GLdc/tests/zclip/main.cpp
2023-04-23 07:44:09 +01:00

638 lines
20 KiB
C++

#include <cstdint>
#include <vector>
#include <cstdio>
#include <cmath>
#include <stdexcept>
#include <cassert>
#define SQ_BASE_ADDRESS 0
#define SPAN_SORT_CFG 0
#define PVR_SET(x, y) (void)(x); (void)(y)
struct Vertex {
uint32_t flags;
float xyz[3];
float uv[2];
float w;
uint8_t bgra[4];
};
struct {
float hwidth;
float x_plus_hwidth;
float hheight;
float y_plus_hheight;
} VIEWPORT = {320, 320, 240, 240};
struct VideoMode {
float height;
};
static VideoMode* GetVideoMode() {
static VideoMode mode = {320.0f};
return &mode;
}
enum GPUCommand {
GPU_CMD_POLYHDR = 0x80840000,
GPU_CMD_VERTEX = 0xe0000000,
GPU_CMD_VERTEX_EOL = 0xf0000000,
GPU_CMD_USERCLIP = 0x20000000,
GPU_CMD_MODIFIER = 0x80000000,
GPU_CMD_SPRITE = 0xA0000000
};
static std::vector<Vertex> sent;
static inline void interpolateColour(const uint32_t* a, const uint32_t* b, const float t, uint32_t* out) {
const static uint32_t MASK1 = 0x00FF00FF;
const static uint32_t MASK2 = 0xFF00FF00;
const uint32_t f2 = 256 * t;
const uint32_t f1 = 256 - f2;
*out = (((((*a & MASK1) * f1) + ((*b & MASK1) * f2)) >> 8) & MASK1) |
(((((*a & MASK2) * f1) + ((*b & MASK2) * f2)) >> 8) & MASK2);
}
static inline void _glClipEdge(const Vertex* v1, const Vertex* v2, Vertex* vout) {
/* Clipping time! */
const float d0 = v1->w + v1->xyz[2];
const float d1 = v2->w + v2->xyz[2];
const float sign = ((2.0f * (d1 < d0)) - 1.0f);
const float epsilon = -0.00001f * sign;
const float n = (d0 - d1);
const float r = (1.f / sqrtf(n * n)) * sign;
float t = fmaf(r, d0, epsilon);
vout->xyz[0] = fmaf(v2->xyz[0] - v1->xyz[0], t, v1->xyz[0]);
vout->xyz[1] = fmaf(v2->xyz[1] - v1->xyz[1], t, v1->xyz[1]);
vout->xyz[2] = fmaf(v2->xyz[2] - v1->xyz[2], t, v1->xyz[2]);
vout->w = fmaf(v2->w - v1->w, t, v1->w);
vout->uv[0] = fmaf(v2->uv[0] - v1->uv[0], t, v1->uv[0]);
vout->uv[1] = fmaf(v2->uv[1] - v1->uv[1], t, v1->uv[1]);
interpolateColour((uint32_t*) v1->bgra, (uint32_t*) v2->bgra, t, (uint32_t*) vout->bgra);
}
bool glIsVertex(const uint32_t flags) {
return flags == GPU_CMD_VERTEX_EOL || flags == GPU_CMD_VERTEX;
}
bool glIsLastVertex(const uint32_t flags) {
return flags == GPU_CMD_VERTEX_EOL;
}
void _glSubmitHeaderOrVertex(volatile uint32_t*, Vertex* vtx) {
sent.push_back(*vtx);
}
float _glFastInvert(float x) {
return (1.f / __builtin_sqrtf(x * x));
}
void _glPerspectiveDivideVertex(Vertex* vertex, const float h) {
const float f = _glFastInvert(vertex->w);
/* Convert to NDC and apply viewport */
vertex->xyz[0] = __builtin_fmaf(
VIEWPORT.hwidth, vertex->xyz[0] * f, VIEWPORT.x_plus_hwidth
);
vertex->xyz[1] = h - __builtin_fmaf(
VIEWPORT.hheight, vertex->xyz[1] * f, VIEWPORT.y_plus_hheight
);
/* Orthographic projections need to use invZ otherwise we lose
the depth information. As w == 1, and clip-space range is -w to +w
we add 1.0 to the Z to bring it into range. We add a little extra to
avoid a divide by zero.
*/
vertex->xyz[2] = (vertex->w == 1.0f) ? _glFastInvert(1.0001f + vertex->xyz[2]) : f;
}
void memcpy_vertex(Vertex* dst, Vertex* src) {
*dst = *src;
}
/* Zclipping is so difficult to get right, that self sample tests all the cases of clipping and makes sure that things work as expected */
#ifdef __DREAMCAST__
static volatile int *pvrdmacfg = (int*)0xA05F6888;
static volatile int *qacr = (int*)0xFF000038;
#else
static int pvrdmacfg[2];
static int qacr[2];
#endif
void SceneListSubmit(void* src, int n) {
/* You need at least a header, and 3 vertices to render anything */
if(n < 4) {
return;
}
const float h = GetVideoMode()->height;
PVR_SET(SPAN_SORT_CFG, 0x0);
//Set PVR DMA registers
pvrdmacfg[0] = 1;
pvrdmacfg[1] = 1;
//Set QACR registers
qacr[1] = qacr[0] = 0x11;
volatile uint32_t *d = SQ_BASE_ADDRESS;
int8_t queue_head = 0;
int8_t queue_tail = 0;
/* The most vertices ever in the queue is 5 (as some clipping operations
* produce and additional couple of vertice, but we add one more so the ring buffer doesn't
* trip over itself (e.g. if tail == head we can guarantee it's empty, not full) */
Vertex __attribute__((aligned(32))) queue[4];
const int queue_capacity = sizeof(queue) / sizeof(Vertex);
Vertex* vertex = (Vertex*) src;
uint32_t visible_mask = 0;
#if CLIP_DEBUG
for(int i = 0; i < n; ++i) {
fprintf(stderr, "{%f, %f, %f, %f}, // %x (%x)\n", vertex[i].xyz[0], vertex[i].xyz[1], vertex[i].xyz[2], vertex[i].w, vertex[i].flags, &vertex[i]);
}
fprintf(stderr, "----\n");
#endif
while(n--) {
bool last_vertex = false;
memcpy_vertex(queue + queue_tail, vertex);
++vertex;
switch(queue[queue_tail].flags) {
case GPU_CMD_POLYHDR:
_glSubmitHeaderOrVertex(d, &queue[queue_tail]);
break;
case GPU_CMD_VERTEX_EOL:
last_vertex = true;
case GPU_CMD_VERTEX:
visible_mask = (visible_mask >> 1) | (queue[queue_tail].xyz[2] >= -queue[queue_tail].w) << 2;
assert(visible_mask < 15);
queue_tail = (queue_tail + 1) % queue_capacity;
default:
break;
}
int counter = (queue_tail - queue_head + queue_capacity) % queue_capacity;
if(counter < 3) {
continue;
}
#if CLIP_DEBUG
fprintf(stderr, "%d\n", visible_mask);
#endif
Vertex __attribute__((aligned(32))) a, b; // Scratch vertices
switch(visible_mask) {
case 0:
break;
case 7:
/* All visible, push the first vertex and move on */
_glPerspectiveDivideVertex(&queue[queue_head], h);
_glSubmitHeaderOrVertex(d, &queue[queue_head]);
if(last_vertex) {
/* If this was the last vertex in the strip, we need to flush the queue and then
restart it again */
int v1 = (queue_head + 1) % queue_capacity;
int v2 = (queue_head + 2) % queue_capacity;
_glPerspectiveDivideVertex(&queue[v1], h);
_glSubmitHeaderOrVertex(d, &queue[v1]);
_glPerspectiveDivideVertex(&queue[v2], h);
_glSubmitHeaderOrVertex(d, &queue[v2]);
}
break;
case 1:
/* First vertex was visible */
{
Vertex* v0 = &queue[queue_head];
Vertex* v1 = &queue[(queue_head + 1) % queue_capacity];
Vertex* v2 = &queue[(queue_head + 2) % queue_capacity];
_glClipEdge(v0, v1, &a);
_glClipEdge(v2, v0, &b);
a.flags = GPU_CMD_VERTEX;
/* If v2 was the last in the strip, then b should be. If it wasn't
we'll create a degenerate triangle by adding b twice in a row so that the
strip processing will continue correctly after crossing the plane so it can
cross back*/
b.flags = v2->flags;
_glPerspectiveDivideVertex(v0, h);
_glPerspectiveDivideVertex(&a, h);
_glPerspectiveDivideVertex(&b, h);
_glSubmitHeaderOrVertex(d, v0);
_glSubmitHeaderOrVertex(d, &a);
_glSubmitHeaderOrVertex(d, &b);
_glSubmitHeaderOrVertex(d, &b);
}
break;
case 2:
/* Second vertex was visible. In self case we need to create a triangle and produce
two new vertices: 1-2, and 2-3. */
{
Vertex* v0 = &queue[queue_head];
const Vertex* v1 = &queue[(queue_head + 1) % queue_capacity];
const Vertex* v2 = &queue[(queue_head + 2) % queue_capacity];
_glClipEdge(v0, v1, &a);
_glClipEdge(v1, v2, &b);
a.flags = GPU_CMD_VERTEX;
b.flags = v2->flags;
_glPerspectiveDivideVertex(v0, h);
_glPerspectiveDivideVertex(&a, h);
_glPerspectiveDivideVertex(&b, h);
_glSubmitHeaderOrVertex(d, &a);
_glSubmitHeaderOrVertex(d, v0);
_glSubmitHeaderOrVertex(d, &b);
}
break;
case 3: /* First and second vertex were visible */
{
Vertex* v0 = &queue[queue_head];
Vertex __attribute__((aligned(32))) v1 = queue[(queue_head + 1) % queue_capacity];
Vertex* v2 = &queue[(queue_head + 2) % queue_capacity];
_glClipEdge(&v1, v2, &a);
_glClipEdge(v2, v0, &b);
a.flags = v2->flags;
b.flags = GPU_CMD_VERTEX;
_glPerspectiveDivideVertex(v0, h);
_glPerspectiveDivideVertex(&v1, h);
_glPerspectiveDivideVertex(&a, h);
_glPerspectiveDivideVertex(&b, h);
_glSubmitHeaderOrVertex(d, v0);
_glSubmitHeaderOrVertex(d, &v1);
_glSubmitHeaderOrVertex(d, &b);
_glSubmitHeaderOrVertex(d, &v1);
_glSubmitHeaderOrVertex(d, &a);
}
break;
case 4:
/* Third vertex was visible. */
{
Vertex* v0 = &queue[queue_head];
Vertex* v1 = &queue[(queue_head + 1) % queue_capacity];
Vertex __attribute__((aligned(32))) v2 = queue[(queue_head + 2) % queue_capacity];
_glClipEdge(&v2, v0, &a);
_glClipEdge(v1, &v2, &b);
a.flags = GPU_CMD_VERTEX;
b.flags = GPU_CMD_VERTEX;
_glPerspectiveDivideVertex(&v2, h);
_glPerspectiveDivideVertex(&a, h);
_glPerspectiveDivideVertex(&b, h);
_glSubmitHeaderOrVertex(d, &a);
_glSubmitHeaderOrVertex(d, &a);
_glSubmitHeaderOrVertex(d, &b);
_glSubmitHeaderOrVertex(d, &v2);
}
break;
case 5: /* First and third vertex were visible */
{
Vertex* v0 = &queue[queue_head];
Vertex* v1 = &queue[(queue_head + 1) % queue_capacity];
Vertex __attribute__((aligned(32))) v2 = queue[(queue_head + 2) % queue_capacity];
_glClipEdge(v0, v1, &a);
_glClipEdge(v1, &v2, &b);
a.flags = GPU_CMD_VERTEX;
b.flags = GPU_CMD_VERTEX;
_glPerspectiveDivideVertex(v0, h);
_glPerspectiveDivideVertex(&v2, h);
_glPerspectiveDivideVertex(&a, h);
_glPerspectiveDivideVertex(&b, h);
_glSubmitHeaderOrVertex(d, v0);
_glSubmitHeaderOrVertex(d, &a);
uint32_t v2_flags = v2.flags;
v2.flags = GPU_CMD_VERTEX;
_glSubmitHeaderOrVertex(d, &v2);
v2.flags = v2_flags;
_glSubmitHeaderOrVertex(d, &b);
_glSubmitHeaderOrVertex(d, &v2);
}
break;
case 6: /* Second and third vertex were visible */
{
Vertex* v0 = &queue[queue_head];
Vertex __attribute__((aligned(32))) v1 = queue[(queue_head + 1) % queue_capacity];
Vertex __attribute__((aligned(32))) v2 = queue[(queue_head + 2) % queue_capacity];
_glClipEdge(v0, &v1, &a);
_glClipEdge(&v2, v0, &b);
a.flags = GPU_CMD_VERTEX;
b.flags = GPU_CMD_VERTEX;
_glPerspectiveDivideVertex(&v1, h);
_glPerspectiveDivideVertex(&v2, h);
_glPerspectiveDivideVertex(&a, h);
_glPerspectiveDivideVertex(&b, h);
_glSubmitHeaderOrVertex(d, &a);
_glSubmitHeaderOrVertex(d, &v1);
_glSubmitHeaderOrVertex(d, &b);
_glSubmitHeaderOrVertex(d, &v1);
_glSubmitHeaderOrVertex(d, &v2);
}
break;
default:
break;
}
if(last_vertex) {
visible_mask = queue_head = queue_tail = 0;
} else {
queue_head = (queue_head + 1) % queue_capacity;
}
}
}
struct VertexTmpl {
VertexTmpl(float x, float y, float z, float w):
x(x), y(y), z(z), w(w) {}
float x, y, z, w;
};
std::vector<Vertex> make_vertices(const std::vector<VertexTmpl>& verts) {
std::vector<Vertex> result;
Vertex r;
r.flags = GPU_CMD_POLYHDR;
result.push_back(r);
for(auto& v: verts) {
r.flags = GPU_CMD_VERTEX;
r.xyz[0] = v.x;
r.xyz[1] = v.y;
r.xyz[2] = v.z;
r.uv[0] = 0.0f;
r.uv[1] = 0.0f;
r.w = v.w;
result.push_back(r);
}
result.back().flags = GPU_CMD_VERTEX_EOL;
return result;
}
template<typename T, typename U>
void check_equal(const T& lhs, const U& rhs) {
if(lhs != rhs) {
throw std::runtime_error("Assertion failed");
}
}
template<>
void check_equal(const Vertex& lhs, const Vertex& rhs) {
if(lhs.xyz[0] != rhs.xyz[0] ||
lhs.xyz[1] != rhs.xyz[1] ||
lhs.xyz[2] != rhs.xyz[2] ||
lhs.w != rhs.w) {
throw std::runtime_error("Assertion failed");
}
}
bool test_clip_case_001() {
/* The first vertex is visible only */
sent.clear();
auto data = make_vertices({
{0.000000, -2.414213, 3.080808, 5.000000},
{-4.526650, -2.414213, -7.121212, -5.000000},
{4.526650, -2.414213, -7.121212, -5.000000}
});
SceneListSubmit(&data[0], data.size());
check_equal(sent.size(), 5);
check_equal(sent[0].flags, GPU_CMD_POLYHDR);
check_equal(sent[1].flags, GPU_CMD_VERTEX);
check_equal(sent[2].flags, GPU_CMD_VERTEX);
// Because we're sending a single triangle, we end up sending a
// degenerate final vert. But if we were sending more than one triangle
// this would be GPU_CMD_VERTEX twice
check_equal(sent[3].flags, GPU_CMD_VERTEX_EOL);
check_equal(sent[4].flags, GPU_CMD_VERTEX_EOL);
check_equal(sent[3], sent[4]);
return true;
}
bool test_clip_case_010() {
/* The third vertex is visible only */
sent.clear();
auto data = make_vertices({
{-4.526650, -2.414213, -7.121212, -5.000000},
{0.000000, -2.414213, 3.080808, 5.000000},
{4.526650, -2.414213, -7.121212, -5.000000}
});
SceneListSubmit(&data[0], data.size());
check_equal(sent.size(), 4);
check_equal(sent[0].flags, GPU_CMD_POLYHDR);
check_equal(sent[1].flags, GPU_CMD_VERTEX);
check_equal(sent[2].flags, GPU_CMD_VERTEX);
check_equal(sent[3].flags, GPU_CMD_VERTEX_EOL);
return true;
}
bool test_clip_case_100() {
/* The third vertex is visible only */
sent.clear();
auto data = make_vertices({
{-4.526650, -2.414213, -7.121212, -5.000000},
{4.526650, -2.414213, -7.121212, -5.000000},
{0.000000, -2.414213, 3.080808, 5.000000}
});
SceneListSubmit(&data[0], data.size());
check_equal(sent.size(), 5);
check_equal(sent[0].flags, GPU_CMD_POLYHDR);
check_equal(sent[1].flags, GPU_CMD_VERTEX);
check_equal(sent[2].flags, GPU_CMD_VERTEX);
// Because we're sending a single triangle, we end up sending a
// degenerate final vert. But if we were sending more than one triangle
// this would be GPU_CMD_VERTEX twice
check_equal(sent[3].flags, GPU_CMD_VERTEX);
check_equal(sent[4].flags, GPU_CMD_VERTEX_EOL);
check_equal(sent[1], sent[2]);
return true;
}
bool test_clip_case_110() {
/* 2nd and 3rd visible */
sent.clear();
auto data = make_vertices({
{0.0, -2.414213, -7.121212, -5.000000},
{-4.526650, -2.414213, 3.080808, 5.000000},
{4.526650, -2.414213, 3.080808, 5.000000}
});
SceneListSubmit(&data[0], data.size());
check_equal(sent.size(), 6);
check_equal(sent[0].flags, GPU_CMD_POLYHDR);
check_equal(sent[1].flags, GPU_CMD_VERTEX);
check_equal(sent[2].flags, GPU_CMD_VERTEX);
check_equal(sent[3].flags, GPU_CMD_VERTEX);
check_equal(sent[4].flags, GPU_CMD_VERTEX);
check_equal(sent[5].flags, GPU_CMD_VERTEX_EOL);
check_equal(sent[2], sent[4]);
return true;
}
bool test_clip_case_011() {
/* 1st and 2nd visible */
sent.clear();
auto data = make_vertices({
{-4.526650, -2.414213, 3.080808, 5.000000},
{4.526650, -2.414213, 3.080808, 5.000000},
{0.0, -2.414213, -7.121212, -5.000000}
});
SceneListSubmit(&data[0], data.size());
check_equal(sent.size(), 6);
check_equal(sent[0].flags, GPU_CMD_POLYHDR);
check_equal(sent[1].flags, GPU_CMD_VERTEX);
check_equal(sent[2].flags, GPU_CMD_VERTEX);
check_equal(sent[3].flags, GPU_CMD_VERTEX);
check_equal(sent[4].flags, GPU_CMD_VERTEX);
check_equal(sent[5].flags, GPU_CMD_VERTEX_EOL);
check_equal(sent[2], sent[4]);
return true;
}
bool test_clip_case_101() {
/* 1st and 3rd visible */
sent.clear();
auto data = make_vertices({
{-4.526650, -2.414213, 3.080808, 5.000000},
{0.0, -2.414213, -7.121212, -5.000000},
{4.526650, -2.414213, 3.080808, 5.000000},
});
SceneListSubmit(&data[0], data.size());
check_equal(sent.size(), 6);
check_equal(sent[0].flags, GPU_CMD_POLYHDR);
check_equal(sent[1].flags, GPU_CMD_VERTEX);
check_equal(sent[2].flags, GPU_CMD_VERTEX);
check_equal(sent[3].flags, GPU_CMD_VERTEX);
check_equal(sent[4].flags, GPU_CMD_VERTEX);
check_equal(sent[5].flags, GPU_CMD_VERTEX_EOL);
check_equal(sent[3], sent[5]);
return true;
}
bool test_clip_case_111() {
/* 1st and 3rd visible */
sent.clear();
auto data = make_vertices({
{-4.526650, -2.414213, 3.080808, 5.000000},
{0.0, -2.414213, -7.121212, 8.000000},
{4.526650, -2.414213, 3.080808, 5.000000},
});
SceneListSubmit(&data[0], data.size());
check_equal(sent.size(), 4);
check_equal(sent[0].flags, GPU_CMD_POLYHDR);
check_equal(sent[1].flags, GPU_CMD_VERTEX);
check_equal(sent[2].flags, GPU_CMD_VERTEX);
check_equal(sent[3].flags, GPU_CMD_VERTEX_EOL);
return true;
}
bool test_start_behind() {
/* Triangle behind the plane, but the strip continues in front */
sent.clear();
auto data = make_vertices({
{-3.021717, -2.414213, -10.155344, -9.935254},
{5.915236, -2.414213, -9.354721, -9.136231},
{-5.915236, -2.414213, -0.264096, -0.063767},
{3.021717, -2.414213, 0.536527, 0.735255},
{-7.361995, -2.414213, 4.681529, 4.871976},
{1.574958, -2.414213, 5.482152, 5.670999},
});
SceneListSubmit(&data[0], data.size());
return true;
}
bool test_longer_strip() {
sent.clear();
auto data = make_vertices({
{-4.384623, -2.414213, -5.699644, -5.488456},
{4.667572, -2.414213, -5.621354, -5.410322},
{-4.667572, -2.414213, 4.319152, 4.510323},
{4.384623, -2.414213, 4.397442, 4.588456},
{-4.809045, -2.414213, 9.328549, 9.509711},
{4.243149, -2.414213, 9.406840, 9.587846},
});
SceneListSubmit(&data[0], data.size());
return true;
}
int main(int argc, char* argv[]) {
// test_clip_case_000();
test_clip_case_001();
test_clip_case_010();
test_clip_case_100();
test_clip_case_110();
test_clip_case_011();
test_clip_case_101();
test_clip_case_111();
test_start_behind();
test_longer_strip();
return 0;
}