Lighting optimisations

This commit is contained in:
Luke Benstead 2020-05-07 20:58:24 +01:00
parent 0a14db39a8
commit 814f228db9
3 changed files with 165 additions and 86 deletions

View File

@ -18,9 +18,19 @@ static GLenum COLOR_CONTROL = GL_SINGLE_COLOR;
static GLenum COLOR_MATERIAL_MODE = GL_AMBIENT_AND_DIFFUSE; static GLenum COLOR_MATERIAL_MODE = GL_AMBIENT_AND_DIFFUSE;
#define AMBIENT_MASK 1
#define DIFFUSE_MASK 2
#define EMISSION_MASK 4
#define SPECULAR_MASK 8
#define SCENE_AMBIENT_MASK 16
static GLenum COLOR_MATERIAL_MASK = AMBIENT_MASK | DIFFUSE_MASK;
static LightSource LIGHTS[MAX_LIGHTS]; static LightSource LIGHTS[MAX_LIGHTS];
static Material MATERIAL; static Material MATERIAL;
GL_FORCE_INLINE void _glPrecalcLightingValues(GLuint mask);
void _glInitLights() { void _glInitLights() {
static GLfloat ONE [] = {1.0f, 1.0f, 1.0f, 1.0f}; static GLfloat ONE [] = {1.0f, 1.0f, 1.0f, 1.0f};
static GLfloat ZERO [] = {0.0f, 0.0f, 0.0f, 1.0f}; static GLfloat ZERO [] = {0.0f, 0.0f, 0.0f, 1.0f};
@ -46,6 +56,7 @@ void _glInitLights() {
LIGHTS[i].position[0] = LIGHTS[i].position[1] = LIGHTS[i].position[3] = 0.0f; LIGHTS[i].position[0] = LIGHTS[i].position[1] = LIGHTS[i].position[3] = 0.0f;
LIGHTS[i].position[2] = 1.0f; LIGHTS[i].position[2] = 1.0f;
LIGHTS[i].isDirectional = GL_TRUE;
LIGHTS[i].spot_direction[0] = LIGHTS[i].spot_direction[1] = 0.0f; LIGHTS[i].spot_direction[0] = LIGHTS[i].spot_direction[1] = 0.0f;
LIGHTS[i].spot_direction[2] = -1.0f; LIGHTS[i].spot_direction[2] = -1.0f;
@ -57,6 +68,43 @@ void _glInitLights() {
LIGHTS[i].linear_attenuation = 0.0f; LIGHTS[i].linear_attenuation = 0.0f;
LIGHTS[i].quadratic_attenuation = 0.0f; LIGHTS[i].quadratic_attenuation = 0.0f;
} }
_glPrecalcLightingValues(~0);
}
GL_FORCE_INLINE void _glPrecalcLightingValues(GLuint mask) {
float baseColour[4];
/* Pre-calculate lighting values */
GLubyte i, j;
for(i = 0; i < MAX_LIGHTS; ++i) {
/* Go through rgba */
for(j = 0; j < 4; ++j) {
if(mask & AMBIENT_MASK)
LIGHTS[i].ambientMaterial[j] = LIGHTS[i].ambient[j] * MATERIAL.ambient[j];
if(mask & DIFFUSE_MASK)
LIGHTS[i].diffuseMaterial[j] = LIGHTS[i].diffuse[j] * MATERIAL.diffuse[j];
if(mask & SPECULAR_MASK)
LIGHTS[i].specularMaterial[j] = LIGHTS[i].specular[j] * MATERIAL.specular[j];
}
}
/* If ambient or emission are updated, we need to update
* the base colour. */
if((mask & AMBIENT_MASK) || (mask & EMISSION_MASK) || (mask & SCENE_AMBIENT_MASK)) {
baseColour[0] = MATH_fmac(SCENE_AMBIENT[0], MATERIAL.ambient[0], MATERIAL.emissive[0]);
baseColour[1] = MATH_fmac(SCENE_AMBIENT[1], MATERIAL.ambient[1], MATERIAL.emissive[1]);
baseColour[2] = MATH_fmac(SCENE_AMBIENT[2], MATERIAL.ambient[2], MATERIAL.emissive[2]);
baseColour[3] = MATH_fmac(SCENE_AMBIENT[3], MATERIAL.ambient[3], MATERIAL.emissive[3]);
MATERIAL.baseColour[R8IDX] = (uint8_t)(_MIN(baseColour[0] * 255.0f, 255.0f));
MATERIAL.baseColour[G8IDX] = (uint8_t)(_MIN(baseColour[1] * 255.0f, 255.0f));
MATERIAL.baseColour[B8IDX] = (uint8_t)(_MIN(baseColour[2] * 255.0f, 255.0f));
MATERIAL.baseColour[A8IDX] = (uint8_t)(_MIN(baseColour[3] * 255.0f, 255.0f));
}
} }
void APIENTRY glLightModelf(GLenum pname, const GLfloat param) { void APIENTRY glLightModelf(GLenum pname, const GLfloat param) {
@ -69,9 +117,10 @@ void APIENTRY glLightModeli(GLenum pname, const GLint param) {
void APIENTRY glLightModelfv(GLenum pname, const GLfloat *params) { void APIENTRY glLightModelfv(GLenum pname, const GLfloat *params) {
switch(pname) { switch(pname) {
case GL_LIGHT_MODEL_AMBIENT: case GL_LIGHT_MODEL_AMBIENT: {
memcpy(SCENE_AMBIENT, params, sizeof(GLfloat) * 4); memcpy(SCENE_AMBIENT, params, sizeof(GLfloat) * 4);
break; _glPrecalcLightingValues(SCENE_AMBIENT_MASK);
} break;
case GL_LIGHT_MODEL_LOCAL_VIEWER: case GL_LIGHT_MODEL_LOCAL_VIEWER:
VIEWER_IN_EYE_COORDINATES = (*params) ? GL_TRUE : GL_FALSE; VIEWER_IN_EYE_COORDINATES = (*params) ? GL_TRUE : GL_FALSE;
break; break;
@ -104,6 +153,10 @@ void APIENTRY glLightfv(GLenum light, GLenum pname, const GLfloat *params) {
return; return;
} }
GLuint mask = (pname == GL_AMBIENT) ? AMBIENT_MASK :
(pname == GL_DIFFUSE) ? DIFFUSE_MASK :
(pname == GL_SPECULAR) ? SPECULAR_MASK : 0;
switch(pname) { switch(pname) {
case GL_AMBIENT: case GL_AMBIENT:
memcpy(LIGHTS[idx].ambient, params, sizeof(GLfloat) * 4); memcpy(LIGHTS[idx].ambient, params, sizeof(GLfloat) * 4);
@ -118,7 +171,9 @@ void APIENTRY glLightfv(GLenum light, GLenum pname, const GLfloat *params) {
_glMatrixLoadModelView(); _glMatrixLoadModelView();
memcpy(LIGHTS[idx].position, params, sizeof(GLfloat) * 4); memcpy(LIGHTS[idx].position, params, sizeof(GLfloat) * 4);
if(params[3] == 0.0f) { LIGHTS[idx].isDirectional = params[3] == 0.0f;
if(LIGHTS[idx].isDirectional) {
//FIXME: Do we need to rotate directional lights? //FIXME: Do we need to rotate directional lights?
} else { } else {
mat_trans_single4( mat_trans_single4(
@ -146,6 +201,8 @@ void APIENTRY glLightfv(GLenum light, GLenum pname, const GLfloat *params) {
_glKosThrowError(GL_INVALID_ENUM, __func__); _glKosThrowError(GL_INVALID_ENUM, __func__);
_glKosPrintError(); _glKosPrintError();
} }
_glPrecalcLightingValues(mask);
} }
void APIENTRY glLightf(GLenum light, GLenum pname, GLfloat param) { void APIENTRY glLightf(GLenum light, GLenum pname, GLfloat param) {
@ -192,11 +249,6 @@ void APIENTRY glMateriali(GLenum face, GLenum pname, const GLint param) {
} }
void APIENTRY glMaterialfv(GLenum face, GLenum pname, const GLfloat *params) { void APIENTRY glMaterialfv(GLenum face, GLenum pname, const GLfloat *params) {
if(pname == GL_SHININESS) {
glMaterialf(face, pname, *params);
return;
}
if(face == GL_BACK) { if(face == GL_BACK) {
_glKosThrowError(GL_INVALID_ENUM, __func__); _glKosThrowError(GL_INVALID_ENUM, __func__);
_glKosPrintError(); _glKosPrintError();
@ -204,6 +256,9 @@ void APIENTRY glMaterialfv(GLenum face, GLenum pname, const GLfloat *params) {
} }
switch(pname) { switch(pname) {
case GL_SHININESS:
glMaterialf(face, pname, *params);
break;
case GL_AMBIENT: case GL_AMBIENT:
memcpy(MATERIAL.ambient, params, sizeof(GLfloat) * 4); memcpy(MATERIAL.ambient, params, sizeof(GLfloat) * 4);
break; break;
@ -217,8 +272,8 @@ void APIENTRY glMaterialfv(GLenum face, GLenum pname, const GLfloat *params) {
memcpy(MATERIAL.emissive, params, sizeof(GLfloat) * 4); memcpy(MATERIAL.emissive, params, sizeof(GLfloat) * 4);
break; break;
case GL_AMBIENT_AND_DIFFUSE: { case GL_AMBIENT_AND_DIFFUSE: {
glMaterialfv(face, GL_AMBIENT, params); memcpy(MATERIAL.ambient, params, sizeof(GLfloat) * 4);
glMaterialfv(face, GL_DIFFUSE, params); memcpy(MATERIAL.diffuse, params, sizeof(GLfloat) * 4);
} break; } break;
case GL_COLOR_INDEXES: case GL_COLOR_INDEXES:
default: { default: {
@ -226,6 +281,14 @@ void APIENTRY glMaterialfv(GLenum face, GLenum pname, const GLfloat *params) {
_glKosPrintError(); _glKosPrintError();
} }
} }
GLuint updateMask = (pname == GL_AMBIENT) ? AMBIENT_MASK:
(pname == GL_DIFFUSE) ? DIFFUSE_MASK:
(pname == GL_SPECULAR) ? SPECULAR_MASK:
(pname == GL_EMISSION) ? EMISSION_MASK:
(pname == GL_AMBIENT_AND_DIFFUSE) ? AMBIENT_MASK | DIFFUSE_MASK : 0;
_glPrecalcLightingValues(updateMask);
} }
void APIENTRY glColorMaterial(GLenum face, GLenum mode) { void APIENTRY glColorMaterial(GLenum face, GLenum mode) {
@ -241,9 +304,34 @@ void APIENTRY glColorMaterial(GLenum face, GLenum mode) {
return; return;
} }
COLOR_MATERIAL_MASK = (mode == GL_AMBIENT) ? AMBIENT_MASK:
(mode == GL_DIFFUSE) ? DIFFUSE_MASK:
(mode == GL_AMBIENT_AND_DIFFUSE) ? AMBIENT_MASK | DIFFUSE_MASK:
(mode == GL_EMISSION) ? EMISSION_MASK : SPECULAR_MASK;
COLOR_MATERIAL_MODE = mode; COLOR_MATERIAL_MODE = mode;
} }
void _glUpdateColourMaterial(GLfloat* colour) {
if(!_glIsColorMaterialEnabled()) {
return;
}
if(COLOR_MATERIAL_MODE == GL_AMBIENT || COLOR_MATERIAL_MODE == GL_AMBIENT_AND_DIFFUSE) {
memcpy4(MATERIAL.ambient, colour, sizeof(GLfloat) * 4);
}
if(COLOR_MATERIAL_MODE == GL_DIFFUSE || COLOR_MATERIAL_MODE == GL_AMBIENT_AND_DIFFUSE) {
memcpy4(MATERIAL.diffuse, colour, sizeof(GLfloat) * 4);
}
if(COLOR_MATERIAL_MODE == GL_EMISSION) {
memcpy4(MATERIAL.emissive, colour, sizeof(GLfloat) * 4);
}
_glPrecalcLightingValues(COLOR_MATERIAL_MASK);
}
GL_FORCE_INLINE GLboolean isDiffuseColorMaterial() { GL_FORCE_INLINE GLboolean isDiffuseColorMaterial() {
return (COLOR_MATERIAL_MODE == GL_DIFFUSE || COLOR_MATERIAL_MODE == GL_AMBIENT_AND_DIFFUSE); return (COLOR_MATERIAL_MODE == GL_DIFFUSE || COLOR_MATERIAL_MODE == GL_AMBIENT_AND_DIFFUSE);
} }
@ -288,31 +376,20 @@ GL_FORCE_INLINE float faster_pow(const float x, const float p) {
return faster_pow2(p * faster_log2(x)); return faster_pow2(p * faster_log2(x));
} }
GL_FORCE_INLINE float vec3_dot_limited(
const float* x1, const float* y1, const float* z1,
const float* x2, const float* y2, const float* z2) {
float ret;
vec3f_dot(*x1, *y1, *z1, *x2, *y2, *z2, ret);
return (ret < 0) ? 0 : ret;
}
GL_FORCE_INLINE void _glLightVertexDirectional( GL_FORCE_INLINE void _glLightVertexDirectional(
uint8_t* final, int8_t lid, uint8_t* final, uint8_t lid,
float LdotN, float NdotH, float LdotN, float NdotH) {
const float* ambient, const float* diffuse, const float* specular) {
float F; float FI = (MATERIAL.exponent) ?
uint8_t FO; faster_pow((LdotN != 0.0f) * NdotH, MATERIAL.exponent) : 1.0f;
float FI = (LdotN != 0.0f);
FI = (MATERIAL.exponent) ? faster_pow(FI * NdotH, MATERIAL.exponent) : 1.0f;
#define _PROCESS_COMPONENT(T, X) \ #define _PROCESS_COMPONENT(T, X) \
F = (ambient[X] * LIGHTS[lid].ambient[X]); \ do { \
F += (LdotN * diffuse[X] * LIGHTS[lid].diffuse[X]); \ float F = MATH_fmac(LdotN, LIGHTS[lid].diffuseMaterial[X], LIGHTS[lid].ambientMaterial[X]); \
F += FI * specular[X] * LIGHTS[lid].specular[X]; \ F += (FI * LIGHTS[lid].specularMaterial[X]); \
FO = (uint8_t) (_MIN(F * 255.0f, 255.0f)); \ uint8_t FO = (uint8_t) (_MIN(F * 255.0f, 255.0f)); \
final[T] += _MIN(FO, 255 - final[T]); final[T] += _MIN(FO, 255 - final[T]); \
} while(0);
_PROCESS_COMPONENT(R8IDX, 0); _PROCESS_COMPONENT(R8IDX, 0);
_PROCESS_COMPONENT(G8IDX, 1); _PROCESS_COMPONENT(G8IDX, 1);
@ -322,22 +399,19 @@ GL_FORCE_INLINE void _glLightVertexDirectional(
} }
GL_FORCE_INLINE void _glLightVertexPoint( GL_FORCE_INLINE void _glLightVertexPoint(
uint8_t* final, int8_t lid, uint8_t* final, uint8_t lid,
float LdotN, float NdotH, float att, float LdotN, float NdotH, float att) {
const float* ambient, const float* diffuse, const float* specular) {
float F; float FI = (MATERIAL.exponent) ?
uint8_t FO; faster_pow((LdotN != 0.0f) * NdotH, MATERIAL.exponent) : 1.0f;
float FI = (LdotN != 0.0f);
FI = (MATERIAL.exponent) ? faster_pow(FI * NdotH, MATERIAL.exponent) : 1.0f;
#define _PROCESS_COMPONENT(T, X) \ #define _PROCESS_COMPONENT(T, X) \
F = (ambient[X] * LIGHTS[lid].ambient[X]); \ do { \
F += (LdotN * diffuse[X] * LIGHTS[lid].diffuse[X]); \ float F = MATH_fmac(LdotN, LIGHTS[lid].diffuseMaterial[X], LIGHTS[lid].ambientMaterial[X]); \
F += FI * specular[X] * LIGHTS[lid].specular[X]; \ F += (FI * LIGHTS[lid].specularMaterial[X]); \
FO = (uint8_t) (_MIN(F * att * 255.0f, 255.0f)); \ uint8_t FO = (uint8_t) (_MIN(F * att * 255.0f, 255.0f)); \
\ final[T] += _MIN(FO, 255 - final[T]); \
final[T] += _MIN(FO, 255 - final[T]); \ } while(0); \
_PROCESS_COMPONENT(R8IDX, 0); _PROCESS_COMPONENT(R8IDX, 0);
_PROCESS_COMPONENT(G8IDX, 1); _PROCESS_COMPONENT(G8IDX, 1);
@ -356,40 +430,26 @@ GL_FORCE_INLINE void bgra_to_float(const uint8_t* input, GLfloat* output) {
} }
void _glPerformLighting(Vertex* vertices, const EyeSpaceData* es, const int32_t count) { void _glPerformLighting(Vertex* vertices, const EyeSpaceData* es, const int32_t count) {
int8_t i; uint8_t i;
int32_t j; int32_t j;
Vertex* vertex = vertices; Vertex* vertex = vertices;
const EyeSpaceData* data = es; const EyeSpaceData* data = es;
float base;
/* This is the original vertex colour, before we replace it. It's /* This is the original vertex colour, before we replace it. It's
* used for colour material */ * used for colour material */
float vdiffuse[4]; float vdiffuse[4];
unsigned char isCM = _glIsColorMaterialEnabled();
/* Update pointers as necessary depending on color material */
GLfloat* ambient = (isCM && isAmbientColorMaterial()) ? vdiffuse : MATERIAL.ambient;
GLfloat* diffuse = (isCM && isDiffuseColorMaterial()) ? vdiffuse : MATERIAL.diffuse;
GLfloat* specular = (isCM && isSpecularColorMaterial()) ? vdiffuse : MATERIAL.specular;
for(j = 0; j < count; ++j, ++vertex, ++data) { for(j = 0; j < count; ++j, ++vertex, ++data) {
__builtin_prefetch(vertex + 1, 1, 1);
__builtin_prefetch(data + 1, 0, 1);
/* Unpack the colour for use in glColorMaterial */ /* Unpack the colour for use in glColorMaterial */
if(isCM) { bgra_to_float(vertex->bgra, vdiffuse);
bgra_to_float(vertex->bgra, vdiffuse); _glUpdateColourMaterial(vdiffuse);
}
/* Initial, non-light related values */ /* Copy the base colour across */
base = (SCENE_AMBIENT[0] * ambient[0]) + MATERIAL.emissive[0]; memcpy4(vertex->bgra, MATERIAL.baseColour, sizeof(GLubyte) * 4);
vertex->bgra[R8IDX] = (uint8_t)(_MIN(base * 255.0f, 255.0f));
base = (SCENE_AMBIENT[1] * ambient[1]) + MATERIAL.emissive[1];
vertex->bgra[G8IDX] = (uint8_t)(_MIN(base * 255.0f, 255.0f));
base = (SCENE_AMBIENT[2] * ambient[2]) + MATERIAL.emissive[2];
vertex->bgra[B8IDX] = (uint8_t)(_MIN(base * 255.0f, 255.0f));
vertex->bgra[A8IDX] = (uint8_t)(_MIN(MATERIAL.diffuse[3] * 255.0f, 255.0f));
/* Direction to vertex in eye space */ /* Direction to vertex in eye space */
float Vx = -data->xyz[0]; float Vx = -data->xyz[0];
@ -402,9 +462,11 @@ void _glPerformLighting(Vertex* vertices, const EyeSpaceData* es, const int32_t
const float Nz = data->n[2]; const float Nz = data->n[2];
for(i = 0; i < MAX_LIGHTS; ++i) { for(i = 0; i < MAX_LIGHTS; ++i) {
__builtin_prefetch(LIGHTS + i + 1, 0, 1);
if(!_glIsLightEnabled(i)) continue; if(!_glIsLightEnabled(i)) continue;
if(LIGHTS[i].position[3] == 0.0f) { if(LIGHTS[i].isDirectional) {
float Lx = LIGHTS[i].position[0] - data->xyz[0]; float Lx = LIGHTS[i].position[0] - data->xyz[0];
float Ly = LIGHTS[i].position[1] - data->xyz[1]; float Ly = LIGHTS[i].position[1] - data->xyz[1];
float Lz = LIGHTS[i].position[2] - data->xyz[2]; float Lz = LIGHTS[i].position[2] - data->xyz[2];
@ -416,20 +478,22 @@ void _glPerformLighting(Vertex* vertices, const EyeSpaceData* es, const int32_t
vec3f_normalize(Lx, Ly, Lz); vec3f_normalize(Lx, Ly, Lz);
vec3f_normalize(Hx, Hy, Hz); vec3f_normalize(Hx, Hy, Hz);
const float LdotN = vec3_dot_limited( float LdotN = MATH_fipr(
&Nx, &Ny, &Nz, Nx, Ny, Nz, 1.0f,
&Lx, &Ly, &Lz Lx, Ly, Lz, 1.0f
); );
const float NdotH = vec3_dot_limited( float NdotH = MATH_fipr(
&Nx, &Ny, &Nz, Nx, Ny, Nz, 1.0f,
&Hx, &Hy, &Hz Hx, Hy, Hz, 1.0f
); );
if(LdotN < 0.0f) LdotN = 0.0f;
if(NdotH < 0.0f) NdotH = 0.0f;
_glLightVertexDirectional( _glLightVertexDirectional(
vertex->bgra, vertex->bgra,
i, LdotN, NdotH, i, LdotN, NdotH
ambient, diffuse, specular
); );
} else { } else {
float Lx = LIGHTS[i].position[0] - data->xyz[0]; float Lx = LIGHTS[i].position[0] - data->xyz[0];
@ -445,7 +509,7 @@ void _glPerformLighting(Vertex* vertices, const EyeSpaceData* es, const int32_t
) + (LIGHTS[i].quadratic_attenuation * D * D) ) + (LIGHTS[i].quadratic_attenuation * D * D)
); );
att = MATH_fsrra(att * att); att = MATH_Fast_Invert(att);
if(att >= ATTENUATION_THRESHOLD) { if(att >= ATTENUATION_THRESHOLD) {
float Hx = (Lx + Vx); float Hx = (Lx + Vx);
@ -455,20 +519,22 @@ void _glPerformLighting(Vertex* vertices, const EyeSpaceData* es, const int32_t
vec3f_normalize(Lx, Ly, Lz); vec3f_normalize(Lx, Ly, Lz);
vec3f_normalize(Hx, Hy, Hz); vec3f_normalize(Hx, Hy, Hz);
const float LdotN = vec3_dot_limited( float LdotN = MATH_fipr(
&Nx, &Ny, &Nz, Nx, Ny, Nz, 1.0f,
&Lx, &Ly, &Lz Lx, Ly, Lz, 1.0f
); );
const float NdotH = vec3_dot_limited( float NdotH = MATH_fipr(
&Nx, &Ny, &Nz, Nx, Ny, Nz, 1.0f,
&Hx, &Hy, &Hz Hx, Hy, Hz, 1.0f
); );
if(LdotN < 0.0f) LdotN = 0.0f;
if(NdotH < 0.0f) NdotH = 0.0f;
_glLightVertexPoint( _glLightVertexPoint(
vertex->bgra, vertex->bgra,
i, LdotN, NdotH, att, i, LdotN, NdotH, att
ambient, diffuse, specular
); );
} }
} }

View File

@ -163,6 +163,10 @@ typedef struct {
/* Valid values are 0-128 */ /* Valid values are 0-128 */
GLfloat exponent; GLfloat exponent;
/* Base ambient + emission colour for
* the current material + light */
GLubyte baseColour[4];
} Material; } Material;
typedef struct { typedef struct {
@ -176,6 +180,15 @@ typedef struct {
GLfloat diffuse[4]; GLfloat diffuse[4];
GLfloat specular[4]; GLfloat specular[4];
GLfloat ambient[4]; GLfloat ambient[4];
GLboolean isDirectional;
/* We set these when the material changes
* so we don't calculate them per-vertex. They are
* light_value * materia_value */
GLfloat ambientMaterial[4];
GLfloat diffuseMaterial[4];
GLfloat specularMaterial[4];
} LightSource; } LightSource;
typedef struct { typedef struct {
@ -331,7 +344,7 @@ GLubyte _glKosHasError();
#define PVR_VERTEX_BUF_SIZE 2560 * 256 #define PVR_VERTEX_BUF_SIZE 2560 * 256
#define MAX_TEXTURE_UNITS 2 #define MAX_TEXTURE_UNITS 2
#define MAX_LIGHTS 8 #define MAX_LIGHTS 4
#define MIN(a,b) (((a)<(b))?(a):(b)) #define MIN(a,b) (((a)<(b))?(a):(b))
#define MAX(a,b) (((a)>(b))?(a):(b)) #define MAX(a,b) (((a)>(b))?(a):(b))

View File

@ -286,7 +286,7 @@ int main(int argc, char **argv)
GLdcConfig config; GLdcConfig config;
glKosInitConfig(&config); glKosInitConfig(&config);
config.fsaa_enabled = GL_TRUE; config.fsaa_enabled = GL_FALSE;
glKosInitEx(&config); glKosInitEx(&config);