GLdc/samples/paletted_pcx/main.c

624 lines
18 KiB
C

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdint.h>
#include <assert.h>
#ifdef __DREAMCAST__
#include <kos.h>
#endif
#include "GL/gl.h"
#include "GL/glu.h"
#include "GL/glext.h"
#include "GL/glkos.h"
#ifdef __DREAMCAST__
#include <kos.h>
extern uint8 romdisk[];
KOS_INIT_ROMDISK(romdisk);
#endif
/* using 4bpp textures from BMP files instead of 8bpp from PCX files */
#define USE_16C_PALETTE
/* floats for x rotation, y rotation, z rotation */
float xrot, yrot, zrot;
int textures[3];
typedef struct {
uint32_t height;
uint32_t width;
uint32_t palette_width;
char* palette;
char* data;
} Image;
#ifndef USE_16C_PALETTE
#pragma pack(push)
#pragma pack(1)
/* PCX header */
typedef struct {
uint8_t manufacturer;
uint8_t version;
uint8_t encoding;
uint8_t bits_per_pixel;
uint16_t xmin, ymin;
uint16_t xmax, ymax;
uint16_t horz_res, vert_res;
uint8_t palette[48];
uint8_t reserved;
uint8_t num_color_planes;
uint16_t bytes_per_scan_line;
uint16_t palette_type;
uint16_t horz_size, vert_size;
uint8_t padding[54];
} Header;
#pragma pack(pop)
int LoadPalettedPCX(const char* filename, Image* image) {
FILE* filein = NULL;
filein = fopen(filename, "rb");
if(!filein) {
printf("Unable to open file\n");
return 0;
}
Header header;
fread(&header, sizeof(header), 1, filein);
if(header.manufacturer != 0x0a) {
printf("Invalid file\n");
return 0;
}
/* Read the rest of the file */
long pos = ftell(filein);
fseek(filein, 0, SEEK_END);
long end = ftell(filein);
fseek(filein, pos, SEEK_SET);
long size = end - pos;
uint8_t* buffer = (uint8_t*) malloc(size);
fread(buffer, 1, size, filein);
image->width = header.xmax - header.xmin + 1;
image->height = header.ymax - header.ymin + 1;
image->data = (char*) malloc(sizeof(char) * image->width * image->height);
int bitcount = header.bits_per_pixel * header.num_color_planes;
if(bitcount != 8) {
printf("Wrong bitcount\n");
return 0;
}
uint8_t palette_marker = buffer[size - 769];
const uint8_t* palette = (palette_marker == 12) ? &buffer[size - 768] : header.palette;
image->palette_width = (palette_marker == 12) ? 256 : 16;
image->palette = (char*) malloc(sizeof(char) * 3 * image->palette_width);
memcpy(image->palette, palette, sizeof(char) * 3 * image->palette_width);
int32_t rle_count = 0;
int32_t rle_value = 0;
const uint8_t* image_data = buffer;
uint32_t idx;
for(idx = 0; idx < (image->width * image->height); idx++) {
if(rle_count == 0) {
rle_value = *image_data;
++image_data;
if((rle_value & 0xc0) == 0xc0) {
rle_count = rle_value & 0x3f;
rle_value = *image_data;
++image_data;
} else {
rle_count = 1;
}
}
rle_count--;
assert(rle_value < 256);
image->data[idx] = rle_value;
}
free(buffer);
return 1;
}
#else
#define BMP_BI_RGB 0L
#define BMP_BI_UNCOMPRESSED 0L
#define BMP_BI_RLE8 1L
#define BMP_BI_RLE4 2L
#define BMP_BI_BITFIELDS 3L
#pragma pack(push)
#pragma pack(1)
typedef struct BITMAP_FILE_HEADER
{
uint16_t Type;
uint32_t Size;
uint16_t Reserved1;
uint16_t Reserved2;
uint32_t OffBits;
} BITMAP_FILE_HEADER;
typedef struct BITMAP_INFO_HEADER
{
uint32_t Size;
int32_t Width;
int32_t Height;
uint16_t Planes;
uint16_t BitCount;
uint32_t Compression;
uint32_t SizeImage;
int32_t XPelsPerMeter;
int32_t YPelsPerMeter;
uint32_t ClrUsed;
uint32_t ClrImportant;
} BITMAP_INFO_HEADER;
typedef struct RGB_QUAD
{
uint8_t Blue;
uint8_t Green;
uint8_t Red;
uint8_t Reserved;
} RGB_QUAD;
typedef struct BITMAP_INFO
{
BITMAP_INFO_HEADER Header;
RGB_QUAD Colors[1];
} BITMAP_INFO;
#pragma pack(pop)
/* some global variables used to load a 4bpp BMP file */
static BITMAP_FILE_HEADER BmpFileHeader;
static BITMAP_INFO_HEADER BmpInfoHeader;
static RGB_QUAD BmpRgbQuad[256];
static uint8_t BmpPal[256 * 3];
int BMP_Infos(FILE *pFile, uint32_t *width, uint32_t *height)
{
if (!pFile)
return 0;
if (fread(&BmpFileHeader.Type, 1, 2, pFile) != 2)
return 0;
if (fread(&BmpFileHeader.Size, 1, 4, pFile) != 4)
return 0;
if (fread(&BmpFileHeader.Reserved1, 1, 2, pFile) != 2)
return 0;
if (fread(&BmpFileHeader.Reserved2, 1, 2, pFile) != 2)
return 0;
if (fread(&BmpFileHeader.OffBits, 1, 4, pFile) != 4)
return 0;
if (fread(&BmpInfoHeader.Size, 1, 4, pFile) != 4)
return 0;
if (fread(&BmpInfoHeader.Width, 1, 4, pFile) != 4)
return 0;
if (fread(&BmpInfoHeader.Height, 1, 4, pFile) != 4)
return 0;
if (fread(&BmpInfoHeader.Planes, 1, 2, pFile) != 2)
return 0;
if (fread(&BmpInfoHeader.BitCount, 1, 2, pFile) != 2)
return 0;
if (fread(&BmpInfoHeader.Compression, 1, 4, pFile) != 4)
return 0;
if (fread(&BmpInfoHeader.SizeImage, 1, 4, pFile) != 4)
return 0;
if (fread(&BmpInfoHeader.XPelsPerMeter, 1, 4, pFile) != 4)
return 0;
if (fread(&BmpInfoHeader.YPelsPerMeter, 1, 4, pFile) != 4)
return 0;
if (fread(&BmpInfoHeader.ClrUsed, 1, 4, pFile) != 4)
return 0;
if (fread(&BmpInfoHeader.ClrImportant, 1, 4, pFile) != 4)
return 0;
*width = (uint32_t)BmpInfoHeader.Width;
*height = (uint32_t)BmpInfoHeader.Height;
return 1;
}
int BMP_GetPalette(FILE *pFile)
{
int32_t i,bitCount;
if (BmpInfoHeader.BitCount == 4) {
if (!BmpInfoHeader.ClrImportant) {
BmpInfoHeader.ClrImportant = 16;
}
bitCount = BmpInfoHeader.ClrImportant * sizeof(RGB_QUAD);
if (fread(BmpRgbQuad, 1, bitCount, pFile) != bitCount){
return 0;
}
for (i = 0; i < BmpInfoHeader.ClrImportant; i++) {
BmpPal[i * 3] = (uint8_t)BmpRgbQuad[i].Red;
BmpPal[i * 3 + 1] = (uint8_t)BmpRgbQuad[i].Green;
BmpPal[i * 3 + 2] = (uint8_t)BmpRgbQuad[i].Blue;
}
return 1;
}
return 0;
}
/* maybe not the best BMP loader... */
int BMP_Depack(FILE *pFile,char *pZone)
{
char PadRead[4];
int32_t i, j, Offset, PadSize, pix, c;
if (BmpInfoHeader.Compression != BMP_BI_RGB)
return 0;
PadSize = (BmpInfoHeader.Width & 3);
PadSize = (4 - (BmpInfoHeader.Width & 3)) & 3;
for (i = BmpInfoHeader.Height - 1; (i > -1); i--) {
Offset = i * BmpInfoHeader.Width / 2;
if (PadSize < 4) {
for (j = 0; (j < BmpInfoHeader.Width / 2); j++) {
if (!fread(&c, 1, 1, pFile)) {
return 0;
}
pZone[Offset + j] = c;
}
}
if (PadSize) {
if (fread(PadRead, PadSize, 1, pFile) != PadSize) {
return 0;
}
}
}
if (i != -1) {
return 0;
}
return 1;
}
int LoadPalettedBMP(const char* filename, Image* image)
{
FILE *fp;
uint32_t bytes;
if (filename == NULL || image == NULL) {
printf("Invalid NULL argument\n");
return 0;
}
fp = fopen(filename, "rb");
if (fp == NULL) {
printf("Unable to open file\n");
return 0;
}
if (!BMP_Infos(fp, &image->width, &image->height)) {
printf("Error reading BMP:%s header\n",filename);
return 0;
}
if (!BMP_GetPalette(fp)) {
printf("Only 16c BMP are supported for this sample");
return 0;
}
/* store palette information */
image->palette = BmpPal;
image->palette_width = 16;
bytes = sizeof(char) * image->width * image->height;
/* 4bpp is half byte size*/
bytes >>= 1;
image->data = (char*)malloc(bytes);
if (image->data == NULL) {
printf("Error allocating image data");
return 0;
}
if (!BMP_Depack(fp, image->data)) {
printf("Error depacking BMP:%s",filename);
return 0;
}
fclose(fp);
return 1;
}
#endif
// Load Bitmaps And Convert To Textures
void LoadGLTextures() {
// Load Texture
Image image1, image2;
#ifndef USE_16C_PALETTE
if(!LoadPalettedPCX("/rd/NeHe.pcx", &image1)) {
exit(1);
}
if(!LoadPalettedPCX("/rd/NeHe-Alpha.pcx", &image2)) {
exit(1);
}
#else
if (!LoadPalettedBMP("/rd/NeHe.bmp", &image1)) {
exit(1);
}
if (!LoadPalettedBMP("/rd/NeHe-Alpha.bmp", &image2)) {
exit(1);
}
#endif
glEnable(GL_SHARED_TEXTURE_PALETTE_EXT);
/* First palette */
glColorTableEXT(GL_SHARED_TEXTURE_PALETTE_EXT, GL_RGBA8, image1.palette_width, GL_RGB, GL_UNSIGNED_BYTE, image1.palette);
char* inversed_palette = (char*) malloc(sizeof(char) * image1.palette_width * 3);
GLuint i;
for(i = 0; i < image1.palette_width; i++) {
/* Swap red and green */
inversed_palette[i * 3] = image1.palette[(i * 3) + 1];
inversed_palette[(i * 3) + 1] = image1.palette[(i * 3)];
inversed_palette[(i * 3) + 2] = image1.palette[(i * 3) + 2];
}
glColorTableEXT(GL_SHARED_TEXTURE_PALETTE_1_KOS, GL_RGBA8, image1.palette_width, GL_RGB, GL_UNSIGNED_BYTE, inversed_palette);
// Create Texture
glGenTextures(3, textures);
glBindTexture(GL_TEXTURE_2D, textures[0]); // 2d texture (x and y size)
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); // scale linearly when image bigger than texture
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); // scale linearly when image smalled than texture
// 2d texture, level of detail 0 (normal), 3 components (red, green, blue), x size from image, y size from image,
// border 0 (normal), rgb color data, unsigned byte data, and finally the data itself.
#ifndef USE_16C_PALETTE
glTexImage2D(GL_TEXTURE_2D, 0, GL_COLOR_INDEX8_EXT, image1.width, image1.height, 0, GL_COLOR_INDEX, GL_UNSIGNED_BYTE, image1.data);
#else
glTexImage2D(GL_TEXTURE_2D, 0, GL_COLOR_INDEX4_EXT, image1.width, image1.height, 0, GL_COLOR_INDEX, GL_UNSIGNED_BYTE, image1.data);
#endif
glBindTexture(GL_TEXTURE_2D, textures[1]); // 2d texture (x and y size)
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); // scale linearly when image bigger than texture
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); // scale linearly when image smalled than texture
/* Texture-specific palette! */
glColorTableEXT(GL_TEXTURE_2D, GL_RGBA8, image1.palette_width, GL_RGB, GL_UNSIGNED_BYTE, inversed_palette);
// 2d texture, level of detail 0 (normal), 3 components (red, green, blue), x size from image, y size from image,
// border 0 (normal), rgb color data, unsigned byte data, and finally the data itself.
#ifndef USE_16C_PALETTE
glTexImage2D(GL_TEXTURE_2D, 0, GL_COLOR_INDEX8_EXT, image1.width, image1.height, 0, GL_COLOR_INDEX, GL_UNSIGNED_BYTE, image1.data);
#else
glTexImage2D(GL_TEXTURE_2D, 0, GL_COLOR_INDEX4_EXT, image1.width, image1.height, 0, GL_COLOR_INDEX, GL_UNSIGNED_BYTE, image1.data);
#endif
glBindTexture(GL_TEXTURE_2D, textures[2]);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_NEAREST);
char* new_palette = (char*) malloc(image2.palette_width * 4);
for(i = 0; i < image2.palette_width; ++i) {
new_palette[(i * 4) + 0] = image2.palette[(i * 3) + 0];
new_palette[(i * 4) + 1] = image2.palette[(i * 3) + 1];
new_palette[(i * 4) + 2] = image2.palette[(i * 3) + 2];
new_palette[(i * 4) + 3] = (i == 2) ? 0 : 255;
}
glColorTableEXT(GL_TEXTURE_2D, GL_RGBA8, image2.palette_width, GL_RGBA, GL_UNSIGNED_BYTE, new_palette);
#ifndef USE_16C_PALETTE
glTexImage2D(GL_TEXTURE_2D, 0, GL_COLOR_INDEX8_EXT, image2.width, image2.height, 0, GL_COLOR_INDEX, GL_UNSIGNED_BYTE, image2.data);
#else
glTexImage2D(GL_TEXTURE_2D, 0, GL_COLOR_INDEX4_EXT, image2.width, image2.height, 0, GL_COLOR_INDEX, GL_UNSIGNED_BYTE, image2.data);
#endif
}
/* A general OpenGL initialization function. Sets all of the initial parameters. */
void InitGL(int Width, int Height) // We call this right after our OpenGL window is created.
{
LoadGLTextures();
glEnable(GL_TEXTURE_2D);
glClearColor(0.0f, 0.0f, 0.0f, 0.0f); // This Will Clear The Background Color To Black
glClearDepth(1.0); // Enables Clearing Of The Depth Buffer
glDepthFunc(GL_LEQUAL); // The Type Of Depth Test To Do
glEnable(GL_DEPTH_TEST); // Enables Depth Testing
glShadeModel(GL_SMOOTH); // Enables Smooth Color Shading
glMatrixMode(GL_PROJECTION);
glLoadIdentity(); // Reset The Projection Matrix
gluPerspective(45.0f,(GLfloat)Width/(GLfloat)Height,0.1f,100.0f); // Calculate The Aspect Ratio Of The Window
glMatrixMode(GL_MODELVIEW);
}
/* The function called when our window is resized (which shouldn't happen, because we're fullscreen) */
void ReSizeGLScene(int Width, int Height)
{
if (Height == 0) // Prevent A Divide By Zero If The Window Is Too Small
Height = 1;
glViewport(0, 0, Width, Height); // Reset The Current Viewport And Perspective Transformation
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(45.0f,(GLfloat)Width/(GLfloat)Height,0.1f,100.0f);
glMatrixMode(GL_MODELVIEW);
}
int check_start() {
#ifdef __DREAMCAST__
maple_device_t *cont;
cont_state_t *state;
cont = maple_enum_type(0, MAPLE_FUNC_CONTROLLER);
if(cont) {
state = (cont_state_t *)maple_dev_status(cont);
if(state)
return state->buttons & CONT_START;
}
#endif
return 0;
}
void DrawPolygon() {
glBegin(GL_QUADS); // begin drawing a cube
// Front Face (note that the texture's corners have to match the quad's corners)
glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 1.0f); // Bottom Left Of The Texture and Quad
glTexCoord2f(1.0f, 0.0f); glVertex3f( 1.0f, -1.0f, 1.0f); // Bottom Right Of The Texture and Quad
glTexCoord2f(1.0f, 1.0f); glVertex3f( 1.0f, 1.0f, 1.0f); // Top Right Of The Texture and Quad
glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 1.0f); // Top Left Of The Texture and Quad
// Back Face
glTexCoord2f(1.0f, 0.0f); glVertex3f(-1.0f, -1.0f, -1.0f); // Bottom Right Of The Texture and Quad
glTexCoord2f(1.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -1.0f); // Top Right Of The Texture and Quad
glTexCoord2f(0.0f, 1.0f); glVertex3f( 1.0f, 1.0f, -1.0f); // Top Left Of The Texture and Quad
glTexCoord2f(0.0f, 0.0f); glVertex3f( 1.0f, -1.0f, -1.0f); // Bottom Left Of The Texture and Quad
// Top Face
glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -1.0f); // Top Left Of The Texture and Quad
glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, 1.0f, 1.0f); // Bottom Left Of The Texture and Quad
glTexCoord2f(1.0f, 0.0f); glVertex3f( 1.0f, 1.0f, 1.0f); // Bottom Right Of The Texture and Quad
glTexCoord2f(1.0f, 1.0f); glVertex3f( 1.0f, 1.0f, -1.0f); // Top Right Of The Texture and Quad
// Bottom Face
glTexCoord2f(1.0f, 1.0f); glVertex3f(-1.0f, -1.0f, -1.0f); // Top Right Of The Texture and Quad
glTexCoord2f(0.0f, 1.0f); glVertex3f( 1.0f, -1.0f, -1.0f); // Top Left Of The Texture and Quad
glTexCoord2f(0.0f, 0.0f); glVertex3f( 1.0f, -1.0f, 1.0f); // Bottom Left Of The Texture and Quad
glTexCoord2f(1.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 1.0f); // Bottom Right Of The Texture and Quad
// Right face
glTexCoord2f(1.0f, 0.0f); glVertex3f( 1.0f, -1.0f, -1.0f); // Bottom Right Of The Texture and Quad
glTexCoord2f(1.0f, 1.0f); glVertex3f( 1.0f, 1.0f, -1.0f); // Top Right Of The Texture and Quad
glTexCoord2f(0.0f, 1.0f); glVertex3f( 1.0f, 1.0f, 1.0f); // Top Left Of The Texture and Quad
glTexCoord2f(0.0f, 0.0f); glVertex3f( 1.0f, -1.0f, 1.0f); // Bottom Left Of The Texture and Quad
// Left Face
glTexCoord2f(0.0f, 0.0f); glVertex3f(-1.0f, -1.0f, -1.0f); // Bottom Left Of The Texture and Quad
glTexCoord2f(1.0f, 0.0f); glVertex3f(-1.0f, -1.0f, 1.0f); // Bottom Right Of The Texture and Quad
glTexCoord2f(1.0f, 1.0f); glVertex3f(-1.0f, 1.0f, 1.0f); // Top Right Of The Texture and Quad
glTexCoord2f(0.0f, 1.0f); glVertex3f(-1.0f, 1.0f, -1.0f); // Top Left Of The Texture and Quad
glEnd(); // done with the polygon.
}
/* The main drawing function. */
void DrawGLScene()
{
static GLuint switch_counter = 0;
static GLuint current_bank = 0;
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear The Screen And The Depth Buffer
glLoadIdentity(); // Reset The View
glEnable(GL_SHARED_TEXTURE_PALETTE_EXT);
glTranslatef(-1.5f,0.0f,-8.0f); // move 5 units into the screen.
glPushMatrix();
glRotatef(xrot,1.0f,0.0f,0.0f); // Rotate On The X Axis
glRotatef(yrot,0.0f,1.0f,0.0f); // Rotate On The Y Axis
glRotatef(zrot,0.0f,0.0f,1.0f); // Rotate On The Z Axis
glBindTexture(GL_TEXTURE_2D, textures[0]); // choose the texture to use.
if(switch_counter++ > 200) {
switch_counter = 0;
current_bank = !current_bank;
glTexParameteri(GL_TEXTURE_2D, GL_SHARED_TEXTURE_BANK_KOS, current_bank);
}
DrawPolygon();
glPopMatrix();
glDisable(GL_SHARED_TEXTURE_PALETTE_EXT);
glBindTexture(GL_TEXTURE_2D, textures[1]);
glTranslatef(3.0, 0, 0);
DrawPolygon();
static float x = 0.0f;
x += 0.05f;
if(x > 5.0f) {
x = 0.0f;
}
glAlphaFunc(GL_GREATER, 0.666f);
glEnable(GL_ALPHA_TEST);
glBindTexture(GL_TEXTURE_2D, textures[2]);
glTranslatef(x - 3.0, 0, 3.0);
DrawPolygon();
glDisable(GL_ALPHA_TEST);
xrot+=1.5f; // X Axis Rotation
yrot+=1.5f; // Y Axis Rotation
zrot+=1.5f; // Z Axis Rotation
//
// swap buffers to display, since we're double buffered.
glKosSwapBuffers();
}
int main(int argc, char **argv)
{
GLdcConfig config;
glKosInitConfig(&config);
config.internal_palette_format = GL_RGBA8;
glKosInitEx(&config);
InitGL(640, 480);
ReSizeGLScene(640, 480);
while(1) {
if(check_start())
break;
DrawGLScene();
}
return 0;
}