GLdc/GL/platforms/software.c
Luke Benstead 193f0bdc49 Cleanup
2022-05-21 20:16:50 +01:00

345 lines
9.9 KiB
C

#include <SDL.h>
#include <stdlib.h>
#include <string.h>
#include "../platform.h"
#include "software.h"
#include "software/edge_equation.h"
#include "software/parameter_equation.h"
static size_t AVAILABLE_VRAM = 16 * 1024 * 1024;
static Matrix4x4 MATRIX;
static SDL_Window* WINDOW = NULL;
static SDL_Renderer* RENDERER = NULL;
static uint8_t BACKGROUND_COLOR[3] = {0, 0, 0};
GPUCulling CULL_MODE = GPU_CULLING_CCW;
static VideoMode vid_mode = {
640, 480
};
typedef struct GPUVertex {
uint32_t flags;
float x;
float y;
float z;
float u;
float v;
uint8_t bgra[4];
uint8_t obgra[4];
} GPUVertex;
#define MIN(x, y) ((x) < (y) ? (x) : (y))
#define MAX(x, y) ((x) > (y) ? (x) : (y))
static void DrawTriangle(GPUVertex* v0, GPUVertex* v1, GPUVertex* v2) {
// Compute triangle bounding box.
int minX = MIN(MIN(v0->x, v1->x), v2->x);
int maxX = MAX(MAX(v0->x, v1->x), v2->x);
int minY = MIN(MIN(v0->y, v1->y), v2->y);
int maxY = MAX(MAX(v0->y, v1->y), v2->y);
// Clip to scissor rect.
minX = MAX(minX, 0);
maxX = MIN(maxX, vid_mode.width);
minY = MAX(minY, 0);
maxY = MIN(maxY, vid_mode.height);
// Compute edge equations.
EdgeEquation e0, e1, e2;
EdgeEquationInit(&e0, &v0->x, &v1->x);
EdgeEquationInit(&e1, &v1->x, &v2->x);
EdgeEquationInit(&e2, &v2->x, &v0->x);
float area = 0.5 * (e0.c + e1.c + e2.c);
/* This is very ugly. I don't understand the math properly
* so I just swap the vertex order if something is back-facing
* and we want to render it. Patches welcome! */
#define REVERSE_WINDING() \
GPUVertex* tv = v0; \
v0 = v1; \
v1 = tv; \
EdgeEquationInit(&e0, &v0->x, &v1->x); \
EdgeEquationInit(&e1, &v1->x, &v2->x); \
EdgeEquationInit(&e2, &v2->x, &v0->x); \
area = 0.5f * (e0.c + e1.c + e2.c) \
// Check if triangle is backfacing.
if(CULL_MODE == GPU_CULLING_CCW) {
if(area < 0) {
return;
}
} else if(CULL_MODE == GPU_CULLING_CW) {
if(area < 0) {
// We only draw front-facing polygons, so swap
// the back to front and draw
REVERSE_WINDING();
} else {
// Front facing, so bail
return;
}
} else if(area < 0) {
/* We're not culling, but this is backfacing, so swap vertices and edges */
REVERSE_WINDING();
}
ParameterEquation r, g, b;
ParameterEquationInit(&r, v0->bgra[2], v1->bgra[2], v2->bgra[2], &e0, &e1, &e2, area);
ParameterEquationInit(&g, v0->bgra[1], v1->bgra[1], v2->bgra[1], &e0, &e1, &e2, area);
ParameterEquationInit(&b, v0->bgra[0], v1->bgra[0], v2->bgra[0], &e0, &e1, &e2, area);
// Add 0.5 to sample at pixel centers.
for (float x = minX + 0.5f, xm = maxX + 0.5f; x <= xm; x += 1.0f)
for (float y = minY + 0.5f, ym = maxY + 0.5f; y <= ym; y += 1.0f)
{
if (EdgeEquationTestPoint(&e0, x, y) && EdgeEquationTestPoint(&e1, x, y) && EdgeEquationTestPoint(&e2, x, y)) {
int rint = ParameterEquationEvaluate(&r, x, y);
int gint = ParameterEquationEvaluate(&g, x, y);
int bint = ParameterEquationEvaluate(&b, x, y);
SDL_SetRenderDrawColor(RENDERER, rint, gint, bint, 255);
SDL_RenderDrawPoint(RENDERER, x, y);
}
}
}
void InitGPU(_Bool autosort, _Bool fsaa) {
SDL_Init(SDL_INIT_VIDEO | SDL_INIT_EVENTS);
WINDOW = SDL_CreateWindow(
"GLdc",
SDL_WINDOWPOS_UNDEFINED,
SDL_WINDOWPOS_UNDEFINED,
vid_mode.width, vid_mode.height,
SDL_WINDOW_SHOWN
);
RENDERER = SDL_CreateRenderer(
WINDOW, -1, SDL_RENDERER_ACCELERATED
);
}
void SceneBegin() {
SDL_SetRenderDrawColor(RENDERER, BACKGROUND_COLOR[0], BACKGROUND_COLOR[1], BACKGROUND_COLOR[2], 0);
SDL_RenderClear(RENDERER);
}
void SceneListBegin(GPUList list) {
}
void SceneListSubmit(void* src, int n) {
uint32_t vertex_counter = 0;
const uint32_t* flags = (const uint32_t*) src;
uint32_t step = sizeof(GPUVertex) / sizeof(uint32_t);
for(int i = 0; i < n; ++i, flags += step) {
if((*flags & GPU_CMD_POLYHDR) == GPU_CMD_POLYHDR) {
vertex_counter = 0;
uint32_t mode1 = *(flags + 1);
// Extract culling mode
uint32_t mask = mode1 & GPU_TA_PM1_CULLING_MASK;
CULL_MODE = mask >> GPU_TA_PM1_CULLING_SHIFT;
} else {
switch(*flags) {
case GPU_CMD_VERTEX_EOL:
case GPU_CMD_VERTEX: // Fallthrough
vertex_counter++;
break;
default:
break;
}
}
if(vertex_counter > 2) {
GPUVertex* v0 = (GPUVertex*) (flags - step - step);
GPUVertex* v1 = (GPUVertex*) (flags - step);
GPUVertex* v2 = (GPUVertex*) (flags);
(vertex_counter % 2 == 0) ? DrawTriangle(v0, v1, v2) : DrawTriangle(v1, v0, v2);
}
if((*flags) == GPU_CMD_VERTEX_EOL) {
vertex_counter = 0;
}
}
}
void SceneListFinish() {
}
void SceneFinish() {
SDL_RenderPresent(RENDERER);
/* Only sensible place to hook the quit signal */
SDL_Event e;
while (SDL_PollEvent(&e)) {
switch (e.type) {
case SDL_QUIT:
exit(0);
break;
default:
break;
}
}
}
void UploadMatrix4x4(const Matrix4x4* mat) {
memcpy(&MATRIX, mat, sizeof(Matrix4x4));
}
void MultiplyMatrix4x4(const Matrix4x4* mat) {
Matrix4x4 product;
product[0] = MATRIX[0] * (*mat)[0] + MATRIX[4] * (*mat)[1] + MATRIX[8] * (*mat)[2] + MATRIX[12] * (*mat)[3];
product[1] = MATRIX[1] * (*mat)[0] + MATRIX[5] * (*mat)[1] + MATRIX[9] * (*mat)[2] + MATRIX[13] * (*mat)[3];
product[2] = MATRIX[2] * (*mat)[0] + MATRIX[6] * (*mat)[1] + MATRIX[10] * (*mat)[2] + MATRIX[14] * (*mat)[3];
product[3] = MATRIX[3] * (*mat)[0] + MATRIX[7] * (*mat)[1] + MATRIX[11] * (*mat)[2] + MATRIX[15] * (*mat)[3];
product[4] = MATRIX[0] * (*mat)[4] + MATRIX[4] * (*mat)[5] + MATRIX[8] * (*mat)[6] + MATRIX[12] * (*mat)[7];
product[5] = MATRIX[1] * (*mat)[4] + MATRIX[5] * (*mat)[5] + MATRIX[9] * (*mat)[6] + MATRIX[13] * (*mat)[7];
product[6] = MATRIX[2] * (*mat)[4] + MATRIX[6] * (*mat)[5] + MATRIX[10] * (*mat)[6] + MATRIX[14] * (*mat)[7];
product[7] = MATRIX[3] * (*mat)[4] + MATRIX[7] * (*mat)[5] + MATRIX[11] * (*mat)[6] + MATRIX[15] * (*mat)[7];
product[8] = MATRIX[0] * (*mat)[8] + MATRIX[4] * (*mat)[9] + MATRIX[8] * (*mat)[10] + MATRIX[12] * (*mat)[11];
product[9] = MATRIX[1] * (*mat)[8] + MATRIX[5] * (*mat)[9] + MATRIX[9] * (*mat)[10] + MATRIX[13] * (*mat)[11];
product[10] = MATRIX[2] * (*mat)[8] + MATRIX[6] * (*mat)[9] + MATRIX[10] * (*mat)[10] + MATRIX[14] * (*mat)[11];
product[11] = MATRIX[3] * (*mat)[8] + MATRIX[7] * (*mat)[9] + MATRIX[11] * (*mat)[10] + MATRIX[15] * (*mat)[11];
product[12] = MATRIX[0] * (*mat)[12] + MATRIX[4] * (*mat)[13] + MATRIX[8] * (*mat)[14] + MATRIX[12] * (*mat)[15];
product[13] = MATRIX[1] * (*mat)[12] + MATRIX[5] * (*mat)[13] + MATRIX[9] * (*mat)[14] + MATRIX[13] * (*mat)[15];
product[14] = MATRIX[2] * (*mat)[12] + MATRIX[6] * (*mat)[13] + MATRIX[10] * (*mat)[14] + MATRIX[14] * (*mat)[15];
product[15] = MATRIX[3] * (*mat)[12] + MATRIX[7] * (*mat)[13] + MATRIX[11] * (*mat)[14] + MATRIX[15] * (*mat)[15];
UploadMatrix4x4(&product);
}
void DownloadMatrix4x4(Matrix4x4* mat) {
memcpy(mat, &MATRIX, sizeof(Matrix4x4));
}
const VideoMode* GetVideoMode() {
return &vid_mode;
}
size_t GPUMemoryAvailable() {
return AVAILABLE_VRAM;
}
void* GPUMemoryAlloc(size_t size) {
if(size > AVAILABLE_VRAM) {
return NULL;
} else {
AVAILABLE_VRAM -= size;
return malloc(size);
}
}
void GPUSetPaletteFormat(GPUPaletteFormat format) {
}
void GPUSetPaletteEntry(uint32_t idx, uint32_t value) {
}
void GPUSetBackgroundColour(float r, float g, float b) {
BACKGROUND_COLOR[0] = r * 255.0f;
BACKGROUND_COLOR[1] = g * 255.0f;
BACKGROUND_COLOR[2] = b * 255.0f;
}
void GPUSetAlphaCutOff(uint8_t v) {
}
void GPUSetClearDepth(float v) {
}
void GPUSetFogLinear(float start, float end) {
}
void GPUSetFogExp(float density) {
}
void GPUSetFogExp2(float density) {
}
void GPUSetFogColor(float r, float g, float b, float a) {
}
void TransformVec3NoMod(const float* v, float* ret) {
ret[0] = v[0] * MATRIX[0] + v[1] * MATRIX[4] + v[2] * MATRIX[8] + 1.0f * MATRIX[12];
ret[1] = v[0] * MATRIX[1] + v[1] * MATRIX[5] + v[2] * MATRIX[9] + 1.0f * MATRIX[13];
ret[2] = v[0] * MATRIX[2] + v[1] * MATRIX[6] + v[2] * MATRIX[10] + 1.0f * MATRIX[14];
}
void TransformVec4NoMod(const float* v, float* ret) {
ret[0] = v[0] * MATRIX[0] + v[1] * MATRIX[4] + v[2] * MATRIX[8] + v[3] * MATRIX[12];
ret[1] = v[0] * MATRIX[1] + v[1] * MATRIX[5] + v[2] * MATRIX[9] + v[3] * MATRIX[13];
ret[2] = v[0] * MATRIX[2] + v[1] * MATRIX[6] + v[2] * MATRIX[10] + v[3] * MATRIX[14];
ret[3] = v[0] * MATRIX[3] + v[1] * MATRIX[7] + v[2] * MATRIX[11] + v[3] * MATRIX[15];
}
void TransformVec3(float* v) {
float ret[3];
TransformVec3NoMod(v, ret);
FASTCPY(v, ret, sizeof(float) * 3);
}
void TransformVec4(float* v) {
float ret[4];
TransformVec4NoMod(v, ret);
FASTCPY(v, ret, sizeof(float) * 4);
}
void TransformVertices(Vertex* vertices, const int count) {
float ret[4];
for(int i = 0; i < count; ++i, ++vertices) {
ret[0] = vertices->xyz[0];
ret[1] = vertices->xyz[1];
ret[2] = vertices->xyz[2];
ret[3] = 1.0f;
TransformVec4(ret);
vertices->xyz[0] = ret[0];
vertices->xyz[1] = ret[1];
vertices->xyz[2] = ret[2];
vertices->w = ret[3];
}
}
void TransformVertex(const float* xyz, const float* w, float* oxyz, float* ow) {
float ret[4];
ret[0] = xyz[0];
ret[1] = xyz[1];
ret[2] = xyz[2];
ret[3] = *w;
TransformVec4(ret);
oxyz[0] = ret[0];
oxyz[1] = ret[1];
oxyz[2] = ret[2];
*ow = ret[3];
}