GLdc/GL/draw.c

1578 lines
46 KiB
C

#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <limits.h>
#include "private.h"
#include "platform.h"
GLushort _quantize( GLfloat v ) {
union { GLfloat f; GLuint ui; } u = {v};
GLuint ui = u.ui;
int s = (ui >> 16) & 0x8000;
int em = ui & 0x7fffffff;
int h = (em - (112 << 23) + (1 << 12)) >> 13;
h = (em < (113 << 23)) ? 0 : h;
h = (em >= (143 << 23)) ? 0x7c00 : h;
h = (em > (255 << 23)) ? 0x7e00 : h;
return (GLushort)(s | h);
}
GLfloat _dequantize( GLushort h ) {
GLuint s = (GLuint) (h & 0x8000) << 16;
int em = h & 0x7fff;
int r = (em + (112 << 10)) << 13;
r = (em < (1 << 10)) ? 0 : r;
r += (em >= (31 << 10)) ? (112 << 23) : 0;
union { GLfloat f; GLuint ui; } u;
u.ui = s | r;
return u.f;
}
AttribPointerList ATTRIB_POINTERS;
GLuint ENABLED_VERTEX_ATTRIBUTES = 0;
GLuint FAST_PATH_ENABLED = GL_FALSE;
static GLubyte ACTIVE_CLIENT_TEXTURE = 0;
static const float ONE_OVER_TWO_FIVE_FIVE = 1.0f / 255.0f;
extern inline GLuint _glRecalcFastPath();
extern GLboolean AUTOSORT_ENABLED;
#define ITERATE(count) \
GLuint i = count; \
while(i--)
void _glInitAttributePointers() {
TRACE();
ATTRIB_POINTERS.vertex.ptr = NULL;
ATTRIB_POINTERS.vertex.stride = 0;
ATTRIB_POINTERS.vertex.type = GL_FLOAT;
ATTRIB_POINTERS.vertex.size = 4;
ATTRIB_POINTERS.colour.ptr = NULL;
ATTRIB_POINTERS.colour.stride = 0;
ATTRIB_POINTERS.colour.type = GL_FLOAT;
ATTRIB_POINTERS.colour.size = 4;
ATTRIB_POINTERS.uv.ptr = NULL;
ATTRIB_POINTERS.uv.stride = 0;
ATTRIB_POINTERS.uv.type = GL_FLOAT;
ATTRIB_POINTERS.uv.size = 4;
ATTRIB_POINTERS.st.ptr = NULL;
ATTRIB_POINTERS.st.stride = 0;
ATTRIB_POINTERS.st.type = GL_FLOAT;
ATTRIB_POINTERS.st.size = 4;
ATTRIB_POINTERS.normal.ptr = NULL;
ATTRIB_POINTERS.normal.stride = 0;
ATTRIB_POINTERS.normal.type = GL_FLOAT;
ATTRIB_POINTERS.normal.size = 3;
}
GL_FORCE_INLINE GLsizei byte_size(GLenum type) {
switch(type) {
case GL_BYTE: return sizeof(GLbyte);
case GL_UNSIGNED_BYTE: return sizeof(GLubyte);
case GL_SHORT: return sizeof(GLshort);
case GL_UNSIGNED_SHORT: return sizeof(GLushort);
case GL_INT: return sizeof(GLint);
case GL_UNSIGNED_INT: return sizeof(GLuint);
case GL_DOUBLE: return sizeof(GLdouble);
case GL_HALF_FLOAT: return sizeof(GLhalf);
case GL_UNSIGNED_INT_2_10_10_10_REV: return sizeof(GLuint);
case GL_FLOAT:
default: return sizeof(GLfloat);
}
}
typedef void (*FloatParseFunc)(GLfloat* out, const GLubyte* in);
typedef void (*ByteParseFunc)(GLubyte* out, const GLubyte* in);
typedef void (*PolyBuildFunc)(Vertex* first, Vertex* previous, Vertex* vertex, Vertex* next, const GLsizei i);
static void _readVertexData3f3f(const GLubyte* __restrict__ in, GLubyte* __restrict__ out) {
vec3cpy(out, in);
}
// 10:10:10:2REV format
static void _readVertexData1i3f(const GLubyte* in, GLubyte* out) {
static const float MULTIPLIER = 1.0f / 1023.0f;
GLfloat* output = (GLfloat*) out;
union {
int value;
struct {
signed int x: 10;
signed int y: 10;
signed int z: 10;
signed int w: 2;
} bits;
} input;
input.value = *((const GLint*) in);
output[0] = (2.0f * (float) input.bits.x + 1.0f) * MULTIPLIER;
output[1] = (2.0f * (float) input.bits.y + 1.0f) * MULTIPLIER;
output[2] = (2.0f * (float) input.bits.z + 1.0f) * MULTIPLIER;
}
static void _readVertexData3us3f(const GLubyte* in, GLubyte* out) {
const GLushort* input = (const GLushort*) in;
float* output = (float*) out;
output[0] = input[0];
output[1] = input[1];
output[2] = input[2];
}
static void _readVertexData3usq3f(const GLubyte* in, GLubyte* out) {
const GLushort* input = (const GLushort*) in;
float* output = (float*) out;
output[0] = _dequantize(input[0]);
output[1] = _dequantize(input[1]);
output[2] = _dequantize(input[2]);
}
static void _readVertexData3ui3f(const GLubyte* in, GLubyte* out) {
const GLuint* input = (const GLuint*) in;
float* output = (float*) out;
output[0] = input[0];
output[1] = input[1];
output[2] = input[2];
}
static void _readVertexData3ub3f(const GLubyte* input, GLubyte* out) {
float* output = (float*) out;
output[0] = input[0] * ONE_OVER_TWO_FIVE_FIVE;
output[1] = input[1] * ONE_OVER_TWO_FIVE_FIVE;
output[2] = input[2] * ONE_OVER_TWO_FIVE_FIVE;
}
static void _readVertexData3f16_3f(const GLubyte* in, GLubyte* out) {
const GLhalf* input = (const GLhalf*) in;
float* output = (float*) out;
output[0] = input[0];
output[1] = input[1];
output[2] = input[2];
}
static void _readVertexData2f2f(const GLubyte* in, GLubyte* out) {
vec2cpy(out, in);
}
static void _readVertexData2f3f(const GLubyte* in, GLubyte* out) {
const float* input = (const float*) in;
float* output = (float*) out;
vec2cpy(output, input);
output[2] = 0.0f;
}
static void _readVertexData2ub3f(const GLubyte* input, GLubyte* out) {
float* output = (float*) out;
output[0] = input[0] * ONE_OVER_TWO_FIVE_FIVE;
output[1] = input[1] * ONE_OVER_TWO_FIVE_FIVE;
output[2] = 0.0f;
}
static void _readVertexData2us3f(const GLubyte* in, GLubyte* out) {
const GLushort* input = (const GLushort*) in;
float* output = (float*) out;
output[0] = input[0];
output[1] = input[1];
output[2] = 0.0f;
}
static void _readVertexData2us2f(const GLubyte* in, GLubyte* out) {
const GLushort* input = (const GLushort*) in;
float* output = (float*) out;
output[0] = (float)input[0] / SHRT_MAX;
output[1] = (float)input[1] / SHRT_MAX;
}
static void _readVertexData2usq3f(const GLubyte* in, GLubyte* out) {
const GLushort* input = (const GLushort*) in;
float* output = (float*) out;
output[0] = _dequantize(input[0]);
output[1] = _dequantize(input[1]);
output[2] = 0.0f;
}
static void _readVertexData2usq2f(const GLubyte* in, GLubyte* out) {
const GLushort* input = (const GLushort*) in;
float* output = (float*) out;
output[0] = _dequantize(input[0]);
output[1] = _dequantize(input[1]);
}
static void _readVertexData2ui2f(const GLubyte* in, GLubyte* out) {
const GLuint* input = (const GLuint*) in;
float* output = (float*) out;
output[0] = input[0];
output[1] = input[1];
}
static void _readVertexData2ub2f(const GLubyte* input, GLubyte* out) {
float* output = (float*) out;
output[0] = input[0] * ONE_OVER_TWO_FIVE_FIVE;
output[1] = input[1] * ONE_OVER_TWO_FIVE_FIVE;
}
static void _readVertexData2f16_2f(const GLubyte* in, GLubyte* out) {
const GLhalf* input = (const GLhalf*) in;
float* output = (float*) out;
output[0] = input[0];
output[1] = input[1];
}
static void _readVertexData2ui3f(const GLubyte* in, GLubyte* out) {
const GLuint* input = (const GLuint*) in;
float* output = (float*) out;
output[0] = input[0];
output[1] = input[1];
output[2] = 0.0f;
}
static void _readVertexData2f16_3f(const GLubyte* in, GLubyte* out) {
const GLhalf* input = (const GLhalf*) in;
float* output = (float*) out;
output[0] = input[0];
output[1] = input[1];
output[2] = 0.0f;
}
static void _readVertexData4ubARGB(const GLubyte* input, GLubyte* output) {
output[R8IDX] = input[0];
output[G8IDX] = input[1];
output[B8IDX] = input[2];
output[A8IDX] = input[3];
}
static void _readVertexData4fARGB(const GLubyte* in, GLubyte* output) {
const float* input = (const float*) in;
output[R8IDX] = (GLubyte) clamp(input[0] * 255.0f, 0, 255);
output[G8IDX] = (GLubyte) clamp(input[1] * 255.0f, 0, 255);
output[B8IDX] = (GLubyte) clamp(input[2] * 255.0f, 0, 255);
output[A8IDX] = (GLubyte) clamp(input[3] * 255.0f, 0, 255);
}
static void _readVertexData3fARGB(const GLubyte* in, GLubyte* output) {
const float* input = (const float*) in;
output[R8IDX] = (GLubyte) clamp(input[0] * 255.0f, 0, 255);
output[G8IDX] = (GLubyte) clamp(input[1] * 255.0f, 0, 255);
output[B8IDX] = (GLubyte) clamp(input[2] * 255.0f, 0, 255);
output[A8IDX] = 1.0f;
}
static void _readVertexData3ubARGB(const GLubyte* __restrict__ input, GLubyte* __restrict__ output) {
output[R8IDX] = input[0];
output[G8IDX] = input[1];
output[B8IDX] = input[2];
output[A8IDX] = 1.0f;
}
static void _readVertexData4ubRevARGB(const GLubyte* __restrict__ input, GLubyte* __restrict__ output) {
argbcpy(output, input);
}
static void _readVertexData4fRevARGB(const GLubyte* __restrict__ in, GLubyte* __restrict__ output) {
const float* input = (const float*) in;
output[0] = (GLubyte) clamp(input[0] * 255.0f, 0, 255);
output[1] = (GLubyte) clamp(input[1] * 255.0f, 0, 255);
output[2] = (GLubyte) clamp(input[2] * 255.0f, 0, 255);
output[3] = (GLubyte) clamp(input[3] * 255.0f, 0, 255);
}
static void _fillWithNegZVE(const GLubyte* __restrict__ input, GLubyte* __restrict__ out) {
_GL_UNUSED(input);
typedef struct {
float x, y, z;
} V;
static const V NegZ = {0.0f, 0.0f, -1.0f};
*((V*) out) = NegZ;
}
static void _fillWhiteARGB(const GLubyte* __restrict__ input, GLubyte* __restrict__ output) {
_GL_UNUSED(input);
*((uint32_t*) output) = ~0;
}
static void _fillZero2f(const GLubyte* __restrict__ input, GLubyte* __restrict__ out) {
_GL_UNUSED(input);
memset(out, 0, sizeof(float) * 2);
}
static void _readVertexData3usARGB(const GLubyte* input, GLubyte* output) {
_GL_UNUSED(input);
_GL_UNUSED(output);
gl_assert(0 && "Not Implemented");
}
static void _readVertexData3uiARGB(const GLubyte* input, GLubyte* output) {
_GL_UNUSED(input);
_GL_UNUSED(output);
gl_assert(0 && "Not Implemented");
}
static void _readVertexData4usARGB(const GLubyte* input, GLubyte* output) {
_GL_UNUSED(input);
_GL_UNUSED(output);
gl_assert(0 && "Not Implemented");
}
static void _readVertexData4uiARGB(const GLubyte* input, GLubyte* output) {
_GL_UNUSED(input);
_GL_UNUSED(output);
gl_assert(0 && "Not Implemented");
}
static void _readVertexData4usRevARGB(const GLubyte* input, GLubyte* output) {
_GL_UNUSED(input);
_GL_UNUSED(output);
gl_assert(0 && "Not Implemented");
}
static void _readVertexData4uiRevARGB(const GLubyte* input, GLubyte* output) {
_GL_UNUSED(input);
_GL_UNUSED(output);
gl_assert(0 && "Not Implemented");
}
GLuint* _glGetEnabledAttributes() {
return &ENABLED_VERTEX_ATTRIBUTES;
}
AttribPointer* _glGetVertexAttribPointer() {
return &ATTRIB_POINTERS.vertex;
}
AttribPointer* _glGetDiffuseAttribPointer() {
return &ATTRIB_POINTERS.colour;
}
AttribPointer* _glGetNormalAttribPointer() {
return &ATTRIB_POINTERS.normal;
}
AttribPointer* _glGetUVAttribPointer() {
return &ATTRIB_POINTERS.uv;
}
AttribPointer* _glGetSTAttribPointer() {
return &ATTRIB_POINTERS.st;
}
typedef GLuint (*IndexParseFunc)(const GLubyte* in);
static inline GLuint _parseUByteIndex(const GLubyte* in) {
return (GLuint) *in;
}
static inline GLuint _parseUIntIndex(const GLubyte* in) {
return *((GLuint*) in);
}
static inline GLuint _parseUShortIndex(const GLubyte* in) {
return *((GLshort*) in);
}
GL_FORCE_INLINE IndexParseFunc _calcParseIndexFunc(GLenum type) {
switch(type) {
case GL_UNSIGNED_BYTE:
return &_parseUByteIndex;
break;
case GL_UNSIGNED_INT:
return &_parseUIntIndex;
break;
case GL_UNSIGNED_SHORT:
default:
break;
}
return &_parseUShortIndex;
}
/* There was a bug in this macro that shipped with Kos
* which has now been fixed. But just in case...
*/
#undef mat_trans_single3_nodiv
#define mat_trans_single3_nodiv(x, y, z) { \
register float __x __asm__("fr12") = (x); \
register float __y __asm__("fr13") = (y); \
register float __z __asm__("fr14") = (z); \
__asm__ __volatile__( \
"fldi1 fr15\n" \
"ftrv xmtrx, fv12\n" \
: "=f" (__x), "=f" (__y), "=f" (__z) \
: "0" (__x), "1" (__y), "2" (__z) \
: "fr15"); \
x = __x; y = __y; z = __z; \
}
/* FIXME: Is this right? Shouldn't it be fr12->15? */
#undef mat_trans_normal3
#define mat_trans_normal3(x, y, z) { \
register float __x __asm__("fr8") = (x); \
register float __y __asm__("fr9") = (y); \
register float __z __asm__("fr10") = (z); \
__asm__ __volatile__( \
"fldi0 fr11\n" \
"ftrv xmtrx, fv8\n" \
: "=f" (__x), "=f" (__y), "=f" (__z) \
: "0" (__x), "1" (__y), "2" (__z) \
: "fr11"); \
x = __x; y = __y; z = __z; \
}
GL_FORCE_INLINE void transformToEyeSpace(GLfloat* point) {
_glMatrixLoadModelView();
mat_trans_single3_nodiv(point[0], point[1], point[2]);
}
GL_FORCE_INLINE void transformNormalToEyeSpace(GLfloat* normal) {
_glMatrixLoadNormal();
mat_trans_normal3(normal[0], normal[1], normal[2]);
}
GL_FORCE_INLINE PolyHeader *_glSubmissionTargetHeader(SubmissionTarget* target) {
gl_assert(target->header_offset < aligned_vector_size(&target->output->vector));
return aligned_vector_at(&target->output->vector, target->header_offset);
}
GL_INLINE_DEBUG Vertex* _glSubmissionTargetStart(SubmissionTarget* target) {
gl_assert(target->start_offset < aligned_vector_size(&target->output->vector));
return aligned_vector_at(&target->output->vector, target->start_offset);
}
Vertex* _glSubmissionTargetEnd(SubmissionTarget* target) {
return _glSubmissionTargetStart(target) + target->count;
}
GL_FORCE_INLINE void genTriangles(Vertex* output, GLuint count) {
Vertex* it = output + 2;
GLuint i;
for(i = 0; i < count; i += 3) {
it->flags = GPU_CMD_VERTEX_EOL;
it += 3;
}
}
GL_FORCE_INLINE void genQuads(Vertex* output, GLuint count) {
Vertex* pen = output + 2;
Vertex* final = output + 3;
GLuint i = count >> 2;
while(i--) {
PREFETCH(pen + 4);
PREFETCH(final + 4);
swapVertex(pen, final);
final->flags = GPU_CMD_VERTEX_EOL;
pen += 4;
final += 4;
}
}
GL_FORCE_INLINE void genTriangleStrip(Vertex* output, GLuint count) {
output[count - 1].flags = GPU_CMD_VERTEX_EOL;
}
static void genTriangleFan(Vertex* output, GLuint count) {
gl_assert(count <= 255);
Vertex* dst = output + (((count - 2) * 3) - 1);
Vertex* src = output + (count - 1);
GLubyte i = count - 2;
while(i--) {
*dst = *src--;
(*dst--).flags = GPU_CMD_VERTEX_EOL;
*dst-- = *src;
*dst-- = *output;
}
}
typedef void (*ReadPositionFunc)(const GLubyte*, GLubyte*);
typedef void (*ReadDiffuseFunc)(const GLubyte*, GLubyte*);
typedef void (*ReadUVFunc)(const GLubyte*, GLubyte*);
typedef void (*ReadNormalFunc)(const GLubyte*, GLubyte*);
ReadPositionFunc calcReadDiffuseFunc() {
if((ENABLED_VERTEX_ATTRIBUTES & DIFFUSE_ENABLED_FLAG) != DIFFUSE_ENABLED_FLAG) {
/* Just fill the whole thing white if the attribute is disabled */
return _fillWhiteARGB;
}
switch(ATTRIB_POINTERS.colour.type) {
default:
case GL_DOUBLE:
case GL_FLOAT:
return (ATTRIB_POINTERS.colour.size == 3) ? _readVertexData3fARGB:
(ATTRIB_POINTERS.colour.size == 4) ? _readVertexData4fARGB:
_readVertexData4fRevARGB;
case GL_BYTE:
case GL_UNSIGNED_BYTE:
return (ATTRIB_POINTERS.colour.size == 3) ? _readVertexData3ubARGB:
(ATTRIB_POINTERS.colour.size == 4) ? _readVertexData4ubARGB:
_readVertexData4ubRevARGB;
case GL_SHORT:
case GL_UNSIGNED_SHORT:
return (ATTRIB_POINTERS.colour.size == 3) ? _readVertexData3usARGB:
(ATTRIB_POINTERS.colour.size == 4) ? _readVertexData4usARGB:
_readVertexData4usRevARGB;
case GL_INT:
case GL_UNSIGNED_INT:
return (ATTRIB_POINTERS.colour.size == 3) ? _readVertexData3uiARGB:
(ATTRIB_POINTERS.colour.size == 4) ? _readVertexData4uiARGB:
_readVertexData4uiRevARGB;
}
}
ReadPositionFunc calcReadPositionFunc() {
switch(ATTRIB_POINTERS.vertex.type) {
default:
case GL_DOUBLE:
case GL_FLOAT:
return (ATTRIB_POINTERS.vertex.size == 3) ? _readVertexData3f3f:
_readVertexData2f3f;
case GL_HALF_FLOAT:
return (ATTRIB_POINTERS.vertex.size == 3) ? _readVertexData3f16_3f:
_readVertexData2f16_3f;
case GL_BYTE:
case GL_UNSIGNED_BYTE:
return (ATTRIB_POINTERS.vertex.size == 3) ? _readVertexData3ub3f:
_readVertexData2ub3f;
case GL_SHORT:
case GL_UNSIGNED_SHORT:
return (ATTRIB_POINTERS.vertex.size == 3) ? _readVertexData3usq3f:
_readVertexData2usq3f;
case GL_INT:
case GL_UNSIGNED_INT:
return (ATTRIB_POINTERS.vertex.size == 3) ? _readVertexData3ui3f:
_readVertexData2ui3f;
}
}
ReadUVFunc calcReadUVFunc() {
if((ENABLED_VERTEX_ATTRIBUTES & UV_ENABLED_FLAG) != UV_ENABLED_FLAG) {
return _fillZero2f;
}
switch(ATTRIB_POINTERS.uv.type) {
default:
case GL_DOUBLE:
case GL_FLOAT:
return _readVertexData2f2f;
case GL_HALF_FLOAT:
return _readVertexData2f16_2f;
case GL_BYTE:
case GL_UNSIGNED_BYTE:
return _readVertexData2ub2f;
case GL_SHORT:
case GL_UNSIGNED_SHORT:
return _readVertexData2usq2f;
case GL_INT:
case GL_UNSIGNED_INT:
return _readVertexData2ui2f;
}
}
ReadUVFunc calcReadSTFunc() {
if((ENABLED_VERTEX_ATTRIBUTES & ST_ENABLED_FLAG) != ST_ENABLED_FLAG) {
return _fillZero2f;
}
switch(ATTRIB_POINTERS.st.type) {
default:
case GL_DOUBLE:
case GL_FLOAT:
return _readVertexData2f2f;
case GL_HALF_FLOAT:
return _readVertexData2f16_2f;
case GL_BYTE:
case GL_UNSIGNED_BYTE:
return _readVertexData2ub2f;
case GL_SHORT:
case GL_UNSIGNED_SHORT:
return _readVertexData2usq2f;
case GL_INT:
case GL_UNSIGNED_INT:
return _readVertexData2ui2f;
}
}
ReadNormalFunc calcReadNormalFunc() {
if((ENABLED_VERTEX_ATTRIBUTES & NORMAL_ENABLED_FLAG) != NORMAL_ENABLED_FLAG) {
return _fillWithNegZVE;
}
switch(ATTRIB_POINTERS.normal.type) {
default:
case GL_DOUBLE:
case GL_FLOAT:
return _readVertexData3f3f;
case GL_HALF_FLOAT:
return _readVertexData3f16_3f;
break;
case GL_BYTE:
case GL_UNSIGNED_BYTE:
return _readVertexData3ub3f;
break;
case GL_SHORT:
case GL_UNSIGNED_SHORT:
return _readVertexData3usq3f;
break;
case GL_INT:
case GL_UNSIGNED_INT:
return _readVertexData3ui3f;
break;
case GL_UNSIGNED_INT_2_10_10_10_REV:
return _readVertexData1i3f;
break;
}
}
static void _readPositionData(ReadDiffuseFunc func, const GLuint first, const GLuint count, Vertex* it) {
const GLsizei vstride = ATTRIB_POINTERS.vertex.stride;
const GLubyte* vptr = ((GLubyte*) ATTRIB_POINTERS.vertex.ptr + (first * vstride));
float pos[3];
ITERATE(count) {
PREFETCH(vptr + vstride);
func(vptr, (GLubyte*) pos);
it->flags = GPU_CMD_VERTEX;
vptr += vstride;
++it;
}
}
static void _readUVData(ReadUVFunc func, const GLuint first, const GLuint count, Vertex* it) {
const GLsizei uvstride = ATTRIB_POINTERS.uv.stride;
const GLubyte* uvptr = ((GLubyte*) ATTRIB_POINTERS.uv.ptr + (first * uvstride));
ITERATE(count) {
PREFETCH(uvptr + uvstride);
func(uvptr, (GLubyte*) it->uv);
uvptr += uvstride;
++it;
}
}
static void _readSTData(ReadUVFunc func, const GLuint first, const GLuint count, VertexExtra* it) {
const GLsizei ststride = ATTRIB_POINTERS.st.stride;
const GLubyte* stptr = ((GLubyte*) ATTRIB_POINTERS.st.ptr + (first * ststride));
ITERATE(count) {
PREFETCH(stptr + ststride);
func(stptr, (GLubyte*) it->st);
stptr += ststride;
++it;
}
}
static void _readNormalData(ReadNormalFunc func, const GLuint first, const GLuint count, VertexExtra* it) {
const GLsizei nstride = ATTRIB_POINTERS.normal.stride;
const GLubyte* nptr = ((GLubyte*) ATTRIB_POINTERS.normal.ptr + (first * nstride));
ITERATE(count) {
func(nptr, (GLubyte*) it->nxyz);
nptr += nstride;
if(_glIsNormalizeEnabled()) {
GLfloat* n = (GLfloat*) it->nxyz;
float temp = n[0] * n[0];
temp = MATH_fmac(n[1], n[1], temp);
temp = MATH_fmac(n[2], n[2], temp);
float ilength = MATH_fsrra(temp);
n[0] *= ilength;
n[1] *= ilength;
n[2] *= ilength;
}
++it;
}
}
GL_FORCE_INLINE GLuint diffusePointerSize() {
return (ATTRIB_POINTERS.colour.size == GL_BGRA) ? 4 : ATTRIB_POINTERS.colour.size;
}
static void _readDiffuseData(ReadDiffuseFunc func, const GLuint first, const GLuint count, Vertex* it) {
const GLuint cstride = ATTRIB_POINTERS.colour.stride;
const GLubyte* cptr = ((GLubyte*) ATTRIB_POINTERS.colour.ptr) + (first * cstride);
ITERATE(count) {
PREFETCH(cptr + cstride);
func(cptr, it->bgra);
cptr += cstride;
++it;
}
}
static void generateElements(
SubmissionTarget* target, const GLsizei first, const GLuint count,
const GLubyte* indices, const GLenum type) {
const GLsizei istride = byte_size(type);
const IndexParseFunc IndexFunc = _calcParseIndexFunc(type);
GLubyte* xyz;
GLubyte* uv;
GLubyte* bgra;
GLubyte* st;
GLubyte* nxyz;
Vertex* output = _glSubmissionTargetStart(target);
VertexExtra* ve = aligned_vector_at(target->extras, 0);
uint32_t i = first;
uint32_t idx = 0;
const ReadPositionFunc pos_func = calcReadPositionFunc();
const GLsizei vstride = ATTRIB_POINTERS.vertex.stride;
const ReadUVFunc uv_func = calcReadUVFunc();
const GLuint uvstride = ATTRIB_POINTERS.uv.stride;
const ReadUVFunc st_func = calcReadSTFunc();
const GLuint ststride = ATTRIB_POINTERS.st.stride;
const ReadDiffuseFunc diffuse_func = calcReadDiffuseFunc();
const GLuint dstride = ATTRIB_POINTERS.colour.stride;
const ReadNormalFunc normal_func = calcReadNormalFunc();
const GLuint nstride = ATTRIB_POINTERS.normal.stride;
for(; i < first + count; ++i) {
idx = IndexFunc(indices + (i * istride));
xyz = (GLubyte*) ATTRIB_POINTERS.vertex.ptr + (idx * vstride);
uv = (GLubyte*) ATTRIB_POINTERS.uv.ptr + (idx * uvstride);
bgra = (GLubyte*) ATTRIB_POINTERS.colour.ptr + (idx * dstride);
st = (GLubyte*) ATTRIB_POINTERS.st.ptr + (idx * ststride);
nxyz = (GLubyte*) ATTRIB_POINTERS.normal.ptr + (idx * nstride);
pos_func(xyz, (GLubyte*) output->xyz);
uv_func(uv, (GLubyte*) output->uv);
diffuse_func(bgra, output->bgra);
st_func(st, (GLubyte*) ve->st);
normal_func(nxyz, (GLubyte*) ve->nxyz);
output->flags = GPU_CMD_VERTEX;
++output;
++ve;
}
}
typedef struct {
float x, y, z;
} Float3;
typedef struct {
float u, v;
} Float2;
static const Float3 F3Z = {0.0f, 0.0f, 1.0f};
static const Float2 F2ZERO = {0.0f, 0.0f};
static void generateElementsFastPath(
SubmissionTarget* target, const GLsizei first, const GLuint count,
const GLubyte* indices, const GLenum type) {
Vertex* start = _glSubmissionTargetStart(target);
const GLuint vstride = ATTRIB_POINTERS.vertex.stride;
const GLuint uvstride = ATTRIB_POINTERS.uv.stride;
const GLuint ststride = ATTRIB_POINTERS.st.stride;
const GLuint dstride = ATTRIB_POINTERS.colour.stride;
const GLuint nstride = ATTRIB_POINTERS.normal.stride;
const GLsizei istride = byte_size(type);
const IndexParseFunc IndexFunc = _calcParseIndexFunc(type);
/* Copy the pos, uv and color directly in one go */
const GLubyte* pos = (ENABLED_VERTEX_ATTRIBUTES & VERTEX_ENABLED_FLAG) ? ATTRIB_POINTERS.vertex.ptr : NULL;
const GLubyte* uv = (ENABLED_VERTEX_ATTRIBUTES & UV_ENABLED_FLAG) ? ATTRIB_POINTERS.uv.ptr : NULL;
const GLubyte* col = (ENABLED_VERTEX_ATTRIBUTES & DIFFUSE_ENABLED_FLAG) ? ATTRIB_POINTERS.colour.ptr : NULL;
const GLubyte* st = (ENABLED_VERTEX_ATTRIBUTES & ST_ENABLED_FLAG) ? ATTRIB_POINTERS.st.ptr : NULL;
const GLubyte* n = (ENABLED_VERTEX_ATTRIBUTES & NORMAL_ENABLED_FLAG) ? ATTRIB_POINTERS.normal.ptr : NULL;
VertexExtra* ve = aligned_vector_at(target->extras, 0);
Vertex* it = start;
const float w = 1.0f;
if(!pos) {
return;
}
for(GLuint i = first; i < first + count; ++i) {
GLuint idx = IndexFunc(indices + (i * istride));
it->flags = GPU_CMD_VERTEX;
pos = (GLubyte*) ATTRIB_POINTERS.vertex.ptr + (idx * vstride);
TransformVertex((const float*) pos, &w, it->xyz, &it->w);
if(uv) {
uv = (GLubyte*) ATTRIB_POINTERS.uv.ptr + (idx * uvstride);
MEMCPY4(it->uv, uv, sizeof(float) * 2);
} else {
*((Float2*) it->uv) = F2ZERO;
}
if(col) {
col = (GLubyte*) ATTRIB_POINTERS.colour.ptr + (idx * dstride);
MEMCPY4(it->bgra, col, sizeof(uint32_t));
} else {
*((uint32_t*) it->bgra) = ~0;
}
if(st) {
st = (GLubyte*) ATTRIB_POINTERS.st.ptr + (idx * ststride);
MEMCPY4(ve->st, st, sizeof(float) * 2);
} else {
*((Float2*) ve->st) = F2ZERO;
}
if(n) {
n = (GLubyte*) ATTRIB_POINTERS.normal.ptr + (idx * nstride);
MEMCPY4(ve->nxyz, n, sizeof(float) * 3);
} else {
*((Float3*) ve->nxyz) = F3Z;
}
it++;
ve++;
}
}
#define likely(x) __builtin_expect(!!(x), 1)
#define POLYMODE ALL
#define PROCESS_VERTEX_FLAGS(it, i) { \
(it)->flags = GPU_CMD_VERTEX; \
}
#include "draw_fastpath.inc"
#undef PROCESS_VERTEX_FLAGS
#undef POLYMODE
#define POLYMODE QUADS
#define PROCESS_VERTEX_FLAGS(it, i) { \
it->flags = GPU_CMD_VERTEX; \
if(((i + 1) % 4) == 0) { \
Vertex t = *it; \
*it = *(it - 1); \
*(it - 1) = t; \
it->flags = GPU_CMD_VERTEX_EOL; \
} \
}
#include "draw_fastpath.inc"
#undef PROCESS_VERTEX_FLAGS
#undef POLYMODE
#define POLYMODE TRIS
#define PROCESS_VERTEX_FLAGS(it, i) { \
it->flags = ((i + 1) % 3 == 0) ? GPU_CMD_VERTEX_EOL : GPU_CMD_VERTEX; \
}
#include "draw_fastpath.inc"
#undef PROCESS_VERTEX_FLAGS
#undef POLYMODE
static void generateArrays(SubmissionTarget* target, const GLsizei first, const GLuint count) {
Vertex* start = _glSubmissionTargetStart(target);
VertexExtra* ve = aligned_vector_at(target->extras, 0);
const ReadPositionFunc pfunc = calcReadPositionFunc();
const ReadDiffuseFunc dfunc = calcReadDiffuseFunc();
const ReadUVFunc uvfunc = calcReadUVFunc();
const ReadNormalFunc nfunc = calcReadNormalFunc();
const ReadUVFunc stfunc = calcReadSTFunc();
_readPositionData(pfunc, first, count, start);
_readDiffuseData(dfunc, first, count, start);
_readUVData(uvfunc, first, count, start);
_readNormalData(nfunc, first, count, ve);
_readSTData(stfunc, first, count, ve);
}
static void generate(SubmissionTarget* target, const GLenum mode, const GLsizei first, const GLuint count,
const GLubyte* indices, const GLenum type) {
/* Read from the client buffers and generate an array of ClipVertices */
TRACE();
if(FAST_PATH_ENABLED) {
if(indices) {
generateElementsFastPath(target, first, count, indices, type);
} else {
switch(mode) {
case GL_QUADS:
generateArraysFastPath_QUADS(target, first, count);
return; // Don't need to do any more processing
case GL_TRIANGLES:
generateArraysFastPath_TRIS(target, first, count);
return; // Don't need to do any more processing
default:
generateArraysFastPath_ALL(target, first, count);
}
}
} else {
if(indices) {
generateElements(target, first, count, indices, type);
} else {
generateArrays(target, first, count);
}
}
Vertex* it = _glSubmissionTargetStart(target);
// Drawing arrays
switch(mode) {
case GL_TRIANGLES:
genTriangles(it, count);
break;
case GL_QUADS:
genQuads(it, count);
break;
case GL_TRIANGLE_FAN:
genTriangleFan(it, count);
break;
case GL_TRIANGLE_STRIP:
genTriangleStrip(it, count);
break;
default:
gl_assert(0 && "Not Implemented");
}
}
static void transform(SubmissionTarget* target) {
TRACE();
/* Perform modelview transform, storing W */
Vertex* vertex = _glSubmissionTargetStart(target);
TransformVertices(vertex, target->count);
}
static void mat_transform_normal3(const float* xyz, const float* xyzOut, const uint32_t count, const uint32_t inStride, const uint32_t outStride) {
const uint8_t* dataIn = (const uint8_t*) xyz;
uint8_t* dataOut = (uint8_t*) xyzOut;
ITERATE(count) {
const float* in = (const float*) dataIn;
float* out = (float*) dataOut;
TransformNormalNoMod(in, out);
dataIn += inStride;
dataOut += outStride;
}
}
static void light(SubmissionTarget* target) {
static AlignedVector* eye_space_data = NULL;
if(!eye_space_data) {
eye_space_data = (AlignedVector*) malloc(sizeof(AlignedVector));
aligned_vector_init(eye_space_data, sizeof(EyeSpaceData));
}
aligned_vector_resize(eye_space_data, target->count);
/* Perform lighting calculations and manipulate the colour */
Vertex* vertex = _glSubmissionTargetStart(target);
VertexExtra* extra = aligned_vector_at(target->extras, 0);
EyeSpaceData* eye_space = (EyeSpaceData*) eye_space_data->data;
_glMatrixLoadNormal();
mat_transform_normal3(extra->nxyz, eye_space->n, target->count, sizeof(VertexExtra), sizeof(EyeSpaceData));
EyeSpaceData* ES = aligned_vector_at(eye_space_data, 0);
_glPerformLighting(vertex, ES, target->count);
}
GL_FORCE_INLINE void divide(SubmissionTarget* target) {
TRACE();
/* Perform perspective divide on each vertex */
Vertex* vertex = _glSubmissionTargetStart(target);
const float h = GetVideoMode()->height;
ITERATE(target->count) {
const float f = MATH_Fast_Invert(vertex->w);
/* Convert to NDC and apply viewport */
vertex->xyz[0] = MATH_fmac(
VIEWPORT.hwidth, vertex->xyz[0] * f, VIEWPORT.x_plus_hwidth
);
vertex->xyz[1] = h - MATH_fmac(
VIEWPORT.hheight, vertex->xyz[1] * f, VIEWPORT.y_plus_hheight
);
/* Apply depth range */
vertex->xyz[2] = MAX(
1.0f - MATH_fmac(vertex->xyz[2] * f, 0.5f, 0.5f),
PVR_MIN_Z
);
++vertex;
}
}
GL_FORCE_INLINE int _calc_pvr_face_culling() {
if(!_glIsCullingEnabled()) {
return GPU_CULLING_SMALL;
} else {
if(_glGetCullFace() == GL_BACK) {
return (_glGetFrontFace() == GL_CW) ? GPU_CULLING_CCW : GPU_CULLING_CW;
} else {
return (_glGetFrontFace() == GL_CCW) ? GPU_CULLING_CCW : GPU_CULLING_CW;
}
}
}
GL_FORCE_INLINE int _calc_pvr_depth_test() {
if(!_glIsDepthTestEnabled()) {
return GPU_DEPTHCMP_ALWAYS;
}
switch(_glGetDepthFunc()) {
case GL_NEVER:
return GPU_DEPTHCMP_NEVER;
case GL_LESS:
return GPU_DEPTHCMP_GREATER;
case GL_EQUAL:
return GPU_DEPTHCMP_EQUAL;
case GL_LEQUAL:
return GPU_DEPTHCMP_GEQUAL;
case GL_GREATER:
return GPU_DEPTHCMP_LESS;
case GL_NOTEQUAL:
return GPU_DEPTHCMP_NOTEQUAL;
case GL_GEQUAL:
return GPU_DEPTHCMP_LEQUAL;
break;
case GL_ALWAYS:
default:
return GPU_DEPTHCMP_ALWAYS;
}
}
GL_FORCE_INLINE int _calcPVRBlendFactor(GLenum factor) {
switch(factor) {
case GL_ZERO:
return GPU_BLEND_ZERO;
case GL_SRC_ALPHA:
return GPU_BLEND_SRCALPHA;
case GL_DST_COLOR:
return GPU_BLEND_DESTCOLOR;
case GL_DST_ALPHA:
return GPU_BLEND_DESTALPHA;
case GL_ONE_MINUS_DST_COLOR:
return GPU_BLEND_INVDESTCOLOR;
case GL_ONE_MINUS_SRC_ALPHA:
return GPU_BLEND_INVSRCALPHA;
case GL_ONE_MINUS_DST_ALPHA:
return GPU_BLEND_INVDESTALPHA;
case GL_ONE:
return GPU_BLEND_ONE;
default:
fprintf(stderr, "Invalid blend mode: %u\n", (unsigned int) factor);
return GPU_BLEND_ONE;
}
}
GL_FORCE_INLINE void _updatePVRBlend(PolyContext* context) {
if(_glIsBlendingEnabled() || _glIsAlphaTestEnabled()) {
context->gen.alpha = GPU_ALPHA_ENABLE;
} else {
context->gen.alpha = GPU_ALPHA_DISABLE;
}
context->blend.src = _calcPVRBlendFactor(_glGetBlendSourceFactor());
context->blend.dst = _calcPVRBlendFactor(_glGetBlendDestFactor());
}
GL_FORCE_INLINE void apply_poly_header(PolyHeader* header, GLboolean multiTextureHeader, PolyList* activePolyList, GLshort textureUnit) {
TRACE();
// Compile the header
PolyContext ctx;
memset(&ctx, 0, sizeof(PolyContext));
ctx.list_type = activePolyList->list_type;
ctx.fmt.color = GPU_CLRFMT_ARGBPACKED;
ctx.fmt.uv = GPU_UVFMT_32BIT;
ctx.gen.color_clamp = GPU_CLRCLAMP_DISABLE;
ctx.gen.culling = _calc_pvr_face_culling();
ctx.depth.comparison = _calc_pvr_depth_test();
ctx.depth.write = _glIsDepthWriteEnabled() ? GPU_DEPTHWRITE_ENABLE : GPU_DEPTHWRITE_DISABLE;
ctx.gen.shading = (_glGetShadeModel() == GL_SMOOTH) ? GPU_SHADE_GOURAUD : GPU_SHADE_FLAT;
if(_glIsScissorTestEnabled()) {
ctx.gen.clip_mode = GPU_USERCLIP_INSIDE;
} else {
ctx.gen.clip_mode = GPU_USERCLIP_DISABLE;
}
if(_glIsFogEnabled()) {
ctx.gen.fog_type = GPU_FOG_TABLE;
} else {
ctx.gen.fog_type = GPU_FOG_DISABLE;
}
_updatePVRBlend(&ctx);
if(ctx.list_type == GPU_LIST_OP_POLY) {
/* Opaque polys are always one/zero */
ctx.blend.src = GPU_BLEND_ONE;
ctx.blend.dst = GPU_BLEND_ZERO;
} else if(ctx.list_type == GPU_LIST_PT_POLY) {
/* Punch-through polys require fixed blending and depth modes */
ctx.blend.src = GPU_BLEND_SRCALPHA;
ctx.blend.dst = GPU_BLEND_INVSRCALPHA;
ctx.depth.comparison = GPU_DEPTHCMP_LEQUAL;
} else if(ctx.list_type == GPU_LIST_TR_POLY && AUTOSORT_ENABLED) {
/* Autosort mode requires this mode for transparent polys */
ctx.depth.comparison = GPU_DEPTHCMP_GEQUAL;
}
_glUpdatePVRTextureContext(&ctx, textureUnit);
if(multiTextureHeader) {
gl_assert(ctx.list_type == GPU_LIST_TR_POLY);
ctx.gen.alpha = GPU_ALPHA_ENABLE;
ctx.txr.alpha = GPU_TXRALPHA_ENABLE;
ctx.blend.src = GPU_BLEND_ZERO;
ctx.blend.dst = GPU_BLEND_DESTCOLOR;
ctx.depth.comparison = GPU_DEPTHCMP_EQUAL;
}
CompilePolyHeader(header, &ctx);
/* Force bits 18 and 19 on to switch to 6 triangle strips */
header->cmd |= 0xC0000;
/* Post-process the vertex list */
/*
* This is currently unnecessary. aligned_vector memsets the allocated objects
* to zero, and we don't touch oargb, also, we don't *enable* oargb yet in the
* pvr header so it should be ignored anyway. If this ever becomes a problem,
* uncomment this.
ClipVertex* vout = output;
const ClipVertex* end = output + count;
while(vout < end) {
vout->oargb = 0;
}
*/
}
#define DEBUG_CLIPPING 0
static AlignedVector VERTEX_EXTRAS;
static SubmissionTarget SUBMISSION_TARGET;
void _glInitSubmissionTarget() {
SubmissionTarget* target = &SUBMISSION_TARGET;
target->extras = NULL;
target->count = 0;
target->output = NULL;
target->header_offset = target->start_offset = 0;
aligned_vector_init(&VERTEX_EXTRAS, sizeof(VertexExtra));
target->extras = &VERTEX_EXTRAS;
}
GL_FORCE_INLINE void submitVertices(GLenum mode, GLsizei first, GLuint count, GLenum type, const GLvoid* indices) {
SubmissionTarget* const target = &SUBMISSION_TARGET;
AlignedVector* const extras = target->extras;
TRACE();
/* Do nothing if vertices aren't enabled */
if(!(ENABLED_VERTEX_ATTRIBUTES & VERTEX_ENABLED_FLAG)) {
return;
}
/* No vertices? Do nothing */
if(!count) {
return;
}
/* Polygons are treated as triangle fans, the only time this would be a
* problem is if we supported glPolygonMode(..., GL_LINE) but we don't.
* We optimise the triangle and quad cases.
*/
if(mode == GL_POLYGON) {
switch(count) {
case 2:
mode = GL_LINES;
break;
case 3:
mode = GL_TRIANGLES;
break;
case 4:
mode = GL_QUADS;
break;
default:
mode = GL_TRIANGLE_FAN;
}
}
if(mode == GL_LINE_STRIP || mode == GL_LINES) {
fprintf(stderr, "Line drawing is currently unsupported\n");
return;
}
// We don't handle this any further, so just make sure we never pass it down */
gl_assert(mode != GL_POLYGON);
target->output = _glActivePolyList();
gl_assert(target->output);
gl_assert(extras);
uint32_t vector_size = aligned_vector_size(&target->output->vector);
GLboolean header_required = (vector_size == 0) || _glGPUStateIsDirty();
target->count = (mode == GL_TRIANGLE_FAN) ? ((count - 2) * 3) : count;
target->header_offset = vector_size;
target->start_offset = target->header_offset + (header_required ? 1 : 0);
gl_assert(target->start_offset >= target->header_offset);
gl_assert(target->count);
/* Make sure we have enough room for all the "extra" data */
aligned_vector_resize(extras, target->count);
/* Make room for the vertices and header */
aligned_vector_extend(&target->output->vector, target->count + (header_required));
if(header_required) {
apply_poly_header(_glSubmissionTargetHeader(target), GL_FALSE, target->output, 0);
_glGPUStateMarkClean();
}
/* If we're lighting, then we need to do some work in
* eye-space, so we only transform vertices by the modelview
* matrix, and then later multiply by projection.
*
* If we're not doing lighting though we can optimise by taking
* vertices straight to clip-space */
if(_glIsLightingEnabled()) {
_glMatrixLoadModelView();
} else {
_glMatrixLoadModelViewProjection();
}
/* If we're FAST_PATH_ENABLED, then this will do the transform for us */
generate(target, mode, first, count, (GLubyte*) indices, type);
/* No fast path, then we have to do another iteration :( */
if(!FAST_PATH_ENABLED) {
/* Multiply by modelview */
transform(target);
}
if(_glIsLightingEnabled()){
light(target);
/* OK eye-space work done, now move into clip space */
_glMatrixLoadProjection();
transform(target);
}
// /*
// Now, if multitexturing is enabled, we want to send exactly the same vertices again, except:
// - We want to enable blending, and send them to the TR list
// - We want to set the depth func to GL_EQUAL
// - We want to set the second texture ID
// - We want to set the uv coordinates to the passed st ones
// */
// if(!TEXTURES_ENABLED[1]) {
// /* Multitexture actively disabled */
// return;
// }
// TextureObject* texture1 = _glGetTexture1();
// /* Multitexture implicitly disabled */
// if(!texture1 || ((ENABLED_VERTEX_ATTRIBUTES & ST_ENABLED_FLAG) != ST_ENABLED_FLAG)) {
// /* Multitexture actively disabled */
// return;
// }
// /* Push back a copy of the list to the transparent poly list, including the header
// (hence the + 1)
// */
// Vertex* vertex = aligned_vector_push_back(
// &_glTransparentPolyList()->vector, (Vertex*) _glSubmissionTargetHeader(target), target->count + 1
// );
// gl_assert(vertex);
// PolyHeader* mtHeader = (PolyHeader*) vertex++;
// /* Send the buffer again to the transparent list */
// apply_poly_header(mtHeader, GL_TRUE, _glTransparentPolyList(), 1);
// /* Replace the UV coordinates with the ST ones */
// VertexExtra* ve = aligned_vector_at(target->extras, 0);
// ITERATE(target->count) {
// vertex->uv[0] = ve->st[0];
// vertex->uv[1] = ve->st[1];
// ++vertex;
// ++ve;
// }
}
void APIENTRY glDrawElements(GLenum mode, GLsizei count, GLenum type, const GLvoid* indices) {
TRACE();
if(_glCheckImmediateModeInactive(__func__)) {
return;
}
submitVertices(mode, 0, count, type, indices);
}
void APIENTRY glDrawArrays(GLenum mode, GLint first, GLsizei count) {
TRACE();
if(_glCheckImmediateModeInactive(__func__)) {
return;
}
submitVertices(mode, first, count, GL_UNSIGNED_INT, NULL);
}
void APIENTRY glEnableClientState(GLenum cap) {
TRACE();
switch(cap) {
case GL_VERTEX_ARRAY:
ENABLED_VERTEX_ATTRIBUTES |= VERTEX_ENABLED_FLAG;
break;
case GL_COLOR_ARRAY:
ENABLED_VERTEX_ATTRIBUTES |= DIFFUSE_ENABLED_FLAG;
break;
case GL_NORMAL_ARRAY:
ENABLED_VERTEX_ATTRIBUTES |= NORMAL_ENABLED_FLAG;
break;
case GL_TEXTURE_COORD_ARRAY:
(ACTIVE_CLIENT_TEXTURE) ?
(ENABLED_VERTEX_ATTRIBUTES |= ST_ENABLED_FLAG):
(ENABLED_VERTEX_ATTRIBUTES |= UV_ENABLED_FLAG);
break;
default:
_glKosThrowError(GL_INVALID_ENUM, __func__);
}
/* It's possible that we called glVertexPointer and friends before
* calling glEnableClientState, so we should recheck to make sure
* everything is in the right format with this new information */
_glRecalcFastPath();
}
void APIENTRY glDisableClientState(GLenum cap) {
TRACE();
switch(cap) {
case GL_VERTEX_ARRAY:
ENABLED_VERTEX_ATTRIBUTES &= ~VERTEX_ENABLED_FLAG;
break;
case GL_COLOR_ARRAY:
ENABLED_VERTEX_ATTRIBUTES &= ~DIFFUSE_ENABLED_FLAG;
break;
case GL_NORMAL_ARRAY:
ENABLED_VERTEX_ATTRIBUTES &= ~NORMAL_ENABLED_FLAG;
break;
case GL_TEXTURE_COORD_ARRAY:
(ACTIVE_CLIENT_TEXTURE) ?
(ENABLED_VERTEX_ATTRIBUTES &= ~ST_ENABLED_FLAG):
(ENABLED_VERTEX_ATTRIBUTES &= ~UV_ENABLED_FLAG);
break;
default:
_glKosThrowError(GL_INVALID_ENUM, __func__);
}
/* State changed, recalculate */
_glRecalcFastPath();
}
GLuint _glGetActiveClientTexture() {
return ACTIVE_CLIENT_TEXTURE;
}
void APIENTRY glClientActiveTextureARB(GLenum texture) {
TRACE();
if(texture < GL_TEXTURE0_ARB || texture > GL_TEXTURE0_ARB + MAX_GLDC_TEXTURE_UNITS) {
_glKosThrowError(GL_INVALID_ENUM, __func__);
return;
}
ACTIVE_CLIENT_TEXTURE = (texture == GL_TEXTURE1_ARB) ? 1 : 0;
}
GL_FORCE_INLINE GLboolean _glComparePointers(AttribPointer* p, GLint size, GLenum type, GLsizei stride, const GLvoid* pointer) {
return (p->size == size && p->type == type && p->stride == stride && p->ptr == pointer);
}
void APIENTRY glTexCoordPointer(GLint size, GLenum type, GLsizei stride, const GLvoid * pointer) {
TRACE();
if(size < 1 || size > 4) {
_glKosThrowError(GL_INVALID_VALUE, __func__);
return;
}
stride = (stride) ? stride : size * byte_size(type);
AttribPointer* tointer = (ACTIVE_CLIENT_TEXTURE == 0) ? &ATTRIB_POINTERS.uv : &ATTRIB_POINTERS.st;
if(_glComparePointers(tointer, size, type, stride, pointer)) {
// No Change
return;
}
tointer->ptr = pointer;
tointer->stride = stride;
tointer->type = type;
tointer->size = size;
_glRecalcFastPath();
}
void APIENTRY glVertexPointer(GLint size, GLenum type, GLsizei stride, const GLvoid * pointer) {
TRACE();
if(size < 2 || size > 4) {
_glKosThrowError(GL_INVALID_VALUE, __func__);
return;
}
stride = (stride) ? stride : (size * byte_size(ATTRIB_POINTERS.vertex.type));
if(_glComparePointers(&ATTRIB_POINTERS.vertex, size, type, stride, pointer)) {
// No Change
return;
}
ATTRIB_POINTERS.vertex.ptr = pointer;
ATTRIB_POINTERS.vertex.stride = stride;
ATTRIB_POINTERS.vertex.type = type;
ATTRIB_POINTERS.vertex.size = size;
_glRecalcFastPath();
}
void APIENTRY glColorPointer(GLint size, GLenum type, GLsizei stride, const GLvoid * pointer) {
TRACE();
if(size != 3 && size != 4 && size != GL_BGRA) {
_glKosThrowError(GL_INVALID_VALUE, __func__);
return;
}
stride = (stride) ? stride : ((size == GL_BGRA) ? 4 : size) * byte_size(type);
if(_glComparePointers(&ATTRIB_POINTERS.colour, size, type, stride, pointer)) {
// No Change
return;
}
ATTRIB_POINTERS.colour.ptr = pointer;
ATTRIB_POINTERS.colour.type = type;
ATTRIB_POINTERS.colour.size = size;
ATTRIB_POINTERS.colour.stride = stride;
_glRecalcFastPath();
}
void APIENTRY glNormalPointer(GLenum type, GLsizei stride, const GLvoid * pointer) {
TRACE();
GLint validTypes[] = {
GL_DOUBLE,
GL_FLOAT,
GL_BYTE,
GL_UNSIGNED_BYTE,
GL_INT,
GL_UNSIGNED_INT,
GL_UNSIGNED_INT_2_10_10_10_REV,
0
};
if(_glCheckValidEnum(type, validTypes, __func__) != 0) {
return;
}
stride = (stride) ? stride : ATTRIB_POINTERS.normal.size * byte_size(type);
if(_glComparePointers(&ATTRIB_POINTERS.normal, 3, type, stride, pointer)) {
// No Change
return;
}
ATTRIB_POINTERS.normal.ptr = pointer;
ATTRIB_POINTERS.normal.size = (type == GL_UNSIGNED_INT_2_10_10_10_REV) ? 1 : 3;
ATTRIB_POINTERS.normal.stride = stride;
ATTRIB_POINTERS.normal.type = type;
_glRecalcFastPath();
}