GLdc/GL/lighting.c
Hayden Kowalchuk bf00aca843 chore: lighting.c remove unused, add moop math
- remove unused bool
- move math func to header
- reorder const
2020-03-05 14:56:16 -05:00

480 lines
15 KiB
C

#include <assert.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <limits.h>
#include <dc/vec3f.h>
#include "private.h"
#define _MIN(x, y) (x < y) ? x : y
/* Lighting will not be calculated if the attenuation
* multiplier ends up less than this value */
#define ATTENUATION_THRESHOLD 0.01f
static GLfloat SCENE_AMBIENT [] = {0.2f, 0.2f, 0.2f, 1.0f};
static GLboolean VIEWER_IN_EYE_COORDINATES = GL_TRUE;
static GLenum COLOR_CONTROL = GL_SINGLE_COLOR;
static GLenum COLOR_MATERIAL_MODE = GL_AMBIENT_AND_DIFFUSE;
static LightSource LIGHTS[MAX_LIGHTS];
static Material MATERIAL;
void _glInitLights() {
static GLfloat ONE [] = {1.0f, 1.0f, 1.0f, 1.0f};
static GLfloat ZERO [] = {0.0f, 0.0f, 0.0f, 1.0f};
static GLfloat PARTIAL [] = {0.2f, 0.2f, 0.2f, 1.0f};
static GLfloat MOSTLY [] = {0.8f, 0.8f, 0.8f, 1.0f};
memcpy(MATERIAL.ambient, PARTIAL, sizeof(GLfloat) * 4);
memcpy(MATERIAL.diffuse, MOSTLY, sizeof(GLfloat) * 4);
memcpy(MATERIAL.specular, ZERO, sizeof(GLfloat) * 4);
memcpy(MATERIAL.emissive, ZERO, sizeof(GLfloat) * 4);
MATERIAL.exponent = 0.0f;
GLubyte i;
for(i = 0; i < MAX_LIGHTS; ++i) {
memcpy(LIGHTS[i].ambient, ZERO, sizeof(GLfloat) * 4);
memcpy(LIGHTS[i].diffuse, ONE, sizeof(GLfloat) * 4);
memcpy(LIGHTS[i].specular, ONE, sizeof(GLfloat) * 4);
if(i > 0) {
memcpy(LIGHTS[i].diffuse, ZERO, sizeof(GLfloat) * 4);
memcpy(LIGHTS[i].specular, ZERO, sizeof(GLfloat) * 4);
}
LIGHTS[i].position[0] = LIGHTS[i].position[1] = LIGHTS[i].position[3] = 0.0f;
LIGHTS[i].position[2] = 1.0f;
LIGHTS[i].spot_direction[0] = LIGHTS[i].spot_direction[1] = 0.0f;
LIGHTS[i].spot_direction[2] = -1.0f;
LIGHTS[i].spot_exponent = 0.0f;
LIGHTS[i].spot_cutoff = 180.0f;
LIGHTS[i].constant_attenuation = 1.0f;
LIGHTS[i].linear_attenuation = 0.0f;
LIGHTS[i].quadratic_attenuation = 0.0f;
}
}
void APIENTRY glLightModelf(GLenum pname, const GLfloat param) {
glLightModelfv(pname, &param);
}
void APIENTRY glLightModeli(GLenum pname, const GLint param) {
glLightModeliv(pname, &param);
}
void APIENTRY glLightModelfv(GLenum pname, const GLfloat *params) {
switch(pname) {
case GL_LIGHT_MODEL_AMBIENT:
memcpy(SCENE_AMBIENT, params, sizeof(GLfloat) * 4);
break;
case GL_LIGHT_MODEL_LOCAL_VIEWER:
VIEWER_IN_EYE_COORDINATES = (*params) ? GL_TRUE : GL_FALSE;
break;
case GL_LIGHT_MODEL_TWO_SIDE:
/* Not implemented */
default:
_glKosThrowError(GL_INVALID_ENUM, __func__);
_glKosPrintError();
}
}
void APIENTRY glLightModeliv(GLenum pname, const GLint* params) {
switch(pname) {
case GL_LIGHT_MODEL_COLOR_CONTROL:
COLOR_CONTROL = *params;
break;
case GL_LIGHT_MODEL_LOCAL_VIEWER:
VIEWER_IN_EYE_COORDINATES = (*params) ? GL_TRUE : GL_FALSE;
break;
default:
_glKosThrowError(GL_INVALID_ENUM, __func__);
_glKosPrintError();
}
}
void APIENTRY glLightfv(GLenum light, GLenum pname, const GLfloat *params) {
GLubyte idx = light & 0xF;
if(idx >= MAX_LIGHTS) {
return;
}
switch(pname) {
case GL_AMBIENT:
memcpy(LIGHTS[idx].ambient, params, sizeof(GLfloat) * 4);
break;
case GL_DIFFUSE:
memcpy(LIGHTS[idx].diffuse, params, sizeof(GLfloat) * 4);
break;
case GL_SPECULAR:
memcpy(LIGHTS[idx].specular, params, sizeof(GLfloat) * 4);
break;
case GL_POSITION: {
_glMatrixLoadModelView();
memcpy(LIGHTS[idx].position, params, sizeof(GLfloat) * 4);
if(params[3] == 0.0f) {
//FIXME: Do we need to rotate directional lights?
} else {
mat_trans_single4(
LIGHTS[idx].position[0],
LIGHTS[idx].position[1],
LIGHTS[idx].position[2],
LIGHTS[idx].position[3]
);
}
}
break;
case GL_SPOT_DIRECTION: {
LIGHTS[idx].spot_direction[0] = params[0];
LIGHTS[idx].spot_direction[1] = params[1];
LIGHTS[idx].spot_direction[2] = params[2];
} break;
case GL_CONSTANT_ATTENUATION:
case GL_LINEAR_ATTENUATION:
case GL_QUADRATIC_ATTENUATION:
case GL_SPOT_CUTOFF:
case GL_SPOT_EXPONENT:
glLightf(light, pname, *params);
break;
default:
_glKosThrowError(GL_INVALID_ENUM, __func__);
_glKosPrintError();
}
}
void APIENTRY glLightf(GLenum light, GLenum pname, GLfloat param) {
GLubyte idx = light & 0xF;
if(idx >= MAX_LIGHTS) {
return;
}
switch(pname) {
case GL_CONSTANT_ATTENUATION:
LIGHTS[idx].constant_attenuation = param;
break;
case GL_LINEAR_ATTENUATION:
LIGHTS[idx].linear_attenuation = param;
break;
case GL_QUADRATIC_ATTENUATION:
LIGHTS[idx].quadratic_attenuation = param;
break;
case GL_SPOT_EXPONENT:
LIGHTS[idx].spot_exponent = param;
break;
case GL_SPOT_CUTOFF:
LIGHTS[idx].spot_cutoff = param;
break;
default:
_glKosThrowError(GL_INVALID_ENUM, __func__);
_glKosPrintError();
}
}
void APIENTRY glMaterialf(GLenum face, GLenum pname, const GLfloat param) {
if(face == GL_BACK || pname != GL_SHININESS) {
_glKosThrowError(GL_INVALID_ENUM, __func__);
_glKosPrintError();
return;
}
MATERIAL.exponent = _MIN(param, 128); /* 128 is the max according to the GL spec */
}
void APIENTRY glMateriali(GLenum face, GLenum pname, const GLint param) {
glMaterialf(face, pname, param);
}
void APIENTRY glMaterialfv(GLenum face, GLenum pname, const GLfloat *params) {
if(pname == GL_SHININESS) {
glMaterialf(face, pname, *params);
return;
}
if(face == GL_BACK) {
_glKosThrowError(GL_INVALID_ENUM, __func__);
_glKosPrintError();
return;
}
switch(pname) {
case GL_AMBIENT:
memcpy(MATERIAL.ambient, params, sizeof(GLfloat) * 4);
break;
case GL_DIFFUSE:
memcpy(MATERIAL.diffuse, params, sizeof(GLfloat) * 4);
break;
case GL_SPECULAR:
memcpy(MATERIAL.specular, params, sizeof(GLfloat) * 4);
break;
case GL_EMISSION:
memcpy(MATERIAL.emissive, params, sizeof(GLfloat) * 4);
break;
case GL_AMBIENT_AND_DIFFUSE: {
glMaterialfv(face, GL_AMBIENT, params);
glMaterialfv(face, GL_DIFFUSE, params);
} break;
case GL_COLOR_INDEXES:
default: {
_glKosThrowError(GL_INVALID_ENUM, __func__);
_glKosPrintError();
}
}
}
void APIENTRY glColorMaterial(GLenum face, GLenum mode) {
if(face != GL_FRONT_AND_BACK) {
_glKosThrowError(GL_INVALID_ENUM, __func__);
_glKosPrintError();
return;
}
GLint validModes[] = {GL_AMBIENT, GL_DIFFUSE, GL_AMBIENT_AND_DIFFUSE, GL_EMISSION, GL_SPECULAR, 0};
if(_glCheckValidEnum(mode, validModes, __func__) != 0) {
return;
}
COLOR_MATERIAL_MODE = mode;
}
GL_FORCE_INLINE GLboolean isDiffuseColorMaterial() {
return (COLOR_MATERIAL_MODE == GL_DIFFUSE || COLOR_MATERIAL_MODE == GL_AMBIENT_AND_DIFFUSE);
}
GL_FORCE_INLINE GLboolean isAmbientColorMaterial() {
return (COLOR_MATERIAL_MODE == GL_AMBIENT || COLOR_MATERIAL_MODE == GL_AMBIENT_AND_DIFFUSE);
}
GL_FORCE_INLINE GLboolean isSpecularColorMaterial() {
return (COLOR_MATERIAL_MODE == GL_SPECULAR);
}
GL_FORCE_INLINE void initVec3(struct vec3f* v, const GLfloat* src) {
memcpy(v, src, sizeof(GLfloat) * 3);
}
/*
* Implementation from here (MIT):
* https://github.com/appleseedhq/appleseed/blob/master/src/appleseed/foundation/math/fastmath.h
*/
GL_FORCE_INLINE float faster_pow2(const float p) {
// Underflow of exponential is common practice in numerical routines, so handle it here.
const float clipp = p < -126.0f ? -126.0f : p;
const union { uint32_t i; float f; } v =
{
(uint32_t) ((1 << 23) * (clipp + 126.94269504f))
};
return v.f;
}
GL_FORCE_INLINE float faster_log2(const float x) {
assert(x >= 0.0f);
const union { float f; uint32_t i; } vx = { x };
const float y = (float) (vx.i) * 1.1920928955078125e-7f;
return y - 126.94269504f;
}
GL_FORCE_INLINE float faster_pow(const float x, const float p) {
return faster_pow2(p * faster_log2(x));
}
GL_FORCE_INLINE float vec3_dot_limited(
const float* x1, const float* y1, const float* z1,
const float* x2, const float* y2, const float* z2) {
float ret;
vec3f_dot(*x1, *y1, *z1, *x2, *y2, *z2, ret);
return (ret < 0) ? 0 : ret;
}
GL_FORCE_INLINE void _glLightVertexDirectional(
uint8_t* final, int8_t lid,
float LdotN, float NdotH,
const float* ambient, const float* diffuse, const float* specular) {
float F;
uint8_t FO;
float FI = (LdotN != 0.0f);
FI = (MATERIAL.exponent) ? faster_pow(FI * NdotH, MATERIAL.exponent) : 1.0f;
#define _PROCESS_COMPONENT(T, X) \
F = (ambient[X] * LIGHTS[lid].ambient[X]); \
F += (LdotN * diffuse[X] * LIGHTS[lid].diffuse[X]); \
F += FI * specular[X] * LIGHTS[lid].specular[X]; \
FO = (uint8_t) (_MIN(F * 255.0f, 255.0f)); \
final[T] += _MIN(FO, 255 - final[T]);
_PROCESS_COMPONENT(R8IDX, 0);
_PROCESS_COMPONENT(G8IDX, 1);
_PROCESS_COMPONENT(B8IDX, 2);
#undef _PROCESS_COMPONENT
}
GL_FORCE_INLINE void _glLightVertexPoint(
uint8_t* final, int8_t lid,
float LdotN, float NdotH, float att,
const float* ambient, const float* diffuse, const float* specular) {
float F;
uint8_t FO;
float FI = (LdotN != 0.0f);
FI = (MATERIAL.exponent) ? faster_pow(FI * NdotH, MATERIAL.exponent) : 1.0f;
#define _PROCESS_COMPONENT(T, X) \
F = (ambient[X] * LIGHTS[lid].ambient[X]); \
F += (LdotN * diffuse[X] * LIGHTS[lid].diffuse[X]); \
F += FI * specular[X] * LIGHTS[lid].specular[X]; \
FO = (uint8_t) (_MIN(F * att * 255.0f, 255.0f)); \
\
final[T] += _MIN(FO, 255 - final[T]); \
_PROCESS_COMPONENT(R8IDX, 0);
_PROCESS_COMPONENT(G8IDX, 1);
_PROCESS_COMPONENT(B8IDX, 2);
#undef _PROCESS_COMPONENT
}
GL_FORCE_INLINE void bgra_to_float(const uint8_t* input, GLfloat* output) {
static const float scale = 1.0f / 255.0f;
output[0] = ((float) input[R8IDX]) * scale;
output[1] = ((float) input[G8IDX]) * scale;
output[2] = ((float) input[B8IDX]) * scale;
output[3] = ((float) input[A8IDX]) * scale;
}
void _glPerformLighting(Vertex* vertices, const EyeSpaceData* es, const int32_t count) {
int8_t i;
int32_t j;
Vertex* vertex = vertices;
const EyeSpaceData* data = es;
float base;
/* This is the original vertex colour, before we replace it. It's
* used for colour material */
float vdiffuse[4];
unsigned char isCM = _glIsColorMaterialEnabled();
/* Update pointers as necessary depending on color material */
GLfloat* ambient = (isCM && isAmbientColorMaterial()) ? vdiffuse : MATERIAL.ambient;
GLfloat* diffuse = (isCM && isDiffuseColorMaterial()) ? vdiffuse : MATERIAL.diffuse;
GLfloat* specular = (isCM && isSpecularColorMaterial()) ? vdiffuse : MATERIAL.specular;
for(j = 0; j < count; ++j, ++vertex, ++data) {
/* Unpack the colour for use in glColorMaterial */
if(isCM) {
bgra_to_float(vertex->bgra, vdiffuse);
}
/* Initial, non-light related values */
base = (SCENE_AMBIENT[0] * ambient[0]) + MATERIAL.emissive[0];
vertex->bgra[R8IDX] = (uint8_t)(_MIN(base * 255.0f, 255.0f));
base = (SCENE_AMBIENT[1] * ambient[1]) + MATERIAL.emissive[1];
vertex->bgra[G8IDX] = (uint8_t)(_MIN(base * 255.0f, 255.0f));
base = (SCENE_AMBIENT[2] * ambient[2]) + MATERIAL.emissive[2];
vertex->bgra[B8IDX] = (uint8_t)(_MIN(base * 255.0f, 255.0f));
vertex->bgra[A8IDX] = (uint8_t)(_MIN(MATERIAL.diffuse[3] * 255.0f, 255.0f));
/* Direction to vertex in eye space */
float Vx = -data->xyz[0];
float Vy = -data->xyz[1];
float Vz = -data->xyz[2];
vec3f_normalize(Vx, Vy, Vz);
const float Nx = data->n[0];
const float Ny = data->n[1];
const float Nz = data->n[2];
for(i = 0; i < MAX_LIGHTS; ++i) {
if(!_glIsLightEnabled(i)) continue;
if(LIGHTS[i].position[3] == 0.0f) {
float Lx = LIGHTS[i].position[0] - data->xyz[0];
float Ly = LIGHTS[i].position[1] - data->xyz[1];
float Lz = LIGHTS[i].position[2] - data->xyz[2];
float Hx = (Lx + 0);
float Hy = (Ly + 0);
float Hz = (Lz + 1);
vec3f_normalize(Lx, Ly, Lz);
vec3f_normalize(Hx, Hy, Hz);
const float LdotN = vec3_dot_limited(
&Nx, &Ny, &Nz,
&Lx, &Ly, &Lz
);
const float NdotH = vec3_dot_limited(
&Nx, &Ny, &Nz,
&Hx, &Hy, &Hz
);
_glLightVertexDirectional(
vertex->bgra,
i, LdotN, NdotH,
ambient, diffuse, specular
);
} else {
float Lx = LIGHTS[i].position[0] - data->xyz[0];
float Ly = LIGHTS[i].position[1] - data->xyz[1];
float Lz = LIGHTS[i].position[2] - data->xyz[2];
float D;
vec3f_length(Lx, Ly, Lz, D);
float att = (
LIGHTS[i].constant_attenuation + (
LIGHTS[i].linear_attenuation * D
) + (LIGHTS[i].quadratic_attenuation * D * D)
);
att = MATH_fsrra(att * att);
if(att >= ATTENUATION_THRESHOLD) {
float Hx = (Lx + Vx);
float Hy = (Ly + Vy);
float Hz = (Lz + Vz);
vec3f_normalize(Lx, Ly, Lz);
vec3f_normalize(Hx, Hy, Hz);
const float LdotN = vec3_dot_limited(
&Nx, &Ny, &Nz,
&Lx, &Ly, &Lz
);
const float NdotH = vec3_dot_limited(
&Nx, &Ny, &Nz,
&Hx, &Hy, &Hz
);
_glLightVertexPoint(
vertex->bgra,
i, LdotN, NdotH, att,
ambient, diffuse, specular
);
}
}
}
}
}
#undef LIGHT_COMPONENT