GLdc/GL/lighting.c

582 lines
18 KiB
C

#include <assert.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <limits.h>
#include "private.h"
#include "platform.h"
#define _MIN(x, y) (x < y) ? x : y
/* Lighting will not be calculated if the attenuation
* multiplier ends up less than this value */
#define ATTENUATION_THRESHOLD 100.0f
static GLfloat SCENE_AMBIENT [] = {0.2f, 0.2f, 0.2f, 1.0f};
static GLboolean VIEWER_IN_EYE_COORDINATES = GL_TRUE;
static GLenum COLOR_CONTROL = GL_SINGLE_COLOR;
static GLenum COLOR_MATERIAL_MODE = GL_AMBIENT_AND_DIFFUSE;
#define AMBIENT_MASK 1
#define DIFFUSE_MASK 2
#define EMISSION_MASK 4
#define SPECULAR_MASK 8
#define SCENE_AMBIENT_MASK 16
static GLenum COLOR_MATERIAL_MASK = AMBIENT_MASK | DIFFUSE_MASK;
static LightSource LIGHTS[MAX_GLDC_LIGHTS];
static GLuint ENABLED_LIGHT_COUNT = 0;
static Material MATERIAL;
GL_FORCE_INLINE void _glPrecalcLightingValues(GLuint mask);
static void recalcEnabledLights() {
GLubyte i;
ENABLED_LIGHT_COUNT = 0;
for(i = 0; i < MAX_GLDC_LIGHTS; ++i) {
if(LIGHTS[i].isEnabled) {
ENABLED_LIGHT_COUNT++;
}
}
}
void _glInitLights() {
static GLfloat ONE [] = {1.0f, 1.0f, 1.0f, 1.0f};
static GLfloat ZERO [] = {0.0f, 0.0f, 0.0f, 1.0f};
static GLfloat PARTIAL [] = {0.2f, 0.2f, 0.2f, 1.0f};
static GLfloat MOSTLY [] = {0.8f, 0.8f, 0.8f, 1.0f};
memcpy(MATERIAL.ambient, PARTIAL, sizeof(GLfloat) * 4);
memcpy(MATERIAL.diffuse, MOSTLY, sizeof(GLfloat) * 4);
memcpy(MATERIAL.specular, ZERO, sizeof(GLfloat) * 4);
memcpy(MATERIAL.emissive, ZERO, sizeof(GLfloat) * 4);
MATERIAL.exponent = 0.0f;
GLubyte i;
for(i = 0; i < MAX_GLDC_LIGHTS; ++i) {
memcpy(LIGHTS[i].ambient, ZERO, sizeof(GLfloat) * 4);
memcpy(LIGHTS[i].diffuse, ONE, sizeof(GLfloat) * 4);
memcpy(LIGHTS[i].specular, ONE, sizeof(GLfloat) * 4);
if(i > 0) {
memcpy(LIGHTS[i].diffuse, ZERO, sizeof(GLfloat) * 4);
memcpy(LIGHTS[i].specular, ZERO, sizeof(GLfloat) * 4);
}
LIGHTS[i].position[0] = LIGHTS[i].position[1] = LIGHTS[i].position[3] = 0.0f;
LIGHTS[i].position[2] = 1.0f;
LIGHTS[i].isDirectional = GL_TRUE;
LIGHTS[i].isEnabled = GL_FALSE;
LIGHTS[i].spot_direction[0] = LIGHTS[i].spot_direction[1] = 0.0f;
LIGHTS[i].spot_direction[2] = -1.0f;
LIGHTS[i].spot_exponent = 0.0f;
LIGHTS[i].spot_cutoff = 180.0f;
LIGHTS[i].constant_attenuation = 1.0f;
LIGHTS[i].linear_attenuation = 0.0f;
LIGHTS[i].quadratic_attenuation = 0.0f;
}
_glPrecalcLightingValues(~0);
recalcEnabledLights();
}
void _glEnableLight(GLubyte light, GLboolean value) {
LIGHTS[light].isEnabled = value;
recalcEnabledLights();
}
GL_FORCE_INLINE void _glPrecalcLightingValues(GLuint mask) {
/* Pre-calculate lighting values */
GLshort i;
if(mask & AMBIENT_MASK) {
for(i = 0; i < MAX_GLDC_LIGHTS; ++i) {
LIGHTS[i].ambientMaterial[0] = LIGHTS[i].ambient[0] * MATERIAL.ambient[0];
LIGHTS[i].ambientMaterial[1] = LIGHTS[i].ambient[1] * MATERIAL.ambient[1];
LIGHTS[i].ambientMaterial[2] = LIGHTS[i].ambient[2] * MATERIAL.ambient[2];
LIGHTS[i].ambientMaterial[3] = LIGHTS[i].ambient[3] * MATERIAL.ambient[3];
}
}
if(mask & DIFFUSE_MASK) {
for(i = 0; i < MAX_GLDC_LIGHTS; ++i) {
LIGHTS[i].diffuseMaterial[0] = LIGHTS[i].diffuse[0] * MATERIAL.diffuse[0];
LIGHTS[i].diffuseMaterial[1] = LIGHTS[i].diffuse[1] * MATERIAL.diffuse[1];
LIGHTS[i].diffuseMaterial[2] = LIGHTS[i].diffuse[2] * MATERIAL.diffuse[2];
LIGHTS[i].diffuseMaterial[3] = LIGHTS[i].diffuse[3] * MATERIAL.diffuse[3];
}
}
if(mask & SPECULAR_MASK) {
for(i = 0; i < MAX_GLDC_LIGHTS; ++i) {
LIGHTS[i].specularMaterial[0] = LIGHTS[i].specular[0] * MATERIAL.specular[0];
LIGHTS[i].specularMaterial[1] = LIGHTS[i].specular[1] * MATERIAL.specular[1];
LIGHTS[i].specularMaterial[2] = LIGHTS[i].specular[2] * MATERIAL.specular[2];
LIGHTS[i].specularMaterial[3] = LIGHTS[i].specular[3] * MATERIAL.specular[3];
}
}
/* If ambient or emission are updated, we need to update
* the base colour. */
if((mask & AMBIENT_MASK) || (mask & EMISSION_MASK) || (mask & SCENE_AMBIENT_MASK)) {
MATERIAL.baseColour[0] = MATH_fmac(SCENE_AMBIENT[0], MATERIAL.ambient[0], MATERIAL.emissive[0]);
MATERIAL.baseColour[1] = MATH_fmac(SCENE_AMBIENT[1], MATERIAL.ambient[1], MATERIAL.emissive[1]);
MATERIAL.baseColour[2] = MATH_fmac(SCENE_AMBIENT[2], MATERIAL.ambient[2], MATERIAL.emissive[2]);
MATERIAL.baseColour[3] = MATH_fmac(SCENE_AMBIENT[3], MATERIAL.ambient[3], MATERIAL.emissive[3]);
}
}
void APIENTRY glLightModelf(GLenum pname, const GLfloat param) {
glLightModelfv(pname, &param);
}
void APIENTRY glLightModeli(GLenum pname, const GLint param) {
glLightModeliv(pname, &param);
}
void APIENTRY glLightModelfv(GLenum pname, const GLfloat *params) {
switch(pname) {
case GL_LIGHT_MODEL_AMBIENT: {
memcpy(SCENE_AMBIENT, params, sizeof(GLfloat) * 4);
_glPrecalcLightingValues(SCENE_AMBIENT_MASK);
} break;
case GL_LIGHT_MODEL_LOCAL_VIEWER:
VIEWER_IN_EYE_COORDINATES = (*params) ? GL_TRUE : GL_FALSE;
break;
case GL_LIGHT_MODEL_TWO_SIDE:
/* Not implemented */
default:
_glKosThrowError(GL_INVALID_ENUM, __func__);
}
}
void APIENTRY glLightModeliv(GLenum pname, const GLint* params) {
switch(pname) {
case GL_LIGHT_MODEL_COLOR_CONTROL:
COLOR_CONTROL = *params;
break;
case GL_LIGHT_MODEL_LOCAL_VIEWER:
VIEWER_IN_EYE_COORDINATES = (*params) ? GL_TRUE : GL_FALSE;
break;
default:
_glKosThrowError(GL_INVALID_ENUM, __func__);
}
}
void APIENTRY glLightfv(GLenum light, GLenum pname, const GLfloat *params) {
GLubyte idx = light & 0xF;
if(idx >= MAX_GLDC_LIGHTS) {
return;
}
GLuint mask = (pname == GL_AMBIENT) ? AMBIENT_MASK :
(pname == GL_DIFFUSE) ? DIFFUSE_MASK :
(pname == GL_SPECULAR) ? SPECULAR_MASK : 0;
switch(pname) {
case GL_AMBIENT:
memcpy(LIGHTS[idx].ambient, params, sizeof(GLfloat) * 4);
break;
case GL_DIFFUSE:
memcpy(LIGHTS[idx].diffuse, params, sizeof(GLfloat) * 4);
break;
case GL_SPECULAR:
memcpy(LIGHTS[idx].specular, params, sizeof(GLfloat) * 4);
break;
case GL_POSITION: {
_glMatrixLoadModelView();
memcpy(LIGHTS[idx].position, params, sizeof(GLfloat) * 4);
LIGHTS[idx].isDirectional = params[3] == 0.0f;
if(LIGHTS[idx].isDirectional) {
//FIXME: Do we need to rotate directional lights?
} else {
TransformVec3(LIGHTS[idx].position);
}
}
break;
case GL_SPOT_DIRECTION: {
LIGHTS[idx].spot_direction[0] = params[0];
LIGHTS[idx].spot_direction[1] = params[1];
LIGHTS[idx].spot_direction[2] = params[2];
} break;
case GL_CONSTANT_ATTENUATION:
case GL_LINEAR_ATTENUATION:
case GL_QUADRATIC_ATTENUATION:
case GL_SPOT_CUTOFF:
case GL_SPOT_EXPONENT:
glLightf(light, pname, *params);
break;
default:
_glKosThrowError(GL_INVALID_ENUM, __func__);
return;
}
_glPrecalcLightingValues(mask);
}
void APIENTRY glLightf(GLenum light, GLenum pname, GLfloat param) {
GLubyte idx = light & 0xF;
if(idx >= MAX_GLDC_LIGHTS) {
return;
}
switch(pname) {
case GL_CONSTANT_ATTENUATION:
LIGHTS[idx].constant_attenuation = param;
break;
case GL_LINEAR_ATTENUATION:
LIGHTS[idx].linear_attenuation = param;
break;
case GL_QUADRATIC_ATTENUATION:
LIGHTS[idx].quadratic_attenuation = param;
break;
case GL_SPOT_EXPONENT:
LIGHTS[idx].spot_exponent = param;
break;
case GL_SPOT_CUTOFF:
LIGHTS[idx].spot_cutoff = param;
break;
default:
_glKosThrowError(GL_INVALID_ENUM, __func__);
}
}
void APIENTRY glMaterialf(GLenum face, GLenum pname, const GLfloat param) {
if(face == GL_BACK || pname != GL_SHININESS) {
_glKosThrowError(GL_INVALID_ENUM, __func__);
return;
}
MATERIAL.exponent = _MIN(param, 128); /* 128 is the max according to the GL spec */
}
void APIENTRY glMateriali(GLenum face, GLenum pname, const GLint param) {
glMaterialf(face, pname, param);
}
void APIENTRY glMaterialfv(GLenum face, GLenum pname, const GLfloat *params) {
if(face == GL_BACK) {
_glKosThrowError(GL_INVALID_ENUM, __func__);
return;
}
switch(pname) {
case GL_SHININESS:
glMaterialf(face, pname, *params);
break;
case GL_AMBIENT:
vec4cpy(MATERIAL.ambient, params);
break;
case GL_DIFFUSE:
vec4cpy(MATERIAL.diffuse, params);
break;
case GL_SPECULAR:
vec4cpy(MATERIAL.specular, params);
break;
case GL_EMISSION:
vec4cpy(MATERIAL.emissive, params);
break;
case GL_AMBIENT_AND_DIFFUSE: {
vec4cpy(MATERIAL.ambient, params);
vec4cpy(MATERIAL.diffuse, params);
} break;
case GL_COLOR_INDEXES:
default: {
_glKosThrowError(GL_INVALID_ENUM, __func__);
return;
}
}
GLuint updateMask = (pname == GL_AMBIENT) ? AMBIENT_MASK:
(pname == GL_DIFFUSE) ? DIFFUSE_MASK:
(pname == GL_SPECULAR) ? SPECULAR_MASK:
(pname == GL_EMISSION) ? EMISSION_MASK:
(pname == GL_AMBIENT_AND_DIFFUSE) ? AMBIENT_MASK | DIFFUSE_MASK : 0;
_glPrecalcLightingValues(updateMask);
}
void APIENTRY glColorMaterial(GLenum face, GLenum mode) {
if(face != GL_FRONT_AND_BACK) {
_glKosThrowError(GL_INVALID_ENUM, __func__);
return;
}
GLint validModes[] = {GL_AMBIENT, GL_DIFFUSE, GL_AMBIENT_AND_DIFFUSE, GL_EMISSION, GL_SPECULAR, 0};
if(_glCheckValidEnum(mode, validModes, __func__) != 0) {
return;
}
COLOR_MATERIAL_MASK = (mode == GL_AMBIENT) ? AMBIENT_MASK:
(mode == GL_DIFFUSE) ? DIFFUSE_MASK:
(mode == GL_AMBIENT_AND_DIFFUSE) ? AMBIENT_MASK | DIFFUSE_MASK:
(mode == GL_EMISSION) ? EMISSION_MASK : SPECULAR_MASK;
COLOR_MATERIAL_MODE = mode;
}
GL_FORCE_INLINE void bgra_to_float(const uint8_t* input, GLfloat* output) {
static const float scale = 1.0f / 255.0f;
output[0] = ((float) input[R8IDX]) * scale;
output[1] = ((float) input[G8IDX]) * scale;
output[2] = ((float) input[B8IDX]) * scale;
output[3] = ((float) input[A8IDX]) * scale;
}
void _glUpdateColourMaterialA(const GLubyte* argb) {
float colour[4];
bgra_to_float(argb, colour);
vec4cpy(MATERIAL.ambient, colour);
_glPrecalcLightingValues(COLOR_MATERIAL_MASK);
}
void _glUpdateColourMaterialD(const GLubyte* argb) {
float colour[4];
bgra_to_float(argb, colour);
vec4cpy(MATERIAL.diffuse, colour);
_glPrecalcLightingValues(COLOR_MATERIAL_MASK);
}
void _glUpdateColourMaterialE(const GLubyte* argb) {
float colour[4];
bgra_to_float(argb, colour);
vec4cpy(MATERIAL.emissive, colour);
_glPrecalcLightingValues(COLOR_MATERIAL_MASK);
}
void _glUpdateColourMaterialAD(const GLubyte* argb) {
float colour[4];
bgra_to_float(argb, colour);
vec4cpy(MATERIAL.ambient, colour);
vec4cpy(MATERIAL.diffuse, colour);
_glPrecalcLightingValues(COLOR_MATERIAL_MASK);
}
GL_FORCE_INLINE GLboolean isDiffuseColorMaterial() {
return (COLOR_MATERIAL_MODE == GL_DIFFUSE || COLOR_MATERIAL_MODE == GL_AMBIENT_AND_DIFFUSE);
}
GL_FORCE_INLINE GLboolean isAmbientColorMaterial() {
return (COLOR_MATERIAL_MODE == GL_AMBIENT || COLOR_MATERIAL_MODE == GL_AMBIENT_AND_DIFFUSE);
}
GL_FORCE_INLINE GLboolean isSpecularColorMaterial() {
return (COLOR_MATERIAL_MODE == GL_SPECULAR);
}
/*
* Implementation from here (MIT):
* https://github.com/appleseedhq/appleseed/blob/master/src/appleseed/foundation/math/fastmath.h
*/
GL_FORCE_INLINE float faster_pow2(const float p) {
// Underflow of exponential is common practice in numerical routines, so handle it here.
const float clipp = p < -126.0f ? -126.0f : p;
const union { uint32_t i; float f; } v =
{
(uint32_t) ((1 << 23) * (clipp + 126.94269504f))
};
return v.f;
}
GL_FORCE_INLINE float faster_log2(const float x) {
assert(x >= 0.0f);
const union { float f; uint32_t i; } vx = { x };
const float y = (float) (vx.i) * 1.1920928955078125e-7f;
return y - 126.94269504f;
}
GL_FORCE_INLINE float faster_pow(const float x, const float p) {
return faster_pow2(p * faster_log2(x));
}
GL_FORCE_INLINE void _glLightVertexDirectional(
float* final, uint8_t lid,
float LdotN, float NdotH) {
float FI = (MATERIAL.exponent) ?
faster_pow((LdotN != 0.0f) * NdotH, MATERIAL.exponent) : 1.0f;
#define _PROCESS_COMPONENT(X) \
final[X] += (LdotN * LIGHTS[lid].diffuseMaterial[X] + LIGHTS[lid].ambientMaterial[X]) \
+ (FI * LIGHTS[lid].specularMaterial[X]); \
_PROCESS_COMPONENT(0);
_PROCESS_COMPONENT(1);
_PROCESS_COMPONENT(2);
#undef _PROCESS_COMPONENT
}
GL_FORCE_INLINE void _glLightVertexPoint(
float* final, uint8_t lid,
float LdotN, float NdotH, float att) {
float FI = (MATERIAL.exponent) ?
faster_pow((LdotN != 0.0f) * NdotH, MATERIAL.exponent) : 1.0f;
#define _PROCESS_COMPONENT(X) \
final[X] += ((LdotN * LIGHTS[lid].diffuseMaterial[X] + LIGHTS[lid].ambientMaterial[X]) \
+ (FI * LIGHTS[lid].specularMaterial[X])) * att; \
_PROCESS_COMPONENT(0);
_PROCESS_COMPONENT(1);
_PROCESS_COMPONENT(2);
#undef _PROCESS_COMPONENT
}
void _glPerformLighting(Vertex* vertices, EyeSpaceData* es, const uint32_t count) {
GLubyte i;
GLuint j;
Vertex* vertex = vertices;
EyeSpaceData* data = es;
/* Calculate the colour material function once */
void (*updateColourMaterial)(const GLubyte*) = NULL;
if(_glIsColorMaterialEnabled()) {
switch(COLOR_MATERIAL_MODE) {
case GL_AMBIENT:
updateColourMaterial = _glUpdateColourMaterialA;
break;
case GL_DIFFUSE:
updateColourMaterial = _glUpdateColourMaterialD;
break;
case GL_EMISSION:
updateColourMaterial = _glUpdateColourMaterialE;
break;
case GL_AMBIENT_AND_DIFFUSE:
updateColourMaterial = _glUpdateColourMaterialAD;
break;
}
}
/* Calculate the ambient lighting and set up colour material */
for(j = 0; j < count; ++j, ++vertex, ++data) {
if(updateColourMaterial) {
updateColourMaterial(vertex->bgra);
}
/* Copy the base colour across */
vec4cpy(data->finalColour, MATERIAL.baseColour);
}
if(!ENABLED_LIGHT_COUNT) {
return;
}
vertex = vertices;
data = es;
for(j = 0; j < count; ++j, ++vertex, ++data) {
/* Direction to vertex in eye space */
float Vx = -vertex->xyz[0];
float Vy = -vertex->xyz[1];
float Vz = -vertex->xyz[2];
VEC3_NORMALIZE(Vx, Vy, Vz);
const float Nx = data->n[0];
const float Ny = data->n[1];
const float Nz = data->n[2];
for(i = 0; i < MAX_GLDC_LIGHTS; ++i) {
if(!LIGHTS[i].isEnabled) {
continue;
}
float Lx = LIGHTS[i].position[0] - vertex->xyz[0];
float Ly = LIGHTS[i].position[1] - vertex->xyz[1];
float Lz = LIGHTS[i].position[2] - vertex->xyz[2];
if(LIGHTS[i].isDirectional) {
float Hx = (Lx + 0);
float Hy = (Ly + 0);
float Hz = (Lz + 1);
VEC3_NORMALIZE(Lx, Ly, Lz);
VEC3_NORMALIZE(Hx, Hy, Hz);
float LdotN, NdotH;
VEC3_DOT(
Nx, Ny, Nz, Lx, Ly, Lz, LdotN
);
VEC3_DOT(
Nx, Ny, Nz, Hx, Hy, Hz, NdotH
);
if(LdotN < 0.0f) LdotN = 0.0f;
if(NdotH < 0.0f) NdotH = 0.0f;
_glLightVertexDirectional(
data->finalColour,
i, LdotN, NdotH
);
} else {
float D;
VEC3_LENGTH(Lx, Ly, Lz, D);
float att = (
LIGHTS[i].constant_attenuation + (
LIGHTS[i].linear_attenuation * D
) + (LIGHTS[i].quadratic_attenuation * D * D)
);
/* Anything over the attenuation threshold will
* be a tiny value after inversion (< 0.01f) so
* let's just skip the lighting at that point */
if(att < ATTENUATION_THRESHOLD) {
att = MATH_Fast_Invert(att);
float Hx = (Lx + Vx);
float Hy = (Ly + Vy);
float Hz = (Lz + Vz);
VEC3_NORMALIZE(Lx, Ly, Lz);
VEC3_NORMALIZE(Hx, Hy, Hz);
float LdotN, NdotH;
VEC3_DOT(
Nx, Ny, Nz, Lx, Ly, Lz, LdotN
);
VEC3_DOT(
Nx, Ny, Nz, Hx, Hy, Hz, NdotH
);
if(LdotN < 0.0f) LdotN = 0.0f;
if(NdotH < 0.0f) NdotH = 0.0f;
_glLightVertexPoint(
data->finalColour,
i, LdotN, NdotH, att
);
}
}
}
vertex->bgra[R8IDX] = clamp(data->finalColour[0] * 255.0f, 0, 255);
vertex->bgra[G8IDX] = clamp(data->finalColour[1] * 255.0f, 0, 255);
vertex->bgra[B8IDX] = clamp(data->finalColour[2] * 255.0f, 0, 255);
vertex->bgra[A8IDX] = clamp(data->finalColour[3] * 255.0f, 0, 255);
}
}
#undef LIGHT_COMPONENT