GLdc/GL/lighting.c
2020-02-17 10:21:33 +00:00

481 lines
14 KiB
C

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <dc/vec3f.h>
#include "private.h"
/* Lighting will not be calculated if the attenuation
* multiplier ends up less than this value */
#define ATTENUATION_THRESHOLD 0.01f
static GLfloat SCENE_AMBIENT [] = {0.2, 0.2, 0.2, 1.0};
static GLboolean VIEWER_IN_EYE_COORDINATES = GL_TRUE;
static GLenum COLOR_CONTROL = GL_SINGLE_COLOR;
static GLboolean TWO_SIDED_LIGHTING = GL_FALSE;
static GLenum COLOR_MATERIAL_MODE = GL_AMBIENT_AND_DIFFUSE;
static LightSource LIGHTS[MAX_LIGHTS];
static Material MATERIAL;
void _glInitLights() {
static GLfloat ONE [] = {1.0f, 1.0f, 1.0f, 1.0f};
static GLfloat ZERO [] = {0.0f, 0.0f, 0.0f, 1.0f};
static GLfloat PARTIAL [] = {0.2f, 0.2f, 0.2f, 1.0f};
static GLfloat MOSTLY [] = {0.8f, 0.8f, 0.8f, 1.0f};
memcpy(MATERIAL.ambient, PARTIAL, sizeof(GLfloat) * 4);
memcpy(MATERIAL.diffuse, MOSTLY, sizeof(GLfloat) * 4);
memcpy(MATERIAL.specular, ZERO, sizeof(GLfloat) * 4);
memcpy(MATERIAL.emissive, ZERO, sizeof(GLfloat) * 4);
MATERIAL.exponent = 0.0f;
GLubyte i;
for(i = 0; i < MAX_LIGHTS; ++i) {
memcpy(LIGHTS[i].ambient, ZERO, sizeof(GLfloat) * 4);
memcpy(LIGHTS[i].diffuse, ONE, sizeof(GLfloat) * 4);
memcpy(LIGHTS[i].specular, ONE, sizeof(GLfloat) * 4);
if(i > 0) {
memcpy(LIGHTS[i].diffuse, ZERO, sizeof(GLfloat) * 4);
memcpy(LIGHTS[i].specular, ZERO, sizeof(GLfloat) * 4);
}
LIGHTS[i].position[0] = LIGHTS[i].position[1] = LIGHTS[i].position[3] = 0.0f;
LIGHTS[i].position[2] = 1.0f;
LIGHTS[i].spot_direction[0] = LIGHTS[i].spot_direction[1] = 0.0f;
LIGHTS[i].spot_direction[2] = -1.0f;
LIGHTS[i].spot_exponent = 0.0f;
LIGHTS[i].spot_cutoff = 180.0f;
LIGHTS[i].constant_attenuation = 1.0f;
LIGHTS[i].linear_attenuation = 0.0f;
LIGHTS[i].quadratic_attenuation = 0.0f;
}
}
void APIENTRY glLightModelf(GLenum pname, const GLfloat param) {
glLightModelfv(pname, &param);
}
void APIENTRY glLightModeli(GLenum pname, const GLint param) {
glLightModeliv(pname, &param);
}
void APIENTRY glLightModelfv(GLenum pname, const GLfloat *params) {
switch(pname) {
case GL_LIGHT_MODEL_AMBIENT:
memcpy(SCENE_AMBIENT, params, sizeof(GLfloat) * 4);
break;
case GL_LIGHT_MODEL_LOCAL_VIEWER:
VIEWER_IN_EYE_COORDINATES = (*params) ? GL_TRUE : GL_FALSE;
break;
case GL_LIGHT_MODEL_TWO_SIDE:
/* Not implemented */
default:
_glKosThrowError(GL_INVALID_ENUM, __func__);
_glKosPrintError();
}
}
void APIENTRY glLightModeliv(GLenum pname, const GLint* params) {
switch(pname) {
case GL_LIGHT_MODEL_COLOR_CONTROL:
COLOR_CONTROL = *params;
break;
case GL_LIGHT_MODEL_LOCAL_VIEWER:
VIEWER_IN_EYE_COORDINATES = (*params) ? GL_TRUE : GL_FALSE;
break;
default:
_glKosThrowError(GL_INVALID_ENUM, __func__);
_glKosPrintError();
}
}
void APIENTRY glLightfv(GLenum light, GLenum pname, const GLfloat *params) {
GLubyte idx = light & 0xF;
if(idx >= MAX_LIGHTS) {
return;
}
switch(pname) {
case GL_AMBIENT:
memcpy(LIGHTS[idx].ambient, params, sizeof(GLfloat) * 4);
break;
case GL_DIFFUSE:
memcpy(LIGHTS[idx].diffuse, params, sizeof(GLfloat) * 4);
break;
case GL_SPECULAR:
memcpy(LIGHTS[idx].specular, params, sizeof(GLfloat) * 4);
break;
case GL_POSITION: {
_glMatrixLoadModelView();
memcpy(LIGHTS[idx].position, params, sizeof(GLfloat) * 4);
if(params[3] == 0.0f) {
//FIXME: Do we need to rotate directional lights?
} else {
mat_trans_single4(
LIGHTS[idx].position[0],
LIGHTS[idx].position[1],
LIGHTS[idx].position[2],
LIGHTS[idx].position[3]
);
}
}
break;
case GL_SPOT_DIRECTION: {
LIGHTS[idx].spot_direction[0] = params[0];
LIGHTS[idx].spot_direction[1] = params[1];
LIGHTS[idx].spot_direction[2] = params[2];
} break;
case GL_CONSTANT_ATTENUATION:
case GL_LINEAR_ATTENUATION:
case GL_QUADRATIC_ATTENUATION:
case GL_SPOT_CUTOFF:
case GL_SPOT_EXPONENT:
glLightf(light, pname, *params);
break;
default:
_glKosThrowError(GL_INVALID_ENUM, __func__);
_glKosPrintError();
}
}
void APIENTRY glLightf(GLenum light, GLenum pname, GLfloat param) {
GLubyte idx = light & 0xF;
if(idx >= MAX_LIGHTS) {
return;
}
switch(pname) {
case GL_CONSTANT_ATTENUATION:
LIGHTS[idx].constant_attenuation = param;
break;
case GL_LINEAR_ATTENUATION:
LIGHTS[idx].linear_attenuation = param;
break;
case GL_QUADRATIC_ATTENUATION:
LIGHTS[idx].quadratic_attenuation = param;
break;
case GL_SPOT_EXPONENT:
LIGHTS[idx].spot_exponent = param;
break;
case GL_SPOT_CUTOFF:
LIGHTS[idx].spot_cutoff = param;
break;
default:
_glKosThrowError(GL_INVALID_ENUM, __func__);
_glKosPrintError();
}
}
void APIENTRY glMaterialf(GLenum face, GLenum pname, const GLfloat param) {
if(face == GL_BACK || pname != GL_SHININESS) {
_glKosThrowError(GL_INVALID_ENUM, __func__);
_glKosPrintError();
return;
}
MATERIAL.exponent = param;
}
void APIENTRY glMateriali(GLenum face, GLenum pname, const GLint param) {
glMaterialf(face, pname, param);
}
void APIENTRY glMaterialfv(GLenum face, GLenum pname, const GLfloat *params) {
if(pname == GL_SHININESS) {
glMaterialf(face, pname, *params);
return;
}
if(face == GL_BACK) {
_glKosThrowError(GL_INVALID_ENUM, __func__);
_glKosPrintError();
return;
}
switch(pname) {
case GL_AMBIENT:
memcpy(MATERIAL.ambient, params, sizeof(GLfloat) * 4);
break;
case GL_DIFFUSE:
memcpy(MATERIAL.diffuse, params, sizeof(GLfloat) * 4);
break;
case GL_SPECULAR:
memcpy(MATERIAL.specular, params, sizeof(GLfloat) * 4);
break;
case GL_EMISSION:
memcpy(MATERIAL.specular, params, sizeof(GLfloat) * 4);
break;
case GL_AMBIENT_AND_DIFFUSE: {
glMaterialfv(face, GL_AMBIENT, params);
glMaterialfv(face, GL_DIFFUSE, params);
} break;
case GL_COLOR_INDEXES:
default: {
_glKosThrowError(GL_INVALID_ENUM, __func__);
_glKosPrintError();
}
}
}
void APIENTRY glColorMaterial(GLenum face, GLenum mode) {
if(face != GL_FRONT_AND_BACK) {
_glKosThrowError(GL_INVALID_ENUM, __func__);
_glKosPrintError();
return;
}
GLint validModes[] = {GL_AMBIENT, GL_DIFFUSE, GL_AMBIENT_AND_DIFFUSE, GL_EMISSION, GL_SPECULAR, 0};
if(_glCheckValidEnum(mode, validModes, __func__) != 0) {
return;
}
COLOR_MATERIAL_MODE = mode;
}
GL_FORCE_INLINE GLboolean isDiffuseColorMaterial() {
return (COLOR_MATERIAL_MODE == GL_DIFFUSE || COLOR_MATERIAL_MODE == GL_AMBIENT_AND_DIFFUSE);
}
GL_FORCE_INLINE GLboolean isAmbientColorMaterial() {
return (COLOR_MATERIAL_MODE == GL_AMBIENT || COLOR_MATERIAL_MODE == GL_AMBIENT_AND_DIFFUSE);
}
GL_FORCE_INLINE GLboolean isSpecularColorMaterial() {
return (COLOR_MATERIAL_MODE == GL_SPECULAR);
}
GL_FORCE_INLINE void initVec3(struct vec3f* v, const GLfloat* src) {
memcpy(v, src, sizeof(GLfloat) * 3);
}
/* Fast POW Implementation - Less accurate, but much faster than math.h */
#define EXP_A 184
#define EXP_C 16249
GL_FORCE_INLINE float FEXP(float y) {
union {
float d;
struct {
short j, i;
} n;
} eco;
eco.n.i = EXP_A * (y) + (EXP_C);
eco.n.j = 0;
return eco.d;
}
/* Inspired by: https://web.archive.org/web/20180423090243/www.dctsystems.co.uk/Software/power.html */
#define SHIFT23 (1 << 23)
#define INVSHIFT23 (1.0f / SHIFT23)
#define LOGBODGE 0.346607f
#define POWBODGE 0.33971f
GL_FORCE_INLINE float FLOG2(float i) {
float y;
union {
float f;
int i;
} x;
x.f = i;
x.i *= INVSHIFT23;
x.i = x.i - 127;
y = x.i - floorf(x.i);
y = (y - y * y) * LOGBODGE;
return x.i + y;
}
GL_FORCE_INLINE float FPOW2(float i) {
float y = i - floorf(i);
y = (y - y * y) * POWBODGE;
union {
float f;
float i;
} x;
x.f = i + 127 - y;
x.f *= SHIFT23;
return x.i;
}
GL_FORCE_INLINE float FPOW(float a, float b) {
return FPOW2(b * FLOG2(a));
}
GL_FORCE_INLINE float vec3_dot_limited(
const float* x1, const float* y1, const float* z1,
const float* x2, const float* y2, const float* z2) {
float ret;
vec3f_dot(*x1, *y1, *z1, *x2, *y2, *z2, ret);
return (ret < 0) ? 0 : ret;
}
#define _MIN(x, y) (x < y) ? x : y;
GL_FORCE_INLINE void _glLightVertexDirectional(uint8_t* final, int8_t lid, float LdotN, float NdotH) {
float F;
float FI = (LdotN != 0.0f);
uint8_t FO;
#define _PROCESS_COMPONENT(T, X) \
F = (MATERIAL.ambient[X] * LIGHTS[lid].ambient[X]); \
F += (LdotN * MATERIAL.diffuse[X] * LIGHTS[lid].diffuse[X]); \
F += FPOW(FI * NdotH, MATERIAL.exponent) * MATERIAL.specular[X] * LIGHTS[lid].specular[X]; \
FO = (uint8_t) (F * 255.0f); \
\
final[T] += _MIN(FO, final[T] - FO) \
_PROCESS_COMPONENT(R8IDX, 0);
_PROCESS_COMPONENT(G8IDX, 1);
_PROCESS_COMPONENT(B8IDX, 2);
#undef _PROCESS_COMPONENT
}
GL_FORCE_INLINE void _glLightVertexPoint(uint8_t* final, int8_t lid, float LdotN, float NdotH, float att) {
float F;
float FI = (LdotN != 0.0f);
uint8_t FO;
#define _PROCESS_COMPONENT(T, X) \
F = (MATERIAL.ambient[X] * LIGHTS[lid].ambient[X]); \
F += (LdotN * MATERIAL.diffuse[X] * LIGHTS[lid].diffuse[X]); \
F += FPOW(FI * NdotH, MATERIAL.exponent) * MATERIAL.specular[X] * LIGHTS[lid].specular[X]; \
FO = (uint8_t) (F * att * 255.0f); \
\
final[T] += _MIN(FO, final[T] - FO) \
_PROCESS_COMPONENT(R8IDX, 0);
_PROCESS_COMPONENT(G8IDX, 1);
_PROCESS_COMPONENT(B8IDX, 2);
#undef _PROCESS_COMPONENT
}
GL_FORCE_INLINE float MATH_fsrra(float x) {
__asm__ volatile ("fsrra %[one_div_sqrt]\n"
: [one_div_sqrt] "+f" (x) // outputs, "+" means r/w
: // no inputs
: // no clobbers
);
return x;
}
void _glPerformLighting(Vertex* vertices, const EyeSpaceData* es, const int32_t count) {
int8_t i;
int32_t j;
Vertex* vertex = vertices;
const EyeSpaceData* data = es;
float base;
for(j = 0; j < count; ++j, ++vertex, ++data) {
/* Initial, non-light related values */
base = (SCENE_AMBIENT[0] * MATERIAL.ambient[0]) + MATERIAL.emissive[0];
vertex->bgra[R8IDX] = (uint8_t)(base * 255.0f);
base = (SCENE_AMBIENT[1] * MATERIAL.ambient[1]) + MATERIAL.emissive[1];
vertex->bgra[G8IDX] = (uint8_t)(base * 255.0f);
base = (SCENE_AMBIENT[2] * MATERIAL.ambient[2]) + MATERIAL.emissive[2];
vertex->bgra[B8IDX] = (uint8_t)(base * 255.0f);
vertex->bgra[A8IDX] = (uint8_t)(MATERIAL.diffuse[3] * 255.0f);
float Vx = -data->xyz[0];
float Vy = -data->xyz[1];
float Vz = -data->xyz[2];
vec3f_normalize(Vx, Vy, Vz);
const float Nx = data->n[0];
const float Ny = data->n[1];
const float Nz = data->n[2];
for(i = 0; i < MAX_LIGHTS; ++i) {
if(!_glIsLightEnabled(i)) continue;
if(LIGHTS[i].position[3] == 0.0f) {
float Lx = -LIGHTS[i].position[0];
float Ly = -LIGHTS[i].position[1];
float Lz = -LIGHTS[i].position[2];
float Hx = (Lx + Vx);
float Hy = (Ly + Vy);
float Hz = (Lz + Vz);
vec3f_normalize(Lx, Ly, Lz);
vec3f_normalize(Hx, Hy, Hz);
const float LdotN = vec3_dot_limited(
&Nx, &Ny, &Nz,
&Lx, &Ly, &Lz
);
const float NdotH = vec3_dot_limited(
&Nx, &Ny, &Nz,
&Hx, &Hy, &Hz
);
_glLightVertexDirectional(
vertex->bgra,
i, LdotN, NdotH
);
} else {
float Lx = LIGHTS[i].position[0] - data->xyz[0];
float Ly = LIGHTS[i].position[1] - data->xyz[1];
float Lz = LIGHTS[i].position[2] - data->xyz[2];
float D;
vec3f_length(Lx, Ly, Lz, D);
float att = (
LIGHTS[i].constant_attenuation + (
LIGHTS[i].linear_attenuation * D
) + (LIGHTS[i].quadratic_attenuation * D * D)
);
att = MATH_fsrra(att * att);
if(att >= ATTENUATION_THRESHOLD) {
float Hx = (Lx + Vx);
float Hy = (Ly + Vy);
float Hz = (Lz + Vz);
vec3f_normalize(Lx, Ly, Lz);
vec3f_normalize(Hx, Hy, Hz);
const float LdotN = vec3_dot_limited(
&Nx, &Ny, &Nz,
&Lx, &Ly, &Lz
);
const float NdotH = vec3_dot_limited(
&Nx, &Ny, &Nz,
&Hx, &Hy, &Hz
);
_glLightVertexPoint(
vertex->bgra,
i, LdotN, NdotH, att
);
}
}
}
}
}
#undef LIGHT_COMPONENT