bf00aca843
- remove unused bool - move math func to header - reorder const
480 lines
15 KiB
C
480 lines
15 KiB
C
#include <assert.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
#include <limits.h>
|
|
#include <dc/vec3f.h>
|
|
#include "private.h"
|
|
|
|
#define _MIN(x, y) (x < y) ? x : y
|
|
|
|
/* Lighting will not be calculated if the attenuation
|
|
* multiplier ends up less than this value */
|
|
#define ATTENUATION_THRESHOLD 0.01f
|
|
|
|
static GLfloat SCENE_AMBIENT [] = {0.2f, 0.2f, 0.2f, 1.0f};
|
|
static GLboolean VIEWER_IN_EYE_COORDINATES = GL_TRUE;
|
|
static GLenum COLOR_CONTROL = GL_SINGLE_COLOR;
|
|
|
|
static GLenum COLOR_MATERIAL_MODE = GL_AMBIENT_AND_DIFFUSE;
|
|
|
|
static LightSource LIGHTS[MAX_LIGHTS];
|
|
static Material MATERIAL;
|
|
|
|
void _glInitLights() {
|
|
static GLfloat ONE [] = {1.0f, 1.0f, 1.0f, 1.0f};
|
|
static GLfloat ZERO [] = {0.0f, 0.0f, 0.0f, 1.0f};
|
|
static GLfloat PARTIAL [] = {0.2f, 0.2f, 0.2f, 1.0f};
|
|
static GLfloat MOSTLY [] = {0.8f, 0.8f, 0.8f, 1.0f};
|
|
|
|
memcpy(MATERIAL.ambient, PARTIAL, sizeof(GLfloat) * 4);
|
|
memcpy(MATERIAL.diffuse, MOSTLY, sizeof(GLfloat) * 4);
|
|
memcpy(MATERIAL.specular, ZERO, sizeof(GLfloat) * 4);
|
|
memcpy(MATERIAL.emissive, ZERO, sizeof(GLfloat) * 4);
|
|
MATERIAL.exponent = 0.0f;
|
|
|
|
GLubyte i;
|
|
for(i = 0; i < MAX_LIGHTS; ++i) {
|
|
memcpy(LIGHTS[i].ambient, ZERO, sizeof(GLfloat) * 4);
|
|
memcpy(LIGHTS[i].diffuse, ONE, sizeof(GLfloat) * 4);
|
|
memcpy(LIGHTS[i].specular, ONE, sizeof(GLfloat) * 4);
|
|
|
|
if(i > 0) {
|
|
memcpy(LIGHTS[i].diffuse, ZERO, sizeof(GLfloat) * 4);
|
|
memcpy(LIGHTS[i].specular, ZERO, sizeof(GLfloat) * 4);
|
|
}
|
|
|
|
LIGHTS[i].position[0] = LIGHTS[i].position[1] = LIGHTS[i].position[3] = 0.0f;
|
|
LIGHTS[i].position[2] = 1.0f;
|
|
|
|
LIGHTS[i].spot_direction[0] = LIGHTS[i].spot_direction[1] = 0.0f;
|
|
LIGHTS[i].spot_direction[2] = -1.0f;
|
|
|
|
LIGHTS[i].spot_exponent = 0.0f;
|
|
LIGHTS[i].spot_cutoff = 180.0f;
|
|
|
|
LIGHTS[i].constant_attenuation = 1.0f;
|
|
LIGHTS[i].linear_attenuation = 0.0f;
|
|
LIGHTS[i].quadratic_attenuation = 0.0f;
|
|
}
|
|
}
|
|
|
|
void APIENTRY glLightModelf(GLenum pname, const GLfloat param) {
|
|
glLightModelfv(pname, ¶m);
|
|
}
|
|
|
|
void APIENTRY glLightModeli(GLenum pname, const GLint param) {
|
|
glLightModeliv(pname, ¶m);
|
|
}
|
|
|
|
void APIENTRY glLightModelfv(GLenum pname, const GLfloat *params) {
|
|
switch(pname) {
|
|
case GL_LIGHT_MODEL_AMBIENT:
|
|
memcpy(SCENE_AMBIENT, params, sizeof(GLfloat) * 4);
|
|
break;
|
|
case GL_LIGHT_MODEL_LOCAL_VIEWER:
|
|
VIEWER_IN_EYE_COORDINATES = (*params) ? GL_TRUE : GL_FALSE;
|
|
break;
|
|
case GL_LIGHT_MODEL_TWO_SIDE:
|
|
/* Not implemented */
|
|
default:
|
|
_glKosThrowError(GL_INVALID_ENUM, __func__);
|
|
_glKosPrintError();
|
|
}
|
|
}
|
|
|
|
void APIENTRY glLightModeliv(GLenum pname, const GLint* params) {
|
|
switch(pname) {
|
|
case GL_LIGHT_MODEL_COLOR_CONTROL:
|
|
COLOR_CONTROL = *params;
|
|
break;
|
|
case GL_LIGHT_MODEL_LOCAL_VIEWER:
|
|
VIEWER_IN_EYE_COORDINATES = (*params) ? GL_TRUE : GL_FALSE;
|
|
break;
|
|
default:
|
|
_glKosThrowError(GL_INVALID_ENUM, __func__);
|
|
_glKosPrintError();
|
|
}
|
|
}
|
|
|
|
void APIENTRY glLightfv(GLenum light, GLenum pname, const GLfloat *params) {
|
|
GLubyte idx = light & 0xF;
|
|
|
|
if(idx >= MAX_LIGHTS) {
|
|
return;
|
|
}
|
|
|
|
switch(pname) {
|
|
case GL_AMBIENT:
|
|
memcpy(LIGHTS[idx].ambient, params, sizeof(GLfloat) * 4);
|
|
break;
|
|
case GL_DIFFUSE:
|
|
memcpy(LIGHTS[idx].diffuse, params, sizeof(GLfloat) * 4);
|
|
break;
|
|
case GL_SPECULAR:
|
|
memcpy(LIGHTS[idx].specular, params, sizeof(GLfloat) * 4);
|
|
break;
|
|
case GL_POSITION: {
|
|
_glMatrixLoadModelView();
|
|
memcpy(LIGHTS[idx].position, params, sizeof(GLfloat) * 4);
|
|
|
|
if(params[3] == 0.0f) {
|
|
//FIXME: Do we need to rotate directional lights?
|
|
} else {
|
|
mat_trans_single4(
|
|
LIGHTS[idx].position[0],
|
|
LIGHTS[idx].position[1],
|
|
LIGHTS[idx].position[2],
|
|
LIGHTS[idx].position[3]
|
|
);
|
|
}
|
|
}
|
|
break;
|
|
case GL_SPOT_DIRECTION: {
|
|
LIGHTS[idx].spot_direction[0] = params[0];
|
|
LIGHTS[idx].spot_direction[1] = params[1];
|
|
LIGHTS[idx].spot_direction[2] = params[2];
|
|
} break;
|
|
case GL_CONSTANT_ATTENUATION:
|
|
case GL_LINEAR_ATTENUATION:
|
|
case GL_QUADRATIC_ATTENUATION:
|
|
case GL_SPOT_CUTOFF:
|
|
case GL_SPOT_EXPONENT:
|
|
glLightf(light, pname, *params);
|
|
break;
|
|
default:
|
|
_glKosThrowError(GL_INVALID_ENUM, __func__);
|
|
_glKosPrintError();
|
|
}
|
|
}
|
|
|
|
void APIENTRY glLightf(GLenum light, GLenum pname, GLfloat param) {
|
|
GLubyte idx = light & 0xF;
|
|
|
|
if(idx >= MAX_LIGHTS) {
|
|
return;
|
|
}
|
|
|
|
switch(pname) {
|
|
case GL_CONSTANT_ATTENUATION:
|
|
LIGHTS[idx].constant_attenuation = param;
|
|
break;
|
|
case GL_LINEAR_ATTENUATION:
|
|
LIGHTS[idx].linear_attenuation = param;
|
|
break;
|
|
case GL_QUADRATIC_ATTENUATION:
|
|
LIGHTS[idx].quadratic_attenuation = param;
|
|
break;
|
|
case GL_SPOT_EXPONENT:
|
|
LIGHTS[idx].spot_exponent = param;
|
|
break;
|
|
case GL_SPOT_CUTOFF:
|
|
LIGHTS[idx].spot_cutoff = param;
|
|
break;
|
|
default:
|
|
_glKosThrowError(GL_INVALID_ENUM, __func__);
|
|
_glKosPrintError();
|
|
}
|
|
}
|
|
|
|
void APIENTRY glMaterialf(GLenum face, GLenum pname, const GLfloat param) {
|
|
if(face == GL_BACK || pname != GL_SHININESS) {
|
|
_glKosThrowError(GL_INVALID_ENUM, __func__);
|
|
_glKosPrintError();
|
|
return;
|
|
}
|
|
|
|
MATERIAL.exponent = _MIN(param, 128); /* 128 is the max according to the GL spec */
|
|
}
|
|
|
|
void APIENTRY glMateriali(GLenum face, GLenum pname, const GLint param) {
|
|
glMaterialf(face, pname, param);
|
|
}
|
|
|
|
void APIENTRY glMaterialfv(GLenum face, GLenum pname, const GLfloat *params) {
|
|
if(pname == GL_SHININESS) {
|
|
glMaterialf(face, pname, *params);
|
|
return;
|
|
}
|
|
|
|
if(face == GL_BACK) {
|
|
_glKosThrowError(GL_INVALID_ENUM, __func__);
|
|
_glKosPrintError();
|
|
return;
|
|
}
|
|
|
|
switch(pname) {
|
|
case GL_AMBIENT:
|
|
memcpy(MATERIAL.ambient, params, sizeof(GLfloat) * 4);
|
|
break;
|
|
case GL_DIFFUSE:
|
|
memcpy(MATERIAL.diffuse, params, sizeof(GLfloat) * 4);
|
|
break;
|
|
case GL_SPECULAR:
|
|
memcpy(MATERIAL.specular, params, sizeof(GLfloat) * 4);
|
|
break;
|
|
case GL_EMISSION:
|
|
memcpy(MATERIAL.emissive, params, sizeof(GLfloat) * 4);
|
|
break;
|
|
case GL_AMBIENT_AND_DIFFUSE: {
|
|
glMaterialfv(face, GL_AMBIENT, params);
|
|
glMaterialfv(face, GL_DIFFUSE, params);
|
|
} break;
|
|
case GL_COLOR_INDEXES:
|
|
default: {
|
|
_glKosThrowError(GL_INVALID_ENUM, __func__);
|
|
_glKosPrintError();
|
|
}
|
|
}
|
|
}
|
|
|
|
void APIENTRY glColorMaterial(GLenum face, GLenum mode) {
|
|
if(face != GL_FRONT_AND_BACK) {
|
|
_glKosThrowError(GL_INVALID_ENUM, __func__);
|
|
_glKosPrintError();
|
|
return;
|
|
}
|
|
|
|
GLint validModes[] = {GL_AMBIENT, GL_DIFFUSE, GL_AMBIENT_AND_DIFFUSE, GL_EMISSION, GL_SPECULAR, 0};
|
|
|
|
if(_glCheckValidEnum(mode, validModes, __func__) != 0) {
|
|
return;
|
|
}
|
|
|
|
COLOR_MATERIAL_MODE = mode;
|
|
}
|
|
|
|
GL_FORCE_INLINE GLboolean isDiffuseColorMaterial() {
|
|
return (COLOR_MATERIAL_MODE == GL_DIFFUSE || COLOR_MATERIAL_MODE == GL_AMBIENT_AND_DIFFUSE);
|
|
}
|
|
|
|
GL_FORCE_INLINE GLboolean isAmbientColorMaterial() {
|
|
return (COLOR_MATERIAL_MODE == GL_AMBIENT || COLOR_MATERIAL_MODE == GL_AMBIENT_AND_DIFFUSE);
|
|
}
|
|
|
|
GL_FORCE_INLINE GLboolean isSpecularColorMaterial() {
|
|
return (COLOR_MATERIAL_MODE == GL_SPECULAR);
|
|
}
|
|
|
|
GL_FORCE_INLINE void initVec3(struct vec3f* v, const GLfloat* src) {
|
|
memcpy(v, src, sizeof(GLfloat) * 3);
|
|
}
|
|
|
|
/*
|
|
* Implementation from here (MIT):
|
|
* https://github.com/appleseedhq/appleseed/blob/master/src/appleseed/foundation/math/fastmath.h
|
|
*/
|
|
GL_FORCE_INLINE float faster_pow2(const float p) {
|
|
// Underflow of exponential is common practice in numerical routines, so handle it here.
|
|
const float clipp = p < -126.0f ? -126.0f : p;
|
|
const union { uint32_t i; float f; } v =
|
|
{
|
|
(uint32_t) ((1 << 23) * (clipp + 126.94269504f))
|
|
};
|
|
|
|
return v.f;
|
|
}
|
|
|
|
GL_FORCE_INLINE float faster_log2(const float x) {
|
|
assert(x >= 0.0f);
|
|
|
|
const union { float f; uint32_t i; } vx = { x };
|
|
const float y = (float) (vx.i) * 1.1920928955078125e-7f;
|
|
|
|
return y - 126.94269504f;
|
|
}
|
|
|
|
GL_FORCE_INLINE float faster_pow(const float x, const float p) {
|
|
return faster_pow2(p * faster_log2(x));
|
|
}
|
|
|
|
GL_FORCE_INLINE float vec3_dot_limited(
|
|
const float* x1, const float* y1, const float* z1,
|
|
const float* x2, const float* y2, const float* z2) {
|
|
|
|
float ret;
|
|
vec3f_dot(*x1, *y1, *z1, *x2, *y2, *z2, ret);
|
|
return (ret < 0) ? 0 : ret;
|
|
}
|
|
|
|
GL_FORCE_INLINE void _glLightVertexDirectional(
|
|
uint8_t* final, int8_t lid,
|
|
float LdotN, float NdotH,
|
|
const float* ambient, const float* diffuse, const float* specular) {
|
|
|
|
float F;
|
|
uint8_t FO;
|
|
float FI = (LdotN != 0.0f);
|
|
FI = (MATERIAL.exponent) ? faster_pow(FI * NdotH, MATERIAL.exponent) : 1.0f;
|
|
|
|
#define _PROCESS_COMPONENT(T, X) \
|
|
F = (ambient[X] * LIGHTS[lid].ambient[X]); \
|
|
F += (LdotN * diffuse[X] * LIGHTS[lid].diffuse[X]); \
|
|
F += FI * specular[X] * LIGHTS[lid].specular[X]; \
|
|
FO = (uint8_t) (_MIN(F * 255.0f, 255.0f)); \
|
|
final[T] += _MIN(FO, 255 - final[T]);
|
|
|
|
_PROCESS_COMPONENT(R8IDX, 0);
|
|
_PROCESS_COMPONENT(G8IDX, 1);
|
|
_PROCESS_COMPONENT(B8IDX, 2);
|
|
|
|
#undef _PROCESS_COMPONENT
|
|
}
|
|
|
|
GL_FORCE_INLINE void _glLightVertexPoint(
|
|
uint8_t* final, int8_t lid,
|
|
float LdotN, float NdotH, float att,
|
|
const float* ambient, const float* diffuse, const float* specular) {
|
|
|
|
float F;
|
|
uint8_t FO;
|
|
float FI = (LdotN != 0.0f);
|
|
FI = (MATERIAL.exponent) ? faster_pow(FI * NdotH, MATERIAL.exponent) : 1.0f;
|
|
|
|
#define _PROCESS_COMPONENT(T, X) \
|
|
F = (ambient[X] * LIGHTS[lid].ambient[X]); \
|
|
F += (LdotN * diffuse[X] * LIGHTS[lid].diffuse[X]); \
|
|
F += FI * specular[X] * LIGHTS[lid].specular[X]; \
|
|
FO = (uint8_t) (_MIN(F * att * 255.0f, 255.0f)); \
|
|
\
|
|
final[T] += _MIN(FO, 255 - final[T]); \
|
|
|
|
_PROCESS_COMPONENT(R8IDX, 0);
|
|
_PROCESS_COMPONENT(G8IDX, 1);
|
|
_PROCESS_COMPONENT(B8IDX, 2);
|
|
|
|
#undef _PROCESS_COMPONENT
|
|
}
|
|
|
|
GL_FORCE_INLINE void bgra_to_float(const uint8_t* input, GLfloat* output) {
|
|
static const float scale = 1.0f / 255.0f;
|
|
|
|
output[0] = ((float) input[R8IDX]) * scale;
|
|
output[1] = ((float) input[G8IDX]) * scale;
|
|
output[2] = ((float) input[B8IDX]) * scale;
|
|
output[3] = ((float) input[A8IDX]) * scale;
|
|
}
|
|
|
|
void _glPerformLighting(Vertex* vertices, const EyeSpaceData* es, const int32_t count) {
|
|
int8_t i;
|
|
int32_t j;
|
|
|
|
Vertex* vertex = vertices;
|
|
const EyeSpaceData* data = es;
|
|
float base;
|
|
|
|
/* This is the original vertex colour, before we replace it. It's
|
|
* used for colour material */
|
|
float vdiffuse[4];
|
|
|
|
unsigned char isCM = _glIsColorMaterialEnabled();
|
|
|
|
/* Update pointers as necessary depending on color material */
|
|
GLfloat* ambient = (isCM && isAmbientColorMaterial()) ? vdiffuse : MATERIAL.ambient;
|
|
GLfloat* diffuse = (isCM && isDiffuseColorMaterial()) ? vdiffuse : MATERIAL.diffuse;
|
|
GLfloat* specular = (isCM && isSpecularColorMaterial()) ? vdiffuse : MATERIAL.specular;
|
|
|
|
for(j = 0; j < count; ++j, ++vertex, ++data) {
|
|
/* Unpack the colour for use in glColorMaterial */
|
|
if(isCM) {
|
|
bgra_to_float(vertex->bgra, vdiffuse);
|
|
}
|
|
|
|
/* Initial, non-light related values */
|
|
base = (SCENE_AMBIENT[0] * ambient[0]) + MATERIAL.emissive[0];
|
|
vertex->bgra[R8IDX] = (uint8_t)(_MIN(base * 255.0f, 255.0f));
|
|
|
|
base = (SCENE_AMBIENT[1] * ambient[1]) + MATERIAL.emissive[1];
|
|
vertex->bgra[G8IDX] = (uint8_t)(_MIN(base * 255.0f, 255.0f));
|
|
|
|
base = (SCENE_AMBIENT[2] * ambient[2]) + MATERIAL.emissive[2];
|
|
vertex->bgra[B8IDX] = (uint8_t)(_MIN(base * 255.0f, 255.0f));
|
|
vertex->bgra[A8IDX] = (uint8_t)(_MIN(MATERIAL.diffuse[3] * 255.0f, 255.0f));
|
|
|
|
/* Direction to vertex in eye space */
|
|
float Vx = -data->xyz[0];
|
|
float Vy = -data->xyz[1];
|
|
float Vz = -data->xyz[2];
|
|
vec3f_normalize(Vx, Vy, Vz);
|
|
|
|
const float Nx = data->n[0];
|
|
const float Ny = data->n[1];
|
|
const float Nz = data->n[2];
|
|
|
|
for(i = 0; i < MAX_LIGHTS; ++i) {
|
|
if(!_glIsLightEnabled(i)) continue;
|
|
|
|
if(LIGHTS[i].position[3] == 0.0f) {
|
|
float Lx = LIGHTS[i].position[0] - data->xyz[0];
|
|
float Ly = LIGHTS[i].position[1] - data->xyz[1];
|
|
float Lz = LIGHTS[i].position[2] - data->xyz[2];
|
|
|
|
float Hx = (Lx + 0);
|
|
float Hy = (Ly + 0);
|
|
float Hz = (Lz + 1);
|
|
|
|
vec3f_normalize(Lx, Ly, Lz);
|
|
vec3f_normalize(Hx, Hy, Hz);
|
|
|
|
const float LdotN = vec3_dot_limited(
|
|
&Nx, &Ny, &Nz,
|
|
&Lx, &Ly, &Lz
|
|
);
|
|
|
|
const float NdotH = vec3_dot_limited(
|
|
&Nx, &Ny, &Nz,
|
|
&Hx, &Hy, &Hz
|
|
);
|
|
|
|
_glLightVertexDirectional(
|
|
vertex->bgra,
|
|
i, LdotN, NdotH,
|
|
ambient, diffuse, specular
|
|
);
|
|
} else {
|
|
float Lx = LIGHTS[i].position[0] - data->xyz[0];
|
|
float Ly = LIGHTS[i].position[1] - data->xyz[1];
|
|
float Lz = LIGHTS[i].position[2] - data->xyz[2];
|
|
float D;
|
|
|
|
vec3f_length(Lx, Ly, Lz, D);
|
|
|
|
float att = (
|
|
LIGHTS[i].constant_attenuation + (
|
|
LIGHTS[i].linear_attenuation * D
|
|
) + (LIGHTS[i].quadratic_attenuation * D * D)
|
|
);
|
|
|
|
att = MATH_fsrra(att * att);
|
|
|
|
if(att >= ATTENUATION_THRESHOLD) {
|
|
float Hx = (Lx + Vx);
|
|
float Hy = (Ly + Vy);
|
|
float Hz = (Lz + Vz);
|
|
|
|
vec3f_normalize(Lx, Ly, Lz);
|
|
vec3f_normalize(Hx, Hy, Hz);
|
|
|
|
const float LdotN = vec3_dot_limited(
|
|
&Nx, &Ny, &Nz,
|
|
&Lx, &Ly, &Lz
|
|
);
|
|
|
|
const float NdotH = vec3_dot_limited(
|
|
&Nx, &Ny, &Nz,
|
|
&Hx, &Hy, &Hz
|
|
);
|
|
|
|
_glLightVertexPoint(
|
|
vertex->bgra,
|
|
i, LdotN, NdotH, att,
|
|
ambient, diffuse, specular
|
|
);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#undef LIGHT_COMPONENT
|