Rewrite the lighting code

This commit is contained in:
Luke Benstead 2019-08-01 20:21:03 +01:00
parent 00c38edba9
commit b82d28130d
3 changed files with 145 additions and 112 deletions

View File

@ -935,11 +935,6 @@ static void light(SubmissionTarget* target) {
return;
}
typedef struct {
float xyz[3];
float n[3];
} EyeSpaceData;
static AlignedVector* eye_space_data = NULL;
if(!eye_space_data) {
@ -966,25 +961,7 @@ static void light(SubmissionTarget* target) {
for(i = 0; i < target->count; ++i, ++vertex, ++ES) {
/* We ignore diffuse colour when lighting is enabled. If GL_COLOR_MATERIAL is enabled
* then the lighting calculation should possibly take it into account */
GLfloat total [] = {0.0f, 0.0f, 0.0f, 0.0f};
GLfloat to_add [] = {0.0f, 0.0f, 0.0f, 0.0f};
GLubyte j;
for(j = 0; j < MAX_LIGHTS; ++j) {
if(_glIsLightEnabled(j)) {
_glCalculateLightingContribution(j, ES->xyz, ES->n, vertex->bgra, to_add);
total[0] += to_add[0];
total[1] += to_add[1];
total[2] += to_add[2];
total[3] += to_add[3];
}
}
vertex->bgra[A8IDX] = (GLubyte) (255.0f * fminf(total[3], 1.0f));
vertex->bgra[R8IDX] = (GLubyte) (255.0f * fminf(total[0], 1.0f));
vertex->bgra[G8IDX] = (GLubyte) (255.0f * fminf(total[1], 1.0f));
vertex->bgra[B8IDX] = (GLubyte) (255.0f * fminf(total[2], 1.0f));
_glCalculateLighting(ES, vertex);
}
}

View File

@ -281,98 +281,148 @@ static inline float FPOW(float b, float p) {
return FEXP(FLOG(b) * p);
}
void _glCalculateLightingContribution(const GLint light, const GLfloat* pos, const GLfloat* normal, uint8_t* bgra, GLfloat* colour) __attribute__((optimize("fast-math")));
void _glCalculateLightingContribution(const GLint light, const GLfloat* pos, const GLfloat* normal, uint8_t* bgra, GLfloat* colour) {
LightSource* l = &LIGHTS[light];
void _glCalculateLighting(EyeSpaceData* ES, Vertex* vertex) {
struct vec3f L = {
l->position[0],
l->position[1],
l->position[2]
};
/* Before we begin, lets fiddle some pointers if COLOR_MATERIAL
* is enabled */
if(!l->is_directional) {
L.x -= pos[0];
L.y -= pos[1];
L.z -= pos[2];
const GLboolean colorMaterial = _glIsColorMaterialEnabled();
const GLboolean isDiffuseCM = isDiffuseColorMaterial();
const GLboolean isAmbientCM = isAmbientColorMaterial();
const GLboolean isSpecularCM = isSpecularColorMaterial();
static GLfloat CM[4];
if(colorMaterial) {
CM[0] = ((GLfloat) vertex->bgra[R8IDX]) / 255.0f;
CM[1] = ((GLfloat) vertex->bgra[G8IDX]) / 255.0f;
CM[2] = ((GLfloat) vertex->bgra[B8IDX]) / 255.0f;
CM[3] = ((GLfloat) vertex->bgra[A8IDX]) / 255.0f;
}
struct vec3f N = {
normal[0],
normal[1],
normal[2]
};
const GLfloat* MD = (colorMaterial && isDiffuseCM) ? CM : MATERIAL.diffuse;
const GLfloat* MA = (colorMaterial && isAmbientCM) ? CM : MATERIAL.ambient;
const GLfloat* MS = (colorMaterial && isSpecularCM) ? CM : MATERIAL.specular;
struct vec3f V = {
pos[0],
pos[1],
pos[2]
};
/* Right..
*
* global propertie:
*
* acs - Global Ambient
*
* vertex-specific properties:
*
* ecm - Material Emission
* acm - Material Ambient
* dcm - Material Diffuse
* n - Normal
* V - Vertex Position
* VPe - Vector from V to eye point (0, 0, 0, -1) basically negative V
*
* light-specifc properties:
*
* att - Attenution
* acli - Light Ambient
* Ppli - Light Position
* dcli - Light Diffuse
* fi - 1/0 facing light or not
* VPpli - Vector from V to Ppli
* ndotPpli - Dot product between n and Ppli
* hi -
* PpliV - vector from Ppli to V
*/
GLfloat d;
vec3f_length(L.x, L.y, L.z, d);
GLfloat oneOverL = 1.0f / d;
L.x *= oneOverL;
L.y *= oneOverL;
L.z *= oneOverL;
vec3f_normalize(V.x, V.y, V.z);
GLfloat NdotL, VdotN;
vec3f_dot(N.x, N.y, N.z, L.x, L.y, L.z, NdotL);
vec3f_dot(V.x, V.y, V.z, N.x, N.y, N.z, VdotN);
GLfloat VdotR = VdotN - NdotL;
GLfloat specularPower = FPOW(VdotR > 0 ? VdotR : 0, MATERIAL.exponent);
GLboolean colorMaterial = _glIsColorMaterialEnabled();
GLfloat mD [] = {
(colorMaterial && isDiffuseColorMaterial()) ? ((GLfloat)bgra[R8IDX]) / 255.0f : MATERIAL.diffuse[0],
(colorMaterial && isDiffuseColorMaterial()) ? ((GLfloat)bgra[G8IDX]) / 255.0f : MATERIAL.diffuse[1],
(colorMaterial && isDiffuseColorMaterial()) ? ((GLfloat)bgra[B8IDX]) / 255.0f : MATERIAL.diffuse[2],
(colorMaterial && isDiffuseColorMaterial()) ? ((GLfloat)bgra[A8IDX]) / 255.0f : MATERIAL.diffuse[3]
};
GLfloat mA [] = {
(colorMaterial && isAmbientColorMaterial()) ? ((GLfloat)bgra[R8IDX]) / 255.0f : MATERIAL.ambient[0],
(colorMaterial && isAmbientColorMaterial()) ? ((GLfloat)bgra[G8IDX]) / 255.0f : MATERIAL.ambient[1],
(colorMaterial && isAmbientColorMaterial()) ? ((GLfloat)bgra[B8IDX]) / 255.0f : MATERIAL.ambient[2],
(colorMaterial && isAmbientColorMaterial()) ? ((GLfloat)bgra[A8IDX]) / 255.0f : MATERIAL.ambient[3]
};
GLfloat mS [] = {
(colorMaterial && isSpecularColorMaterial()) ? ((GLfloat)bgra[R8IDX]) / 255.0f : MATERIAL.specular[0],
(colorMaterial && isSpecularColorMaterial()) ? ((GLfloat)bgra[G8IDX]) / 255.0f : MATERIAL.specular[1],
(colorMaterial && isSpecularColorMaterial()) ? ((GLfloat)bgra[B8IDX]) / 255.0f : MATERIAL.specular[2],
(colorMaterial && isSpecularColorMaterial()) ? ((GLfloat)bgra[A8IDX]) / 255.0f : MATERIAL.specular[3]
};
colour[0] = l->ambient[0] * mA[0];
colour[1] = l->ambient[1] * mA[1];
colour[2] = l->ambient[2] * mA[2];
colour[3] = mD[3];
if(NdotL >= 0) {
colour[0] += (l->diffuse[0] * mD[0] * NdotL + l->specular[0] * mS[0] * specularPower);
colour[1] += (l->diffuse[1] * mD[1] * NdotL + l->specular[1] * mS[1] * specularPower);
colour[2] += (l->diffuse[2] * mD[2] * NdotL + l->specular[2] * mS[2] * specularPower);
}
if(!l->is_directional) {
GLfloat att = (
1.0f / (l->constant_attenuation + (l->linear_attenuation * d) + (l->quadratic_attenuation * d * d))
);
colour[0] *= att;
colour[1] *= att;
colour[2] *= att;
}
if(colour[0] > 1.0f) colour[0] = 1.0f;
if(colour[1] > 1.0f) colour[1] = 1.0f;
if(colour[2] > 1.0f) colour[2] = 1.0f;
if(colour[3] > 1.0f) colour[3] = 1.0f;
/* Each colour component is calculated in its own scope
* so that the SH4 float registers don't get flooded */
#define LIGHT_COMPONENT(C) { \
const GLfloat acm = MA[C]; \
const GLfloat dcm = MD[C]; \
const GLfloat scm = MS[C]; \
const GLfloat scli = light->specular[C]; \
const GLfloat dcli = light->diffuse[C]; \
const GLfloat acli = light->ambient[C]; \
const GLfloat srm = MATERIAL.exponent; \
\
final[C] += (att * spot * ( \
(acm * acli) + (ndotVPpli * dcm * dcli) + \
(FPOW((fi * ndothi), srm) * scm * scli) \
)); \
}
const GLfloat* n = ES->n;
const GLfloat* V = ES->xyz;
GLfloat Vpe [] = {-V[0], -V[1], -V[2]};
GLfloat VpeL;
vec3f_length(Vpe[0], Vpe[1], Vpe[2], VpeL);
Vpe[0] /= VpeL;
Vpe[1] /= VpeL;
Vpe[2] /= VpeL;
GLfloat final[4] = {
MATERIAL.emissive[0] + (MA[0] * SCENE_AMBIENT[0]),
MATERIAL.emissive[1] + (MA[1] * SCENE_AMBIENT[1]),
MATERIAL.emissive[2] + (MA[2] * SCENE_AMBIENT[2]),
MD[3] // GL spec says alpha is always from the diffuse
};
GLubyte i;
for(i = 0; i < MAX_LIGHTS; ++i) {
if(!_glIsLightEnabled(i)) continue;
const LightSource* light = &LIGHTS[i];
const GLfloat* Ppli = light->position;
GLfloat VPpli [] = {
Ppli[0] - V[0],
Ppli[1] - V[1],
Ppli[2] - V[2]
};
GLfloat VPpliL;
vec3f_length(VPpli[0], VPpli[1], VPpli[2], VPpliL);
VPpli[0] /= VPpliL;
VPpli[1] /= VPpliL;
VPpli[2] /= VPpliL;
GLfloat ndotVPpli;
vec3f_dot(n[0], n[1], n[2], VPpli[0], VPpli[1], VPpli[2], ndotVPpli);
const GLfloat k0 = light->constant_attenuation;
const GLfloat k1 = light->linear_attenuation;
const GLfloat k2 = light->quadratic_attenuation;
const GLfloat att = (light->position[3] == 0) ? 1.0f : 1.0f / k0 + (k1 * VPpliL) + (k2 * VPpliL * VPpliL);
const GLfloat spot = 1.0f; // FIXME: Spotlights
const GLfloat fi = (ndotVPpli == 0) ? 0 : 1;
GLfloat hi [3];
if(!VIEWER_IN_EYE_COORDINATES) {
// FIXME: Docs show power of T or something?
hi[0] = VPpli[0] + 0;
hi[1] = VPpli[1] + 0;
hi[2] = VPpli[2] + 1;
} else {
hi[0] = VPpli[0] + Vpe[0];
hi[1] = VPpli[1] + Vpe[1];
hi[2] = VPpli[2] + Vpe[2];
}
GLfloat ndothi;
vec3f_dot(n[0], n[1], n[2], hi[0], hi[1], hi[2], ndothi);
LIGHT_COMPONENT(0);
LIGHT_COMPONENT(1);
LIGHT_COMPONENT(2);
}
#undef LIGHT_COMPONENT
vertex->bgra[R8IDX] = (GLubyte)(fminf(final[0] * 255.0f, 255.0f));
vertex->bgra[G8IDX] = (GLubyte)(fminf(final[1] * 255.0f, 255.0f));
vertex->bgra[B8IDX] = (GLubyte)(fminf(final[2] * 255.0f, 255.0f));
vertex->bgra[A8IDX] = (GLubyte)(fminf(final[3] * 255.0f, 255.0f));
}

View File

@ -240,7 +240,13 @@ GLuint _glGetMipmapLevelCount(TextureObject* obj);
GLboolean _glIsLightingEnabled();
GLboolean _glIsLightEnabled(GLubyte light);
GLboolean _glIsColorMaterialEnabled();
void _glCalculateLightingContribution(const GLint light, const GLfloat* pos, const GLfloat* normal, uint8_t* bgra, GLfloat* colour);
typedef struct {
float xyz[3];
float n[3];
} EyeSpaceData;
extern void _glCalculateLighting(EyeSpaceData* ES, Vertex* vertex);
unsigned char _glIsClippingEnabled();
void _glEnableClipping(unsigned char v);