgra[3] * n + v2->bgra[3] * m) * o;
}
#define SPAN_SORT_CFG 0x005F8030
@ -146,17 +134,9 @@ void SceneListSubmit(void* src, int n) {
//Set QACR registers
QACR[1] = QACR[0] = 0x11;
volatile uint32_t *d = SQ_BASE_ADDRESS;
volatile uint32_t *sq = SQ_BASE_ADDRESS;
int8_t queue_head = 0;
int8_t queue_tail = 0;
/* The most vertices ever in the queue is 5 (as some clipping operations
* produce and additional couple of vertice, but we add one more so the ring buffer doesn't
* trip over itself (e.g. if tail == head we can guarantee it's empty, not full) */
const static uint8_t queue_capacity = 4;
Vertex __attribute__((aligned(32))) queue[queue_capacity];
Vertex* vertex = (Vertex*) src;
uint32_t clipping_disabled_mask = (_glNearZClippingEnabled()) ? 0 : 0x7;
#if CLIP_DEBUG
for(int i = 0; i < n; ++i) {
@ -165,83 +145,100 @@ void SceneListSubmit(void* src, int n) {
fprintf(stderr, "----\n");
#endif
uint8_t visible_mask = 0;
bool last_vertex = false;
while(n--) {
uint8_t counter = 0;
last_vertex = false;
memcpy_vertex(queue + queue_tail, vertex++);
switch(queue[queue_tail].flags) {
Vertex* v2 = (Vertex*) src;
while(n--) {
__builtin_prefetch(v2 + 1);
switch(v2->flags) {
case GPU_CMD_VERTEX_EOL:
last_vertex = true;
case GPU_CMD_VERTEX:
visible_mask = (visible_mask >> 1) | (queue[queue_tail].xyz[2] >= -queue[queue_tail].w) << 2;
assert(visible_mask < 15);
queue_tail = (queue_tail + 1) % queue_capacity;
counter = (queue_tail - queue_head + queue_capacity) % queue_capacity;
if(++counter < 3) {
v2++;
continue;
}
break;
default:
_glSubmitHeaderOrVertex(d, &queue[queue_tail]);
break;
}
if(counter < 3) {
_glSubmitHeaderOrVertex(sq, v2++);
counter = 0;
continue;
}
#if CLIP_DEBUG
fprintf(stderr, "%d\n", visible_mask);
#endif
Vertex __attribute__((aligned(32))) a, b; // Scratch vertices
switch(visible_mask | (last_vertex << 3)) {
Vertex* const v0 = v2 - 2;
Vertex* const v1 = v2 - 1;
const uint8_t visible_mask = (
(v0->xyz[2] > -v0->w) << 0 |
(v1->xyz[2] > -v1->w) << 1 |
(v2->xyz[2] > -v2->w) << 2 |
((v2->flags == GPU_CMD_VERTEX_EOL) << 3) |
clipping_disabled_mask // This forces everything to be marked visible if clipping is disabled
);
switch(visible_mask) {
case 0:
break;
case 15: /* All visible, but final vertex in strip */
const int8_t v1 = (queue_head + 1) % queue_capacity;
const int8_t v2 = (queue_head + 2) % queue_capacity;
{
_glPerspectiveDivideVertex(v0, h);
_glSubmitHeaderOrVertex(sq, v0);
_glPerspectiveDivideVertex(&queue[queue_head], h);
_glSubmitHeaderOrVertex(d, &queue[queue_head]);
Vertex __attribute__((aligned(32))) a = *v1;
_glPerspectiveDivideVertex(&a, h);
_glSubmitHeaderOrVertex(sq, &a);
_glPerspectiveDivideVertex(&queue[v1], h);
_glSubmitHeaderOrVertex(d, &queue[v1]);
_glPerspectiveDivideVertex(&queue[v2], h);
_glSubmitHeaderOrVertex(d, &queue[v2]);
a = *v2;
_glPerspectiveDivideVertex(&a, h);
_glSubmitHeaderOrVertex(sq, &a);
}
break;
case 7:
/* All visible, push the first vertex and move on */
_glPerspectiveDivideVertex(&queue[queue_head], h);
_glSubmitHeaderOrVertex(d, &queue[queue_head]);
_glPerspectiveDivideVertex(v0, h);
_glSubmitHeaderOrVertex(sq, v0);
break;
case 9:
case 1:
/* First vertex was visible */
/* First vertex was visible, last in strip */
{
Vertex* v0 = &queue[queue_head];
Vertex* v1 = &queue[(queue_head + 1) % queue_capacity];
Vertex* v2 = &queue[(queue_head + 2) % queue_capacity];
Vertex __attribute__((aligned(32))) a, b;
_glClipEdge(v0, v1, &a);
_glClipEdge(v2, v0, &b);
a.flags = GPU_CMD_VERTEX;
/* If v2 was the last in the strip, then b should be. If it wasn't
we'll create a degenerate triangle by adding b twice in a row so that the
strip processing will continue correctly after crossing the plane so it can
cross back*/
b.flags = v2->flags;
_glClipEdge(v2, v0, &b);
b.flags = GPU_CMD_VERTEX_EOL;
_glPerspectiveDivideVertex(v0, h);
_glSubmitHeaderOrVertex(d, v0);
_glSubmitHeaderOrVertex(sq, v0);
_glPerspectiveDivideVertex(&a, h);
_glSubmitHeaderOrVertex(d, &a);
_glSubmitHeaderOrVertex(sq, &a);
_glPerspectiveDivideVertex(&b, h);
_glSubmitHeaderOrVertex(d, &b);
_glSubmitHeaderOrVertex(d, &b);
_glSubmitHeaderOrVertex(sq, &b);
}
break;
case 1:
/* First vertex was visible, but not last in strip */
{
Vertex __attribute__((aligned(32))) a, b;
_glClipEdge(v0, v1, &a);
a.flags = GPU_CMD_VERTEX;
_glClipEdge(v2, v0, &b);
b.flags = GPU_CMD_VERTEX;
_glPerspectiveDivideVertex(v0, h);
_glSubmitHeaderOrVertex(sq, v0);
_glPerspectiveDivideVertex(&a, h);
_glSubmitHeaderOrVertex(sq, &a);
_glPerspectiveDivideVertex(&b, h);
_glSubmitHeaderOrVertex(sq, &b);
_glSubmitHeaderOrVertex(sq, &b);
}
break;
case 10:
@ -249,133 +246,164 @@ void SceneListSubmit(void* src, int n) {
/* Second vertex was visible. In self case we need to create a triangle and produce
two new vertices: 1-2, and 2-3. */
{
Vertex* v0 = &queue[queue_head];
Vertex __attribute__((aligned(32))) v1 = queue[(queue_head + 1) % queue_capacity];
const Vertex* v2 = &queue[(queue_head + 2) % queue_capacity];
_glClipEdge(v0, &v1, &a);
_glClipEdge(&v1, v2, &b);
Vertex __attribute__((aligned(32))) a;
Vertex __attribute__((aligned(32))) c = *v1;
_glClipEdge(v0, &c, &a);
a.flags = GPU_CMD_VERTEX;
b.flags = v2->flags;
_glPerspectiveDivideVertex(&v1, h);
_glPerspectiveDivideVertex(&a, h);
_glPerspectiveDivideVertex(&b, h);
_glSubmitHeaderOrVertex(sq, &a);
_glSubmitHeaderOrVertex(d, &a);
_glSubmitHeaderOrVertex(d, &v1);
_glSubmitHeaderOrVertex(d, &b);
_glClipEdge(&c, v2, &a);
a.flags = v2->flags;
_glPerspectiveDivideVertex(&c, h);
_glSubmitHeaderOrVertex(sq, &c);
_glPerspectiveDivideVertex(&a, h);
_glSubmitHeaderOrVertex(sq, &a);
}
break;
case 11:
case 3: /* First and second vertex were visible */
{
Vertex* v0 = &queue[queue_head];
Vertex __attribute__((aligned(32))) v1 = queue[(queue_head + 1) % queue_capacity];
Vertex* v2 = &queue[(queue_head + 2) % queue_capacity];
Vertex __attribute__((aligned(32))) a, b;
Vertex __attribute__((aligned(32))) c = *v1;
_glClipEdge(&v1, v2, &a);
_glClipEdge(v2, v0, &b);
a.flags = v2->flags;
b.flags = GPU_CMD_VERTEX;
_glPerspectiveDivideVertex(v0, h);
_glPerspectiveDivideVertex(&v1, h);
_glPerspectiveDivideVertex(&a, h);
_glPerspectiveDivideVertex(&b, h);
_glSubmitHeaderOrVertex(sq, v0);
_glSubmitHeaderOrVertex(d, v0);
_glSubmitHeaderOrVertex(d, &v1);
_glSubmitHeaderOrVertex(d, &b);
_glSubmitHeaderOrVertex(d, &v1);
_glSubmitHeaderOrVertex(d, &a);
_glClipEdge(v1, v2, &a);
a.flags = v2->flags;
_glPerspectiveDivideVertex(&c, h);
_glSubmitHeaderOrVertex(sq, &c);
_glPerspectiveDivideVertex(&b, h);
_glSubmitHeaderOrVertex(sq, &b);
_glPerspectiveDivideVertex(&a, h);
_glSubmitHeaderOrVertex(sq, &c);
_glSubmitHeaderOrVertex(sq, &a);
}
break;
case 12:
case 4:
/* Third vertex was visible. */
{
Vertex* v0 = &queue[queue_head];
Vertex* v1 = &queue[(queue_head + 1) % queue_capacity];
Vertex __attribute__((aligned(32))) v2 = queue[(queue_head + 2) % queue_capacity];
Vertex __attribute__((aligned(32))) a, b;
Vertex __attribute__((aligned(32))) c = *v2;
_glClipEdge(&v2, v0, &a);
_glClipEdge(v1, &v2, &b);
_glClipEdge(v2, v0, &a);
a.flags = GPU_CMD_VERTEX;
_glClipEdge(v1, v2, &b);
b.flags = GPU_CMD_VERTEX;
_glPerspectiveDivideVertex(&v2, h);
_glPerspectiveDivideVertex(&a, h);
_glPerspectiveDivideVertex(&b, h);
_glSubmitHeaderOrVertex(sq, &a);
_glSubmitHeaderOrVertex(d, &a);
_glSubmitHeaderOrVertex(d, &a);
_glSubmitHeaderOrVertex(d, &b);
_glSubmitHeaderOrVertex(d, &v2);
_glPerspectiveDivideVertex(&b, h);
_glSubmitHeaderOrVertex(sq, &a);
_glSubmitHeaderOrVertex(sq, &b);
_glPerspectiveDivideVertex(&c, h);
_glSubmitHeaderOrVertex(sq, &c);
}
break;
case 13:
case 5: /* First and third vertex were visible */
{
Vertex* v0 = &queue[queue_head];
Vertex* v1 = &queue[(queue_head + 1) % queue_capacity];
Vertex __attribute__((aligned(32))) v2 = queue[(queue_head + 2) % queue_capacity];
Vertex __attribute__((aligned(32))) a, b;
Vertex __attribute__((aligned(32))) c = *v2;
c.flags = GPU_CMD_VERTEX;
_glClipEdge(v0, v1, &a);
_glClipEdge(v1, &v2, &b);
a.flags = GPU_CMD_VERTEX;
_glClipEdge(v1, v2, &b);
b.flags = GPU_CMD_VERTEX;
_glPerspectiveDivideVertex(v0, h);
_glPerspectiveDivideVertex(&v2, h);
_glPerspectiveDivideVertex(&a, h);
_glPerspectiveDivideVertex(&b, h);
_glSubmitHeaderOrVertex(sq, v0);
_glSubmitHeaderOrVertex(d, v0);
_glSubmitHeaderOrVertex(d, &a);
uint32_t v2_flags = v2.flags;
v2.flags = GPU_CMD_VERTEX;
_glSubmitHeaderOrVertex(d, &v2);
v2.flags = v2_flags;
_glSubmitHeaderOrVertex(d, &b);
_glSubmitHeaderOrVertex(d, &v2);
_glPerspectiveDivideVertex(&a, h);
_glSubmitHeaderOrVertex(sq, &a);
_glPerspectiveDivideVertex(&c, h);
_glSubmitHeaderOrVertex(sq, &c);
_glPerspectiveDivideVertex(&b, h);
_glSubmitHeaderOrVertex(sq, &b);
c.flags = GPU_CMD_VERTEX_EOL;
_glSubmitHeaderOrVertex(sq, &c);
}
break;
case 5: /* First and third vertex were visible */
{
Vertex __attribute__((aligned(32))) a, b;
Vertex __attribute__((aligned(32))) c = *v2;
c.flags = GPU_CMD_VERTEX;
_glClipEdge(v0, v1, &a);
a.flags = GPU_CMD_VERTEX;
_glClipEdge(v1, v2, &b);
b.flags = GPU_CMD_VERTEX;
_glPerspectiveDivideVertex(v0, h);
_glSubmitHeaderOrVertex(sq, v0);
_glPerspectiveDivideVertex(&a, h);
_glSubmitHeaderOrVertex(sq, &a);
_glPerspectiveDivideVertex(&c, h);
_glSubmitHeaderOrVertex(sq, &c);
_glPerspectiveDivideVertex(&b, h);
_glSubmitHeaderOrVertex(sq, &b);
_glSubmitHeaderOrVertex(sq, &c);
}
break;
case 14:
case 6: /* Second and third vertex were visible */
{
Vertex* v0 = &queue[queue_head];
Vertex __attribute__((aligned(32))) v1 = queue[(queue_head + 1) % queue_capacity];
Vertex __attribute__((aligned(32))) v2 = queue[(queue_head + 2) % queue_capacity];
_glClipEdge(v0, &v1, &a);
_glClipEdge(&v2, v0, &b);
Vertex __attribute__((aligned(32))) a, b;
Vertex __attribute__((aligned(32))) c = *v1;
_glClipEdge(v0, v1, &a);
a.flags = GPU_CMD_VERTEX;
_glClipEdge(v2, v0, &b);
b.flags = GPU_CMD_VERTEX;
_glPerspectiveDivideVertex(&v1, h);
_glPerspectiveDivideVertex(&v2, h);
_glPerspectiveDivideVertex(&a, h);
_glPerspectiveDivideVertex(&b, h);
_glSubmitHeaderOrVertex(sq, &a);
_glSubmitHeaderOrVertex(d, &a);
_glSubmitHeaderOrVertex(d, &v1);
_glSubmitHeaderOrVertex(d, &b);
_glSubmitHeaderOrVertex(d, &v1);
_glSubmitHeaderOrVertex(d, &v2);
_glPerspectiveDivideVertex(&c, h);
_glSubmitHeaderOrVertex(sq, &c);
_glPerspectiveDivideVertex(&b, h);
_glSubmitHeaderOrVertex(sq, &b);
_glSubmitHeaderOrVertex(sq, &c);
c = *v2;
_glPerspectiveDivideVertex(&c, h);
_glSubmitHeaderOrVertex(sq, &c);
}
break;
default:
break;
}
if(last_vertex) {
visible_mask = queue_head = queue_tail = 0;
if(v2->flags == GPU_CMD_VERTEX_EOL) {
counter = 0;
} else {
queue_head = (queue_head + 1) % queue_capacity;
--counter;
}
v2++;
}
}

View File

@ -23,7 +23,11 @@ int ImageLoad(char *filename, Image *image) {
}
// seek through the bmp header, up to the width/height:
fseek(file, 18, SEEK_CUR);
fseek(file, 10, SEEK_CUR);
uint32_t offset;
fread(&offset, 4, 1, file);
fseek(file, 4, SEEK_CUR);
// read the width
if ((i = fread(&sizeX, 4, 1, file)) != 1) {
@ -65,7 +69,7 @@ int ImageLoad(char *filename, Image *image) {
}
// seek past the rest of the bitmap header.
fseek(file, 24, SEEK_CUR);
fseek(file, offset, SEEK_SET);
// read the data.
image->data = (char *) malloc(size);