GLdc/GL/texture.c
2018-08-14 15:55:03 +01:00

784 lines
22 KiB
C

#include "private.h"
#include <stddef.h>
#include <stdio.h>
#include "../include/glext.h"
#include "../include/glkos.h"
#define CLAMP_U (1<<1)
#define CLAMP_V (1<<0)
#define MAX(x, y) ((x > y) ? x : y)
static TextureObject* TEXTURE_UNITS[MAX_TEXTURE_UNITS] = {NULL, NULL};
static NamedArray TEXTURE_OBJECTS;
static GLubyte ACTIVE_TEXTURE = 0;
static GLuint _determinePVRFormat(GLint internalFormat, GLenum type);
GLubyte _glGetActiveTexture() {
return ACTIVE_TEXTURE;
}
static GLint _determineStride(GLenum format, GLenum type) {
switch(type) {
case GL_BYTE:
case GL_UNSIGNED_BYTE:
return (format == GL_RED) ? 1 : (format == GL_RGB) ? 3 : 4;
case GL_UNSIGNED_SHORT:
return (format == GL_RED) ? 2 : (format == GL_RGB) ? 6 : 8;
case GL_UNSIGNED_SHORT_5_6_5:
case GL_UNSIGNED_SHORT_5_6_5_REV:
case GL_UNSIGNED_SHORT_5_6_5_TWID_KOS:
case GL_UNSIGNED_SHORT_5_5_5_1:
case GL_UNSIGNED_SHORT_1_5_5_5_REV_TWID_KOS:
case GL_UNSIGNED_SHORT_1_5_5_5_REV:
case GL_UNSIGNED_SHORT_4_4_4_4:
case GL_UNSIGNED_SHORT_4_4_4_4_REV_TWID_KOS:
case GL_UNSIGNED_SHORT_4_4_4_4_REV:
return 2;
}
return -1;
}
GLubyte* _glGetMipmapLocation(TextureObject* obj, GLuint level) {
GLuint offset = 0;
GLuint i = 0;
GLuint width = obj->width;
GLuint height = obj->height;
for(; i < level; ++i) {
offset += (width * height * obj->dataStride);
if(width > 1) {
width /= 2;
}
if(height > 1) {
height /= 2;
}
}
return ((GLubyte*) obj->data) + offset;
}
GLuint _glGetMipmapLevelCount(TextureObject* obj) {
return 1 + floor(log2(MAX(obj->width, obj->height)));
}
static GLuint _glGetMipmapDataSize(TextureObject* obj) {
GLuint size = 0;
GLuint i = 0;
GLuint width = obj->width;
GLuint height = obj->height;
for(; i < _glGetMipmapLevelCount(obj); ++i) {
size += (width * height * obj->dataStride);
if(width > 1) {
width /= 2;
}
if(height > 1) {
height /= 2;
}
}
return size;
}
GLubyte _glKosInitTextures() {
named_array_init(&TEXTURE_OBJECTS, sizeof(TextureObject), 256);
return 1;
}
TextureObject* getTexture0() {
return TEXTURE_UNITS[0];
}
TextureObject* getTexture1() {
return TEXTURE_UNITS[1];
}
TextureObject* getBoundTexture() {
return TEXTURE_UNITS[ACTIVE_TEXTURE];
}
GLubyte check_valid_enum(GLint param, GLenum* values, const char* func) {
GLubyte found = 0;
while(*values != 0) {
if(*values == param) {
found++;
break;
}
values++;
}
if(!found) {
_glKosThrowError(GL_INVALID_ENUM, func);
_glKosPrintError();
return 1;
}
return 0;
}
void APIENTRY glActiveTextureARB(GLenum texture) {
TRACE();
if(texture < GL_TEXTURE0_ARB || texture > GL_TEXTURE0_ARB + MAX_TEXTURE_UNITS)
_glKosThrowError(GL_INVALID_ENUM, "glActiveTextureARB");
if(_glKosHasError()) {
_glKosPrintError();
return;
}
ACTIVE_TEXTURE = texture & 0xF;
}
GLboolean APIENTRY glIsTexture(GLuint texture) {
return (named_array_used(&TEXTURE_OBJECTS, texture)) ? GL_TRUE : GL_FALSE;
}
void APIENTRY glGenTextures(GLsizei n, GLuint *textures) {
TRACE();
while(n--) {
GLuint id = 0;
TextureObject* txr = (TextureObject*) named_array_alloc(&TEXTURE_OBJECTS, &id);
txr->index = id;
txr->width = txr->height = 0;
txr->mipmap = 0;
txr->uv_clamp = 0;
txr->env = PVR_TXRENV_MODULATEALPHA;
txr->data = NULL;
txr->mipmapCount = 0;
txr->minFilter = GL_NEAREST;
txr->magFilter = GL_NEAREST;
*textures = id;
textures++;
}
}
void APIENTRY glDeleteTextures(GLsizei n, GLuint *textures) {
TRACE();
while(n--) {
TextureObject* txr = (TextureObject*) named_array_get(&TEXTURE_OBJECTS, *textures);
/* Make sure we update framebuffer objects that have this texture attached */
wipeTextureOnFramebuffers(*textures);
if(txr == TEXTURE_UNITS[ACTIVE_TEXTURE]) {
TEXTURE_UNITS[ACTIVE_TEXTURE] = NULL;
}
if(txr->data) {
pvr_mem_free(txr->data);
txr->data = NULL;
}
named_array_release(&TEXTURE_OBJECTS, *textures++);
}
}
void APIENTRY glBindTexture(GLenum target, GLuint texture) {
TRACE();
GLenum target_values [] = {GL_TEXTURE_2D, 0};
if(check_valid_enum(target, target_values, __func__) != 0) {
return;
}
if(texture) {
TEXTURE_UNITS[ACTIVE_TEXTURE] = (TextureObject*) named_array_get(&TEXTURE_OBJECTS, texture);
} else {
TEXTURE_UNITS[ACTIVE_TEXTURE] = NULL;
}
}
void APIENTRY glTexEnvi(GLenum target, GLenum pname, GLint param) {
TRACE();
GLenum target_values [] = {GL_TEXTURE_ENV, 0};
GLenum pname_values [] = {GL_TEXTURE_ENV_MODE, 0};
GLenum param_values [] = {GL_MODULATE, GL_DECAL, GL_REPLACE, 0};
GLubyte failures = 0;
failures += check_valid_enum(target, target_values, __func__);
failures += check_valid_enum(pname, pname_values, __func__);
failures += check_valid_enum(param, param_values, __func__);
TextureObject* active = TEXTURE_UNITS[ACTIVE_TEXTURE];
if(!active) {
return;
}
if(failures) {
return;
}
switch(param) {
case GL_MODULATE:
active->env = PVR_TXRENV_MODULATEALPHA;
break;
case GL_DECAL:
active->env = PVR_TXRENV_DECAL;
break;
case GL_REPLACE:
active->env = PVR_TXRENV_REPLACE;
break;
default:
break;
}
}
void APIENTRY glTexEnvf(GLenum target, GLenum pname, GLfloat param) {
glTexEnvi(target, pname, param);
}
void APIENTRY glCompressedTexImage2DARB(GLenum target,
GLint level,
GLenum internalFormat,
GLsizei width,
GLsizei height,
GLint border,
GLsizei imageSize,
const GLvoid *data) {
TRACE();
if(target != GL_TEXTURE_2D) {
_glKosThrowError(GL_INVALID_ENUM, __func__);
}
GLint w = width;
if(w < 8 || (w & -w) != w) {
/* Width is not a power of two. Must be!*/
_glKosThrowError(GL_INVALID_VALUE, "glTexImage2D");
}
GLint h = height;
if(h < 8 || (h & -h) != h) {
/* Height is not a power of two. Must be!*/
_glKosThrowError(GL_INVALID_VALUE, "glTexImage2D");
}
if(level || border) {
/* We don't support setting mipmap levels manually with compressed textures
maybe one day */
_glKosThrowError(GL_INVALID_VALUE, __func__);
}
GLboolean mipmapped = GL_FALSE;
switch(internalFormat) {
case GL_COMPRESSED_ARGB_1555_VQ_KOS:
case GL_COMPRESSED_ARGB_1555_VQ_TWID_KOS:
case GL_COMPRESSED_ARGB_4444_VQ_KOS:
case GL_COMPRESSED_ARGB_4444_VQ_TWID_KOS:
case GL_COMPRESSED_RGB_565_VQ_KOS:
case GL_COMPRESSED_RGB_565_VQ_TWID_KOS:
break;
case GL_COMPRESSED_ARGB_1555_VQ_MIPMAP_KOS:
case GL_COMPRESSED_ARGB_1555_VQ_MIPMAP_TWID_KOS:
case GL_COMPRESSED_ARGB_4444_VQ_MIPMAP_KOS:
case GL_COMPRESSED_ARGB_4444_VQ_MIPMAP_TWID_KOS:
case GL_COMPRESSED_RGB_565_VQ_MIPMAP_KOS:
case GL_COMPRESSED_RGB_565_VQ_MIPMAP_TWID_KOS:
mipmapped = GL_TRUE;
break;
default:
_glKosThrowError(GL_INVALID_OPERATION, __func__);
}
if(TEXTURE_UNITS[ACTIVE_TEXTURE] == NULL) {
_glKosThrowError(GL_INVALID_OPERATION, __func__);
}
/* Guess whether we have mipmaps or not */
/* `expected` is the uncompressed size */
GLuint expected = sizeof(GLshort) * width * height;
/* The ratio is the uncompressed vs compressed data size */
GLuint ratio = (GLuint) (((GLfloat) expected) / ((GLfloat) imageSize));
if(ratio < 7 && !mipmapped) {
/* If the ratio is less than 1:7 then we assume that the reason for that
is the extra data used for mipmaps. Testing shows that a single VQ compressed
image is around 1:7 or 1:8. We may need to tweak this if it detects false positives */
fprintf(stderr, "GL ERROR: Detected multiple mipmap levels being uploaded to %s\n", __func__);
_glKosThrowError(GL_INVALID_OPERATION, __func__);
}
if(_glKosHasError()) {
_glKosPrintError();
return;
}
TextureObject* active = TEXTURE_UNITS[ACTIVE_TEXTURE];
/* Set the required mipmap count */
active->mipmapCount = _glGetMipmapLevelCount(active);
active->mipmap = (mipmapped) ? ~0 : (1 << level); /* Set only a single bit if this wasn't mipmapped otherwise set all */
active->width = width;
active->height = height;
active->color = _determinePVRFormat(
internalFormat,
internalFormat /* Doesn't matter (see determinePVRFormat) */
);
/* Odds are slim new data is same size as old, so free always */
if(active->data)
pvr_mem_free(active->data);
active->data = pvr_mem_malloc(imageSize);
if(data)
sq_cpy(active->data, data, imageSize);
}
static GLint _cleanInternalFormat(GLint internalFormat) {
switch (internalFormat) {
case GL_ALPHA:
/* case GL_ALPHA4:
case GL_ALPHA8:
case GL_ALPHA12:
case GL_ALPHA16:*/
return GL_ALPHA;
case 1:
case GL_LUMINANCE:
/* case GL_LUMINANCE4:
case GL_LUMINANCE8:
case GL_LUMINANCE12:
case GL_LUMINANCE16:*/
return GL_LUMINANCE;
case 2:
case GL_LUMINANCE_ALPHA:
/* case GL_LUMINANCE4_ALPHA4:
case GL_LUMINANCE6_ALPHA2:
case GL_LUMINANCE8_ALPHA8:
case GL_LUMINANCE12_ALPHA4:
case GL_LUMINANCE12_ALPHA12:
case GL_LUMINANCE16_ALPHA16: */
return GL_LUMINANCE_ALPHA;
/* case GL_INTENSITY:
case GL_INTENSITY4:
case GL_INTENSITY8:
case GL_INTENSITY12:
case GL_INTENSITY16:
return GL_INTENSITY; */
case 3:
return GL_RGB;
case GL_RGB:
/* case GL_R3_G3_B2:
case GL_RGB4:
case GL_RGB5:
case GL_RGB8:
case GL_RGB10:
case GL_RGB12:
case GL_RGB16: */
return GL_RGB;
case 4:
return GL_RGBA;
case GL_RGBA:
/* case GL_RGBA2:
case GL_RGBA4:
case GL_RGB5_A1:
case GL_RGBA8:
case GL_RGB10_A2:
case GL_RGBA12:
case GL_RGBA16: */
return GL_RGBA;
/* Support ARB_texture_rg */
case GL_RED:
/* case GL_R8:
case GL_R16:
case GL_RED:
case GL_COMPRESSED_RED: */
return GL_RED;
/* case GL_RG:
case GL_RG8:
case GL_RG16:
case GL_COMPRESSED_RG:
return GL_RG;*/
default:
return -1;
}
}
static GLuint _determinePVRFormat(GLint internalFormat, GLenum type) {
/* Given a cleaned internalFormat, return the Dreamcast format
* that can hold it
*/
switch(internalFormat) {
case GL_ALPHA:
case GL_LUMINANCE:
case GL_LUMINANCE_ALPHA:
case GL_RGBA:
/* OK so if we have something that requires alpha, we return 4444 unless
* the type was already 1555 (1-bit alpha) in which case we return that
*/
return (type == GL_UNSIGNED_SHORT_1_5_5_5_REV) ?
PVR_TXRFMT_ARGB1555 | PVR_TXRFMT_NONTWIDDLED :
PVR_TXRFMT_ARGB4444 | PVR_TXRFMT_NONTWIDDLED;
case GL_RED:
case GL_RGB:
/* No alpha? Return RGB565 which is the best we can do without using palettes */
return PVR_TXRFMT_RGB565 | PVR_TXRFMT_NONTWIDDLED;
/* Compressed and twiddled versions */
case GL_UNSIGNED_SHORT_5_6_5_TWID_KOS:
return PVR_TXRFMT_RGB565 | PVR_TXRFMT_TWIDDLED;
case GL_UNSIGNED_SHORT_4_4_4_4_REV_TWID_KOS:
return PVR_TXRFMT_ARGB4444 | PVR_TXRFMT_TWIDDLED;
case GL_UNSIGNED_SHORT_1_5_5_5_REV_TWID_KOS:
return PVR_TXRFMT_ARGB1555 | PVR_TXRFMT_TWIDDLED;
case GL_COMPRESSED_RGB_565_VQ_KOS:
case GL_COMPRESSED_RGB_565_VQ_MIPMAP_KOS:
return PVR_TXRFMT_RGB565 | PVR_TXRFMT_NONTWIDDLED | PVR_TXRFMT_VQ_ENABLE;
case GL_COMPRESSED_RGB_565_VQ_TWID_KOS:
case GL_COMPRESSED_RGB_565_VQ_MIPMAP_TWID_KOS:
return PVR_TXRFMT_RGB565 | PVR_TXRFMT_TWIDDLED | PVR_TXRFMT_VQ_ENABLE;
case GL_COMPRESSED_ARGB_4444_VQ_TWID_KOS:
case GL_COMPRESSED_ARGB_4444_VQ_MIPMAP_TWID_KOS:
return PVR_TXRFMT_ARGB4444 | PVR_TXRFMT_TWIDDLED | PVR_TXRFMT_VQ_ENABLE;
case GL_COMPRESSED_ARGB_4444_VQ_KOS:
case GL_COMPRESSED_ARGB_4444_VQ_MIPMAP_KOS:
return PVR_TXRFMT_ARGB4444 | PVR_TXRFMT_NONTWIDDLED | PVR_TXRFMT_VQ_ENABLE;
case GL_COMPRESSED_ARGB_1555_VQ_KOS:
case GL_COMPRESSED_ARGB_1555_VQ_MIPMAP_KOS:
return PVR_TXRFMT_ARGB1555 | PVR_TXRFMT_NONTWIDDLED | PVR_TXRFMT_VQ_ENABLE;
case GL_COMPRESSED_ARGB_1555_VQ_TWID_KOS:
case GL_COMPRESSED_ARGB_1555_VQ_MIPMAP_TWID_KOS:
return PVR_TXRFMT_ARGB1555 | PVR_TXRFMT_TWIDDLED | PVR_TXRFMT_VQ_ENABLE;
default:
return 0;
}
}
typedef void (*TextureConversionFunc)(const GLubyte*, GLushort*);
static void _rgba8888_to_argb4444(const GLubyte* source, GLushort* dest) {
*dest = (source[3] & 0xF0) << 8 | (source[0] & 0xF0) << 4 | (source[1] & 0xF0) | (source[2] & 0xF0) >> 4;
}
static void _rgb888_to_rgb565(const GLubyte* source, GLushort* dest) {
*dest = ((source[0] & 0b11111000) << 8) | ((source[1] & 0b11111100) << 3) | (source[2] >> 3);
}
static void _rgba8888_to_a000(const GLubyte* source, GLushort* dest) {
*dest = ((source[3] & 0b11111000) << 8);
}
static void _r8_to_rgb565(const GLubyte* source, GLushort* dest) {
*dest = (source[0] & 0b11111000) << 8;
}
static void _rgba4444_to_argb4444(const GLubyte* source, GLushort* dest) {
GLushort* src = (GLushort*) source;
*dest = ((*src & 0x000F) << 12) | *src >> 4;
}
static TextureConversionFunc _determineConversion(GLint internalFormat, GLenum format, GLenum type) {
switch(internalFormat) {
case GL_ALPHA: {
if(type == GL_UNSIGNED_BYTE && format == GL_RGBA) {
return _rgba8888_to_a000;
} else if(type == GL_BYTE && format == GL_RGBA) {
return _rgba8888_to_a000;
}
} break;
case GL_RED: {
if(type == GL_UNSIGNED_BYTE && format == GL_RED) {
/* Dreamcast doesn't really support GL_RED internally, so store as rgb */
return _r8_to_rgb565;
}
} break;
case GL_RGB: {
if(type == GL_UNSIGNED_BYTE && format == GL_RGB) {
return _rgb888_to_rgb565;
} else if(type == GL_BYTE && format == GL_RGB) {
return _rgb888_to_rgb565;
} else if(type == GL_UNSIGNED_BYTE && format == GL_RED) {
return _r8_to_rgb565;
}
} break;
case GL_RGBA: {
if(type == GL_UNSIGNED_BYTE && format == GL_RGBA) {
return _rgba8888_to_argb4444;
} else if (type == GL_BYTE && format == GL_RGBA) {
return _rgba8888_to_argb4444;
} else if(type == GL_UNSIGNED_SHORT_4_4_4_4 && format == GL_RGBA) {
return _rgba4444_to_argb4444;
}
} break;
default:
fprintf(stderr, "Unsupported conversion: %x -> %x, %x\n", internalFormat, format, type);
break;
}
return 0;
}
static GLboolean _isSupportedFormat(GLenum format) {
switch(format) {
case GL_RED:
case GL_RGB:
case GL_RGBA:
case GL_BGRA:
return GL_TRUE;
default:
return GL_FALSE;
}
}
GLboolean _glIsMipmapComplete(const TextureObject* obj) {
if(!obj->mipmap || !obj->mipmapCount) {
return GL_FALSE;
}
GLsizei i = 0;
for(; i < obj->mipmapCount; ++i) {
if((obj->mipmap & (1 << i)) == 0) {
return GL_FALSE;
}
}
return GL_TRUE;
}
void APIENTRY glTexImage2D(GLenum target, GLint level, GLint internalFormat,
GLsizei width, GLsizei height, GLint border,
GLenum format, GLenum type, const GLvoid *data) {
TRACE();
if(target != GL_TEXTURE_2D) {
_glKosThrowError(GL_INVALID_ENUM, "glTexImage2D");
}
if(!_isSupportedFormat(format)) {
_glKosThrowError(GL_INVALID_ENUM, "glTexImage2D");
}
/* Abuse determineStride to see if type is valid */
if(_determineStride(GL_RGBA, type) == -1) {
_glKosThrowError(GL_INVALID_ENUM, "glTexImage2D");
}
internalFormat = _cleanInternalFormat(internalFormat);
if(internalFormat == -1) {
_glKosThrowError(GL_INVALID_VALUE, "glTexImage2D");
}
GLint w = width;
if(w < 8 || (w & -w) != w) {
/* Width is not a power of two. Must be!*/
_glKosThrowError(GL_INVALID_VALUE, "glTexImage2D");
}
GLint h = height;
if(h < 8 || (h & -h) != h) {
/* height is not a power of two. Must be!*/
_glKosThrowError(GL_INVALID_VALUE, "glTexImage2D");
}
if(level < 0) {
_glKosThrowError(GL_INVALID_VALUE, "glTexImage2D");
}
if(border) {
_glKosThrowError(GL_INVALID_VALUE, "glTexImage2D");
}
if(!TEXTURE_UNITS[ACTIVE_TEXTURE]) {
_glKosThrowError(GL_INVALID_OPERATION, "glTexImage2D");
}
if(_glKosHasError()) {
_glKosPrintError();
return;
}
/* Calculate the format that we need to convert the data to */
GLuint pvr_format = _determinePVRFormat(internalFormat, type);
TextureObject* active = TEXTURE_UNITS[ACTIVE_TEXTURE];
if(active->data) {
/* pre-existing texture - check if changed */
if(active->width != width ||
active->height != height ||
active->color != pvr_format) {
/* changed - free old texture memory */
pvr_mem_free(active->data);
active->data = NULL;
active->mipmap = 0;
active->mipmapCount = 0;
active->dataStride = 0;
}
}
GLuint bytes = (width * height * sizeof(GLushort));
if(!active->data) {
/* need texture memory */
active->width = width;
active->height = height;
active->color = pvr_format;
/* Set the required mipmap count */
active->mipmapCount = _glGetMipmapLevelCount(active);
active->dataStride = sizeof(GLshort);
GLuint size = _glGetMipmapDataSize(active);
active->data = pvr_mem_malloc(size);
}
/* Mark this level as set in the mipmap bitmask */
active->mipmap |= (1 << level);
/* Let's assume we need to convert */
GLboolean needsConversion = GL_TRUE;
/*
* These are the only formats where the source format passed in matches the pvr format.
* Note the REV formats + GL_BGRA will reverse to ARGB which is what the PVR supports
*/
if(format == GL_BGRA && type == GL_UNSIGNED_SHORT_4_4_4_4_REV && internalFormat == GL_RGBA) {
needsConversion = GL_FALSE;
} else if(format == GL_BGRA && type == GL_UNSIGNED_SHORT_1_5_5_5_REV && internalFormat == GL_RGBA) {
needsConversion = GL_FALSE;
} else if(format == GL_RGB && type == GL_UNSIGNED_SHORT_5_6_5 && internalFormat == GL_RGB) {
needsConversion = GL_FALSE;
} else if(format == GL_RGB && type == GL_UNSIGNED_SHORT_5_6_5_TWID_KOS && internalFormat == GL_RGB) {
needsConversion = GL_FALSE;
} else if(format == GL_BGRA && type == GL_UNSIGNED_SHORT_1_5_5_5_REV_TWID_KOS && internalFormat == GL_RGBA) {
needsConversion = GL_FALSE;
} else if(format == GL_BGRA && type == GL_UNSIGNED_SHORT_4_4_4_4_REV_TWID_KOS && internalFormat == GL_RGBA) {
needsConversion = GL_FALSE;
}
GLubyte* targetData = _glGetMipmapLocation(active, level);
if(!data) {
/* No data? Do nothing! */
return;
} else if(!needsConversion) {
/* No conversion? Just copy the data, and the pvr_format is correct */
sq_cpy(targetData, data, bytes);
return;
} else {
TextureConversionFunc convert = _determineConversion(
internalFormat,
format,
type
);
if(!convert) {
_glKosThrowError(GL_INVALID_OPERATION, __func__);
return;
}
GLushort* dest = (GLushort*) targetData;
const GLubyte* source = data;
GLint stride = _determineStride(format, type);
if(stride == -1) {
_glKosThrowError(GL_INVALID_OPERATION, __func__);
return;
}
/* Perform the conversion */
GLuint i;
for(i = 0; i < bytes; i += 2) {
convert(source, dest);
dest++;
source += stride;
}
}
}
void APIENTRY glTexParameteri(GLenum target, GLenum pname, GLint param) {
TRACE();
TextureObject* active = getBoundTexture();
if(!active) {
return;
}
if(target == GL_TEXTURE_2D) {
switch(pname) {
case GL_TEXTURE_MAG_FILTER:
switch(param) {
case GL_NEAREST:
case GL_LINEAR:
break;
default: {
_glKosThrowError(GL_INVALID_VALUE, __func__);
_glKosPrintError();
return;
}
}
active->magFilter = param;
break;
case GL_TEXTURE_MIN_FILTER:
switch(param) {
case GL_NEAREST:
case GL_LINEAR:
case GL_NEAREST_MIPMAP_LINEAR:
case GL_NEAREST_MIPMAP_NEAREST:
case GL_LINEAR_MIPMAP_LINEAR:
case GL_LINEAR_MIPMAP_NEAREST:
break;
default: {
_glKosThrowError(GL_INVALID_VALUE, __func__);
_glKosPrintError();
return;
}
}
active->minFilter = param;
break;
case GL_TEXTURE_WRAP_S:
switch(param) {
case GL_CLAMP:
active->uv_clamp |= CLAMP_U;
break;
case GL_REPEAT:
active->uv_clamp &= ~CLAMP_U;
break;
}
break;
case GL_TEXTURE_WRAP_T:
switch(param) {
case GL_CLAMP:
active->uv_clamp |= CLAMP_V;
break;
case GL_REPEAT:
active->uv_clamp &= ~CLAMP_V;
break;
}
break;
}
}
}