GLdc/GL/draw.c
2018-08-16 17:51:15 +01:00

958 lines
27 KiB
C

#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include "../include/gl.h"
#include "../include/glext.h"
#include "private.h"
#include "profiler.h"
typedef struct {
const void* ptr;
GLenum type;
GLsizei stride;
GLint size;
} AttribPointer;
static AttribPointer VERTEX_POINTER;
static AttribPointer UV_POINTER;
static AttribPointer ST_POINTER;
static AttribPointer NORMAL_POINTER;
static AttribPointer DIFFUSE_POINTER;
#define VERTEX_ENABLED_FLAG (1 << 0)
#define UV_ENABLED_FLAG (1 << 1)
#define ST_ENABLED_FLAG (1 << 2)
#define DIFFUSE_ENABLED_FLAG (1 << 3)
#define NORMAL_ENABLED_FLAG (1 << 4)
static GLuint ENABLED_VERTEX_ATTRIBUTES = 0;
static GLubyte ACTIVE_CLIENT_TEXTURE = 0;
void initAttributePointers() {
TRACE();
VERTEX_POINTER.ptr = NULL;
VERTEX_POINTER.stride = 0;
VERTEX_POINTER.type = GL_FLOAT;
VERTEX_POINTER.size = 4;
DIFFUSE_POINTER.ptr = NULL;
DIFFUSE_POINTER.stride = 0;
DIFFUSE_POINTER.type = GL_FLOAT;
DIFFUSE_POINTER.size = 4;
UV_POINTER.ptr = NULL;
UV_POINTER.stride = 0;
UV_POINTER.type = GL_FLOAT;
UV_POINTER.size = 4;
ST_POINTER.ptr = NULL;
ST_POINTER.stride = 0;
ST_POINTER.type = GL_FLOAT;
ST_POINTER.size = 4;
NORMAL_POINTER.ptr = NULL;
NORMAL_POINTER.stride = 0;
NORMAL_POINTER.type = GL_FLOAT;
NORMAL_POINTER.size = 3;
}
static inline GLuint byte_size(GLenum type) {
switch(type) {
case GL_BYTE: return sizeof(GLbyte);
case GL_UNSIGNED_BYTE: return sizeof(GLubyte);
case GL_SHORT: return sizeof(GLshort);
case GL_UNSIGNED_SHORT: return sizeof(GLushort);
case GL_INT: return sizeof(GLint);
case GL_UNSIGNED_INT: return sizeof(GLuint);
case GL_DOUBLE: return sizeof(GLdouble);
case GL_FLOAT:
default: return sizeof(GLfloat);
}
}
typedef void (*FloatParseFunc)(GLfloat* out, const GLubyte* in);
typedef void (*PolyBuildFunc)(ClipVertex* first, ClipVertex* previous, ClipVertex* vertex, ClipVertex* next, const GLsizei i);
static inline void _parseVec3FromShort3(GLfloat* out, const GLubyte* in) {
GLshort* ptr = (GLshort*) in;
out[0] = (GLfloat) ptr[0];
out[1] = (GLfloat) ptr[1];
out[2] = (GLfloat) ptr[2];
}
static inline void _parseVec3FromInt3(GLfloat* out, const GLubyte* in) {
GLint* ptr = (GLint*) in;
out[0] = (GLfloat) ptr[0];
out[1] = (GLfloat) ptr[1];
out[2] = (GLfloat) ptr[2];
}
static inline void _parseVec3FromFloat3(GLfloat* out, const GLubyte* in) {
GLfloat* ptr = (GLfloat*) in;
out[0] = ptr[0];
out[1] = ptr[1];
out[2] = ptr[2];
}
static inline void _parseVec2FromFloat2(GLfloat* out, const GLubyte* in) {
GLfloat* ptr = (GLfloat*) in;
out[0] = ptr[0];
out[1] = ptr[1];
}
static inline void _parseVec3FromFloat2(GLfloat* out, const GLubyte* in) {
GLfloat* ptr = (GLfloat*) in;
out[0] = ptr[0];
out[1] = ptr[1];
out[2] = 0.0f;
}
static inline void _parseVec4FromFloat3(GLfloat* out, const GLubyte* in) {
GLfloat* ptr = (GLfloat*) in;
out[0] = ptr[0];
out[1] = ptr[1];
out[2] = ptr[2];
out[3] = 1.0;
}
static inline void _parseVec4FromFloat4(GLfloat* out, const GLubyte* in) {
GLfloat* ptr = (GLfloat*) in;
out[0] = ptr[0];
out[1] = ptr[1];
out[2] = ptr[2];
out[3] = ptr[3];
}
static inline void _parseColourFromUByte4(GLfloat* out, const GLubyte* in) {
const float ONE_OVER_255 = 1.0f / 255.0f;
out[0] = ((GLfloat) in[0]) * ONE_OVER_255;
out[1] = ((GLfloat) in[1]) * ONE_OVER_255;
out[2] = ((GLfloat) in[2]) * ONE_OVER_255;
out[3] = ((GLfloat) in[3]) * ONE_OVER_255;
}
static inline void _constVec2Zero(GLfloat* out, const GLubyte* in) {
out[0] = 0.0f;
out[1] = 0.0f;
}
static inline void _constVec3NegZ(GLfloat* out, const GLubyte* in) {
out[0] = 0.0f;
out[1] = 0.0f;
out[2] = -1.0f;
}
static inline void _constVec4One(GLfloat* out, const GLubyte* in) {
out[0] = 1.0f;
out[1] = 1.0f;
out[2] = 1.0f;
out[3] = 1.0f;
}
typedef GLuint (*IndexParseFunc)(const GLubyte* in);
static inline GLuint _parseUByteIndex(const GLubyte* in) {
return (GLuint) *in;
}
static inline GLuint _parseUIntIndex(const GLubyte* in) {
return *((GLuint*) in);
}
static inline GLuint _parseUShortIndex(const GLubyte* in) {
return *((GLshort*) in);
}
static inline IndexParseFunc _calcParseIndexFunc(GLenum type) {
switch(type) {
case GL_UNSIGNED_BYTE:
return &_parseUByteIndex;
break;
case GL_UNSIGNED_INT:
return &_parseUIntIndex;
break;
case GL_UNSIGNED_SHORT:
default:
break;
}
return &_parseUShortIndex;
}
/* There was a bug in this macro that shipped with Kos
* which has now been fixed. But just in case...
*/
#undef mat_trans_single3_nodiv
#define mat_trans_single3_nodiv(x, y, z) { \
register float __x __asm__("fr12") = (x); \
register float __y __asm__("fr13") = (y); \
register float __z __asm__("fr14") = (z); \
__asm__ __volatile__( \
"fldi1 fr15\n" \
"ftrv xmtrx, fv12\n" \
: "=f" (__x), "=f" (__y), "=f" (__z) \
: "0" (__x), "1" (__y), "2" (__z) \
: "fr15"); \
x = __x; y = __y; z = __z; \
}
/* FIXME: Is this right? Shouldn't it be fr12->15? */
#undef mat_trans_normal3
#define mat_trans_normal3(x, y, z) { \
register float __x __asm__("fr8") = (x); \
register float __y __asm__("fr9") = (y); \
register float __z __asm__("fr10") = (z); \
__asm__ __volatile__( \
"fldi0 fr11\n" \
"ftrv xmtrx, fv8\n" \
: "=f" (__x), "=f" (__y), "=f" (__z) \
: "0" (__x), "1" (__y), "2" (__z) \
: "fr11"); \
x = __x; y = __y; z = __z; \
}
static inline void transformToEyeSpace(GLfloat* point) {
_matrixLoadModelView();
mat_trans_single3_nodiv(point[0], point[1], point[2]);
}
static inline void transformNormalToEyeSpace(GLfloat* normal) {
_matrixLoadNormal();
mat_trans_normal3(normal[0], normal[1], normal[2]);
}
static inline void swapVertex(ClipVertex* v1, ClipVertex* v2) {
static ClipVertex tmp;
tmp = *v1;
*v1 = *v2;
*v2 = tmp;
}
static inline FloatParseFunc _calcVertexParseFunc() {
switch(VERTEX_POINTER.type) {
case GL_SHORT: {
if(VERTEX_POINTER.size == 3) {
return &_parseVec3FromShort3;
}
} break;
case GL_INT: {
if(VERTEX_POINTER.size == 3) {
return &_parseVec3FromInt3;
}
} break;
case GL_FLOAT: {
if(VERTEX_POINTER.size == 3) {
return &_parseVec3FromFloat3;
} else if(VERTEX_POINTER.size == 2) {
return &_parseVec3FromFloat2;
}
} break;
default:
break;
}
return NULL;
}
static inline FloatParseFunc _calcDiffuseParseFunc() {
if((ENABLED_VERTEX_ATTRIBUTES & DIFFUSE_ENABLED_FLAG) != DIFFUSE_ENABLED_FLAG) {
return &_constVec4One;
}
switch(DIFFUSE_POINTER.type) {
case GL_BYTE:
case GL_UNSIGNED_BYTE: {
if(DIFFUSE_POINTER.size == 4) {
return &_parseColourFromUByte4;
}
} break;
case GL_INT: {
if(DIFFUSE_POINTER.size == 3) {
return &_parseVec3FromInt3;
}
} break;
case GL_FLOAT: {
if(DIFFUSE_POINTER.size == 3) {
return &_parseVec4FromFloat3;
} else if(DIFFUSE_POINTER.size == 4) {
return &_parseVec4FromFloat4;
}
} break;
default:
break;
}
return &_constVec4One;
}
static inline FloatParseFunc _calcUVParseFunc() {
if((ENABLED_VERTEX_ATTRIBUTES & UV_ENABLED_FLAG) != UV_ENABLED_FLAG) {
return &_constVec2Zero;
}
switch(UV_POINTER.type) {
case GL_FLOAT: {
if(UV_POINTER.size == 2) {
return &_parseVec2FromFloat2;
}
} break;
default:
break;
}
return &_constVec2Zero;
}
static inline FloatParseFunc _calcSTParseFunc() {
if((ENABLED_VERTEX_ATTRIBUTES & ST_ENABLED_FLAG) != ST_ENABLED_FLAG) {
return &_constVec2Zero;
}
switch(ST_POINTER.type) {
case GL_FLOAT: {
if(ST_POINTER.size == 2) {
return &_parseVec2FromFloat2;
}
} break;
default:
break;
}
return &_constVec2Zero;
}
static inline FloatParseFunc _calcNormalParseFunc() {
if((ENABLED_VERTEX_ATTRIBUTES & NORMAL_ENABLED_FLAG) != NORMAL_ENABLED_FLAG) {
return &_constVec3NegZ;
}
switch(NORMAL_POINTER.type) {
case GL_SHORT: {
if(NORMAL_POINTER.size == 3) {
return &_parseVec3FromShort3;
}
} break;
case GL_INT: {
if(NORMAL_POINTER.size == 3) {
return &_parseVec3FromInt3;
}
} break;
case GL_FLOAT: {
if(NORMAL_POINTER.size == 3) {
return &_parseVec3FromFloat3;
} else if(NORMAL_POINTER.size == 2) {
return &_parseVec3FromFloat2;
}
} break;
default:
break;
}
return &_constVec3NegZ;
}
static void _buildTriangle(ClipVertex* first, ClipVertex* previous, ClipVertex* vertex, ClipVertex* next, const GLsizei i) {
if(((i + 1) % 3) == 0) {
vertex->flags = PVR_CMD_VERTEX_EOL;
}
}
static inline GLsizei fast_mod(const GLsizei input, const GLsizei ceil) {
return input >= ceil ? input % ceil : input;
}
static void _buildQuad(ClipVertex* first, ClipVertex* previous, ClipVertex* vertex, ClipVertex* next, const GLsizei i) {
if((i + 1) % 4 == 0) {
previous->flags = PVR_CMD_VERTEX_EOL;
swapVertex(previous, vertex);
}
}
static void _buildTriangleFan(ClipVertex* first, ClipVertex* previous, ClipVertex* vertex, ClipVertex* next, const GLsizei i) {
if(i == 2) {
swapVertex(previous, vertex);
vertex->flags = PVR_CMD_VERTEX_EOL;
} else if(i > 2) {
ClipVertex* next = vertex + 1;
*next = *first;
swapVertex(next, vertex);
vertex = next + 1;
*vertex = *previous;
vertex->flags = PVR_CMD_VERTEX_EOL;
}
}
static void _buildStrip(ClipVertex* first, ClipVertex* previous, ClipVertex* vertex, ClipVertex* next, const GLsizei i) {
if(!next) {
/* If the mode was triangle strip, then the last vertex is the last vertex */
vertex->flags = PVR_CMD_VERTEX_EOL;
}
}
static inline PolyBuildFunc _calcBuildFunc(const GLenum type) {
switch(type) {
case GL_TRIANGLES:
return &_buildTriangle;
break;
case GL_QUADS:
return &_buildQuad;
break;
case GL_TRIANGLE_FAN:
case GL_POLYGON:
return &_buildTriangleFan;
break;
default:
break;
}
return &_buildStrip;
}
typedef struct {
const GLubyte* vptr;
const GLuint vstride;
const GLubyte* cptr;
const GLuint cstride;
const GLubyte* uvptr;
const GLuint uvstride;
const GLubyte* stptr;
const GLuint ststride;
const GLubyte* nptr;
const GLuint nstride;
} GenerateParams;
static void generate(AlignedVector* output, const GLenum mode, const GLsizei first, const GLsizei count,
const GLubyte* indices, const GLenum type, const GenerateParams* pointers) {
/* Read from the client buffers and generate an array of ClipVertices */
const GLsizei max = first + count;
const GLsizei spaceNeeded = (mode == GL_POLYGON || mode == GL_TRIANGLE_FAN) ? ((count - 2) * 3) : count;
/* Make sure we have room for the output */
ClipVertex* vertex = aligned_vector_resize(output, spaceNeeded);
const FloatParseFunc vertexFunc = _calcVertexParseFunc();
const FloatParseFunc diffuseFunc = _calcDiffuseParseFunc();
const FloatParseFunc uvFunc = _calcUVParseFunc();
const FloatParseFunc stFunc = _calcSTParseFunc();
const FloatParseFunc normalFunc = _calcNormalParseFunc();
const PolyBuildFunc buildFunc = _calcBuildFunc(mode);
const IndexParseFunc indexFunc = _calcParseIndexFunc(type);
const GLsizei type_byte_size = byte_size(type);
ClipVertex* previous = NULL;
ClipVertex* firstV = vertex;
ClipVertex* next = NULL;
GLsizei i;
for(i = first; i < max; ++i, ++vertex) {
vertex->flags = PVR_CMD_VERTEX;
const GLuint idx = (indices) ?
indexFunc(&indices[type_byte_size * i]) : i;
const GLubyte* vin = pointers->vptr + (idx * pointers->vstride);
const GLubyte* din = pointers->cptr + (idx * pointers->cstride);
const GLubyte* uin = pointers->uvptr + (idx * pointers->uvstride);
const GLubyte* sin = pointers->stptr + (idx * pointers->ststride);
const GLubyte* nin = pointers->nptr + (idx * pointers->nstride);
vertexFunc(vertex->xyz, vin);
diffuseFunc(vertex->diffuse, din);
uvFunc(vertex->uv, uin);
stFunc(vertex->st, sin);
normalFunc(vertex->nxyz, nin);
}
vertex = firstV;
for(i = 0; i < count; ++i, ++vertex) {
next = (i < count - 1) ? vertex + 1 : NULL;
previous = (i > 0) ? vertex - 1 : NULL;
buildFunc(firstV, previous, vertex, next, i);
}
}
static void transform(AlignedVector* vertices) {
/* Perform modelview transform, storing W */
ClipVertex* vertex = (ClipVertex*) vertices->data;
_applyRenderMatrix(); /* Apply the Render Matrix Stack */
GLsizei i;
for(i = 0; i < vertices->size; ++i, ++vertex) {
register float __x __asm__("fr12") = (vertex->xyz[0]);
register float __y __asm__("fr13") = (vertex->xyz[1]);
register float __z __asm__("fr14") = (vertex->xyz[2]);
register float __w __asm__("fr15");
__asm__ __volatile__(
"fldi1 fr15\n"
"ftrv xmtrx,fv12\n"
: "=f" (__x), "=f" (__y), "=f" (__z), "=f" (__w)
: "0" (__x), "1" (__y), "2" (__z), "3" (__w)
);
vertex->xyz[0] = __x;
vertex->xyz[1] = __y;
vertex->xyz[2] = __z;
vertex->w = __w;
}
}
static void clip(AlignedVector* vertices) {
/* Perform clipping, generating new vertices as necessary */
static AlignedVector* CLIP_BUFFER = NULL;
/* First entry into this, allocate the clip buffer */
if(!CLIP_BUFFER) {
CLIP_BUFFER = (AlignedVector*) malloc(sizeof(AlignedVector));
aligned_vector_init(CLIP_BUFFER, sizeof(ClipVertex));
}
/* Make sure we allocate roughly enough space */
aligned_vector_reserve(CLIP_BUFFER, vertices->size * 1.5);
/* Start from empty */
aligned_vector_resize(CLIP_BUFFER, 0);
/* Now perform clipping! */
clipTriangleStrip(vertices, CLIP_BUFFER);
/* Copy the clip buffer over the vertices */
aligned_vector_resize(vertices, CLIP_BUFFER->size);
memcpy(vertices->data, CLIP_BUFFER->data, CLIP_BUFFER->size * CLIP_BUFFER->element_size);
}
static void mat_transform3(const float* xyz, const float* xyzOut, const uint32_t count, const uint32_t stride) {
uint8_t* dataIn = (uint8_t*) xyz;
uint8_t* dataOut = (uint8_t*) xyzOut;
uint32_t i = count;
while(i--) {
float* in = (float*) dataIn;
float* out = (float*) dataOut;
mat_trans_single3_nodiv_nomod(in[0], in[1], in[2], out[0], out[1], out[2]);
dataIn += stride;
dataOut += stride;
}
}
static void mat_transform_normal3(const float* xyz, const float* xyzOut, const uint32_t count, const uint32_t stride) {
uint8_t* dataIn = (uint8_t*) xyz;
uint8_t* dataOut = (uint8_t*) xyzOut;
uint32_t i = count;
while(i--) {
float* in = (float*) dataIn;
float* out = (float*) dataOut;
mat_trans_normal3_nomod(in[0], in[1], in[2], out[0], out[1], out[2]);
dataIn += stride;
dataOut += stride;
}
}
static void light(AlignedVector* vertices) {
if(!isLightingEnabled()) {
return;
}
/* Perform lighting calculations and manipulate the colour */
ClipVertex* vertex = (ClipVertex*) vertices->data;
_matrixLoadModelView();
mat_transform3(vertex->xyz, vertex->xyzES, vertices->size, sizeof(ClipVertex));
_matrixLoadNormal();
mat_transform_normal3(vertex->nxyz, vertex->nES, vertices->size, sizeof(ClipVertex));
GLsizei i;
for(i = 0; i < vertices->size; ++i, ++vertex) {
/* We ignore diffuse colour when lighting is enabled. If GL_COLOR_MATERIAL is enabled
* then the lighting calculation should possibly take it into account */
memset(vertex->diffuse, 0, sizeof(float) * 4);
GLfloat to_add [] = {0.0f, 0.0f, 0.0f, 0.0f};
GLubyte j;
for(j = 0; j < MAX_LIGHTS; ++j) {
if(isLightEnabled(j)) {
calculateLightingContribution(j, vertex->xyzES, vertex->nES, to_add);
vertex->diffuse[0] += to_add[0];
vertex->diffuse[1] += to_add[1];
vertex->diffuse[2] += to_add[2];
vertex->diffuse[3] += to_add[3];
}
}
}
}
static void divide(AlignedVector* vertices) {
/* Perform perspective divide on each vertex */
ClipVertex* vertex = (ClipVertex*) vertices->data;
GLsizei i;
for(i = 0; i < vertices->size; ++i, ++vertex) {
vertex->xyz[2] = 1.0f / vertex->w;
vertex->xyz[0] *= vertex->xyz[2];
vertex->xyz[1] *= vertex->xyz[2];
}
}
typedef struct {
unsigned int list_type;
pvr_poly_hdr_t hdr;
} ListToHeader;
#define MAX_LISTS 5
static void push(const AlignedVector* vertices, PolyList* activePolyList, GLshort textureUnit) {
/* Copy the vertices to the active poly list */
static GLuint LIST_COUNTER = 0;
static ListToHeader LAST_HEADERS[MAX_LISTS];
/* If the list was empty, this is the first submission this frame so we
* always send the header in this case */
GLboolean listWasEmpty = activePolyList->vector.size > 0;
// Make room for the element + the header
PVRCommand* dst = (PVRCommand*) aligned_vector_extend(&activePolyList->vector, vertices->size);
// Store a pointer to the header
pvr_poly_hdr_t* hdr = (pvr_poly_hdr_t*) dst;
// Compile
pvr_poly_cxt_t cxt = *getPVRContext();
cxt.list_type = activePolyList->list_type;
_glUpdatePVRTextureContext(&cxt, textureUnit);
pvr_poly_compile(hdr, &cxt);
/* We store a list of the last "hdr" to be submitted for a list, and then compare before
* specifying another one. Apparently it's quite slow to change header
*/
GLuint c;
GLboolean sendHeader = GL_FALSE;
GLboolean listFound = GL_FALSE;
for(c = 0; c < LIST_COUNTER; ++c) {
if(LAST_HEADERS[c].list_type == activePolyList->list_type) {
/* Send the header if this was the first submission to this list, or the header has changed since
* the last sent */
sendHeader = listWasEmpty || memcmp(&LAST_HEADERS[c].hdr, &hdr, sizeof(pvr_poly_hdr_t)) != 0;
listFound = GL_TRUE;
break;
}
}
if(!listFound) {
if(LIST_COUNTER == MAX_LISTS) {
fprintf(stderr, "Ran out of space!\n");
}
/* First time we've seen this list, add it to the array */
LAST_HEADERS[LIST_COUNTER].list_type = activePolyList->list_type;
LAST_HEADERS[LIST_COUNTER++].hdr = *hdr;
/* Send the header the first time */
sendHeader = GL_TRUE;
}
if(sendHeader) {
// Point dest at the first new vertex to populate, if we're not sending a header
// we won't increment and instead overwrite the header we just created with the
// first vertex
dst++;
// Add one more to the list
aligned_vector_extend(&activePolyList->vector, 1);
}
GLsizei i;
ClipVertex* vin = aligned_vector_at(vertices, 0);
for(i = 0; i < vertices->size; ++i, dst++) {
pvr_vertex_t* vout = (pvr_vertex_t*) dst;
vout->flags = vin->flags;
vout->x = vin->xyz[0];
vout->y = vin->xyz[1];
vout->z = vin->xyz[2];
vout->u = vin->uv[0];
vout->v = vin->uv[1];
vout->argb = PVR_PACK_COLOR(vin->diffuse[3], vin->diffuse[0], vin->diffuse[1], vin->diffuse[2]);
vout->oargb = 0;
vin++;
}
}
static void submitVertices(GLenum mode, GLsizei first, GLsizei count, GLenum type, const GLvoid* indices) {
static AlignedVector* buffer = NULL;
/* Do nothing if vertices aren't enabled */
if(!(ENABLED_VERTEX_ATTRIBUTES & VERTEX_ENABLED_FLAG)) {
return;
}
/* Initialize the buffer on first call */
if(!buffer) {
buffer = (AlignedVector*) malloc(sizeof(AlignedVector));
aligned_vector_init(buffer, sizeof(ClipVertex));
/* Reserve 64k up-front */
aligned_vector_reserve(buffer, 64 * 1024);
} else {
/* Else, resize to zero (this will retain the allocated memory) */
aligned_vector_resize(buffer, 0);
}
const GLuint vstride = (VERTEX_POINTER.stride) ? VERTEX_POINTER.stride : VERTEX_POINTER.size * byte_size(VERTEX_POINTER.type);
const GLubyte* vptr = VERTEX_POINTER.ptr;
const GLuint cstride = (DIFFUSE_POINTER.stride) ? DIFFUSE_POINTER.stride : DIFFUSE_POINTER.size * byte_size(DIFFUSE_POINTER.type);
const GLubyte* cptr = DIFFUSE_POINTER.ptr;
const GLuint uvstride = (UV_POINTER.stride) ? UV_POINTER.stride : UV_POINTER.size * byte_size(UV_POINTER.type);
const GLubyte* uvptr = UV_POINTER.ptr;
const GLuint ststride = (ST_POINTER.stride) ? ST_POINTER.stride : ST_POINTER.size * byte_size(ST_POINTER.type);
const GLubyte* stptr = ST_POINTER.ptr;
const GLuint nstride = (NORMAL_POINTER.stride) ? NORMAL_POINTER.stride : NORMAL_POINTER.size * byte_size(NORMAL_POINTER.type);
const GLubyte* nptr = NORMAL_POINTER.ptr;
GenerateParams params = {
.vptr = vptr,
.vstride = vstride,
.cptr = cptr,
.cstride = cstride,
.uvptr = uvptr,
.uvstride = uvstride,
.stptr = stptr,
.ststride = ststride,
.nptr = nptr,
.nstride = nstride
};
generate(buffer, mode, first, count, (GLubyte*) indices, type, &params);
light(buffer);
transform(buffer);
if(isClippingEnabled()) {
clip(buffer);
}
divide(buffer);
push(buffer, activePolyList(), 0);
/*
Now, if multitexturing is enabled, we want to send exactly the same vertices again, except:
- We want to enable blending, and send them to the TR list
- We want to set the depth func to GL_EQUAL
- We want to set the second texture ID
- We want to set the uv coordinates to the passed st ones
*/
GLboolean doMultitexture;
glGetBooleanv(GL_TEXTURE_2D, &doMultitexture);
if(!doMultitexture) {
/* Multitexture actively disabled */
return;
}
TextureObject* texture1 = getTexture1();
if(!texture1 || ((ENABLED_VERTEX_ATTRIBUTES & ST_ENABLED_FLAG) != ST_ENABLED_FLAG)) {
/* Multitexture implicitly disabled */
return;
}
ClipVertex* vertex = (ClipVertex*) aligned_vector_at(buffer, 0);
/* Copy ST coordinates to UV ones */
GLsizei i = 0;
for(; i < buffer->size; ++i, ++vertex) {
vertex->uv[0] = vertex->st[0];
vertex->uv[1] = vertex->st[1];
}
/* Store state, as we're about to mess around with it */
GLint depthFunc, blendSrc, blendDst;
glGetIntegerv(GL_DEPTH_FUNC, &depthFunc);
glGetIntegerv(GL_BLEND_SRC, &blendSrc);
glGetIntegerv(GL_BLEND_DST, &blendDst);
GLboolean blendEnabled = glIsEnabled(GL_BLEND);
GLboolean depthEnabled = glIsEnabled(GL_DEPTH_TEST);
glDepthFunc(GL_EQUAL);
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
/* Send the buffer again to the transparent list */
push(buffer, transparentPolyList(), 1);
/* Reset state */
glDepthFunc(depthFunc);
glBlendFunc(blendSrc, blendDst);
(blendEnabled) ? glEnable(GL_BLEND) : glDisable(GL_BLEND);
(depthEnabled) ? glEnable(GL_DEPTH_TEST) : glDisable(GL_DEPTH_TEST);
}
void APIENTRY glDrawElements(GLenum mode, GLsizei count, GLenum type, const GLvoid* indices) {
TRACE();
if(checkImmediateModeInactive(__func__)) {
return;
}
submitVertices(mode, 0, count, type, indices);
}
void APIENTRY glDrawArrays(GLenum mode, GLint first, GLsizei count) {
TRACE();
if(checkImmediateModeInactive(__func__)) {
return;
}
submitVertices(mode, first, count, GL_UNSIGNED_SHORT, NULL);
}
void APIENTRY glEnableClientState(GLenum cap) {
TRACE();
switch(cap) {
case GL_VERTEX_ARRAY:
ENABLED_VERTEX_ATTRIBUTES |= VERTEX_ENABLED_FLAG;
break;
case GL_COLOR_ARRAY:
ENABLED_VERTEX_ATTRIBUTES |= DIFFUSE_ENABLED_FLAG;
break;
case GL_NORMAL_ARRAY:
ENABLED_VERTEX_ATTRIBUTES |= NORMAL_ENABLED_FLAG;
break;
case GL_TEXTURE_COORD_ARRAY:
(ACTIVE_CLIENT_TEXTURE) ?
(ENABLED_VERTEX_ATTRIBUTES |= ST_ENABLED_FLAG):
(ENABLED_VERTEX_ATTRIBUTES |= UV_ENABLED_FLAG);
break;
default:
_glKosThrowError(GL_INVALID_ENUM, "glEnableClientState");
}
}
void APIENTRY glDisableClientState(GLenum cap) {
TRACE();
switch(cap) {
case GL_VERTEX_ARRAY:
ENABLED_VERTEX_ATTRIBUTES &= ~VERTEX_ENABLED_FLAG;
break;
case GL_COLOR_ARRAY:
ENABLED_VERTEX_ATTRIBUTES &= ~DIFFUSE_ENABLED_FLAG;
break;
case GL_NORMAL_ARRAY:
ENABLED_VERTEX_ATTRIBUTES &= ~NORMAL_ENABLED_FLAG;
break;
case GL_TEXTURE_COORD_ARRAY:
(ACTIVE_CLIENT_TEXTURE) ?
(ENABLED_VERTEX_ATTRIBUTES &= ~ST_ENABLED_FLAG):
(ENABLED_VERTEX_ATTRIBUTES &= ~UV_ENABLED_FLAG);
break;
default:
_glKosThrowError(GL_INVALID_ENUM, "glDisableClientState");
}
}
void APIENTRY glClientActiveTextureARB(GLenum texture) {
TRACE();
if(texture < GL_TEXTURE0_ARB || texture > GL_TEXTURE0_ARB + MAX_TEXTURE_UNITS) {
_glKosThrowError(GL_INVALID_ENUM, "glClientActiveTextureARB");
}
if(_glKosHasError()) {
_glKosPrintError();
return;
}
ACTIVE_CLIENT_TEXTURE = (texture == GL_TEXTURE1_ARB) ? 1 : 0;
}
void APIENTRY glTexCoordPointer(GLint size, GLenum type, GLsizei stride, const GLvoid * pointer) {
TRACE();
AttribPointer* tointer = (ACTIVE_CLIENT_TEXTURE == 0) ? &UV_POINTER : &ST_POINTER;
tointer->ptr = pointer;
tointer->stride = stride;
tointer->type = type;
tointer->size = size;
}
void APIENTRY glVertexPointer(GLint size, GLenum type, GLsizei stride, const GLvoid * pointer) {
TRACE();
VERTEX_POINTER.ptr = pointer;
VERTEX_POINTER.stride = stride;
VERTEX_POINTER.type = type;
VERTEX_POINTER.size = size;
}
void APIENTRY glColorPointer(GLint size, GLenum type, GLsizei stride, const GLvoid * pointer) {
TRACE();
DIFFUSE_POINTER.ptr = pointer;
DIFFUSE_POINTER.stride = stride;
DIFFUSE_POINTER.type = type;
DIFFUSE_POINTER.size = size;
}
void APIENTRY glNormalPointer(GLenum type, GLsizei stride, const GLvoid * pointer) {
TRACE();
NORMAL_POINTER.ptr = pointer;
NORMAL_POINTER.stride = stride;
NORMAL_POINTER.type = type;
NORMAL_POINTER.size = 3;
}