bitsandbytes-rocm/bitsandbytes/functional.py

1433 lines
53 KiB
Python
Raw Normal View History

2021-10-06 02:16:20 +00:00
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import ctypes as ct
2021-10-06 02:16:20 +00:00
import random
from typing import Tuple
2021-10-06 02:16:20 +00:00
import torch
from torch import Tensor
2022-07-01 14:25:44 +00:00
from .cextension import lib, COMPILED_WITH_CUDA
2022-07-01 14:16:10 +00:00
2021-10-06 02:16:20 +00:00
name2qmap = {}
2022-07-01 14:16:10 +00:00
if COMPILED_WITH_CUDA:
''' C FUNCTIONS FOR OPTIMIZERS '''
str2optimizer32bit = {}
str2optimizer32bit['adam'] = (lib.cadam32bit_g32, lib.cadam32bit_g16)
str2optimizer32bit['momentum'] = (lib.cmomentum32bit_g32, lib.cmomentum32bit_g16)
str2optimizer32bit['rmsprop'] = (lib.crmsprop32bit_g32, lib.crmsprop32bit_g16)
str2optimizer32bit['adagrad'] = (lib.cadagrad32bit_g32, lib.cadagrad32bit_g16)
str2optimizer32bit['lars'] = (lib.cmomentum32bit_g32, lib.cmomentum32bit_g16)
str2optimizer32bit['lamb'] = (lib.cadam32bit_g32, lib.cadam32bit_g16)
str2optimizer8bit = {}
str2optimizer8bit['adam'] = (lib.cadam_static_8bit_g32, lib.cadam_static_8bit_g16)
str2optimizer8bit['momentum'] = (lib.cmomentum_static_8bit_g32, lib.cmomentum_static_8bit_g16)
str2optimizer8bit['rmsprop'] = (lib.crmsprop_static_8bit_g32, lib.crmsprop_static_8bit_g16)
str2optimizer8bit['lamb'] = (lib.cadam_static_8bit_g32, lib.cadam_static_8bit_g16)
str2optimizer8bit['lars'] = (lib.cmomentum_static_8bit_g32, lib.cmomentum_static_8bit_g16)
str2optimizer8bit_blockwise = {}
str2optimizer8bit_blockwise['adam'] = (lib.cadam_8bit_blockwise_fp32, lib.cadam_8bit_blockwise_fp16)
str2optimizer8bit_blockwise['momentum'] = (lib.cmomentum_8bit_blockwise_fp32, lib.cmomentum_8bit_blockwise_fp16)
str2optimizer8bit_blockwise['rmsprop'] = (lib.crmsprop_8bit_blockwise_fp32, lib.crmsprop_8bit_blockwise_fp16)
str2optimizer8bit_blockwise['adagrad'] = (lib.cadagrad_8bit_blockwise_fp32, lib.cadagrad_8bit_blockwise_fp16)
2021-10-06 02:16:20 +00:00
2022-07-22 21:41:05 +00:00
class CUBLAS_Context(object):
_instance = None
def __init__(self):
raise RuntimeError('Call get_instance() instead')
def initialize(self):
self.context = {}
#prev_device = torch.cuda.current_device()
#for i in range(torch.cuda.device_count()):
# torch.cuda.set_device(torch.device('cuda', i))
# self.context.append(ct.c_void_p(lib.get_context()))
#torch.cuda.set_device(prev_device)
@classmethod
def get_instance(cls):
if cls._instance is None:
cls._instance = cls.__new__(cls)
cls._instance.initialize()
return cls._instance
def get_context(self, device):
if device.index not in self.context:
prev_device = torch.cuda.current_device()
torch.cuda.set_device(device)
self.context[device.index] = ct.c_void_p(lib.get_context())
torch.cuda.set_device(prev_device)
return self.context[device.index]
class Cusparse_Context(object):
_instance = None
def __init__(self):
raise RuntimeError('Call get_instance() instead')
def initialize(self):
self.context = ct.c_void_p(lib.get_cusparse())
@classmethod
def get_instance(cls):
if cls._instance is None:
cls._instance = cls.__new__(cls)
cls._instance.initialize()
return cls._instance
2021-10-06 02:16:20 +00:00
def create_linear_map(signed=True):
if signed:
return torch.linspace(-1.0, 1.0, 256)
else:
return torch.linspace(0.0, 1.0, 256)
def create_dynamic_map(signed=True, n=7):
'''
Creates the dynamic quantiztion map.
The dynamic data type is made up of a dynamic exponent and
fraction. As the exponent increase from 0 to -7 the number
of bits available for the fraction shrinks.
This is a generalization of the dynamic type where a certain
number of the bits and be reserved for the linear quantization
region (the fraction). n determines the maximum number of
exponent bits.
For more details see
(8-Bit Approximations for Parallelism in Deep Learning)[https://arxiv.org/abs/1511.04561]
'''
data = []
# these are additional items that come from the case
# where all the exponent bits are zero and no
# indicator bit is present
additional_items = 2**(7-n)-1
if not signed: additional_items = 2*additional_items
for i in range(n):
fraction_items = 2**(i+7-n)+1 if signed else 2**(i+7-n+1)+1
boundaries = torch.linspace(0.1, 1, fraction_items)
means = (boundaries[:-1]+boundaries[1:])/2.0
data += ((10**(-(n-1)+i))*means).tolist()
if signed:
data += (-(10**(-(n-1)+i))*means).tolist()
if additional_items > 0:
boundaries = torch.linspace(0.1, 1, additional_items+1)
means = (boundaries[:-1]+boundaries[1:])/2.0
data += ((10**(-(n-1)+i))*means).tolist()
if signed:
data += (-(10**(-(n-1)+i))*means).tolist()
data.append(0)
data.append(1.0)
data.sort()
return Tensor(data)
2022-07-22 21:41:05 +00:00
def get_special_format_str():
major, minor = torch.cuda.get_device_capability()
if major < 7:
print(f'Device with CUDA capability of {major} not supported for 8-bit matmul. Device has no tensor cores!')
assert major >= 7
if major == 7: return 'col_turing'
elif major == 8: return 'col_ampere'
else: return 'col_turing'
2021-10-06 02:16:20 +00:00
def get_ptr(A: Tensor) -> ct.c_void_p:
'''
Get the ctypes pointer from a PyTorch Tensor.
Parameters
----------
A : torch.tensor
The PyTorch tensor.
Returns
-------
ctypes.c_void_p
'''
if A is None: return None
else: return ct.c_void_p(A.data.storage().data_ptr())
2022-07-22 21:41:05 +00:00
def pre_call(device):
prev_device = torch.cuda.current_device()
torch.cuda.set_device(device)
return prev_device
def post_call(prev_device):
torch.cuda.set_device(prev_device)
def get_transform_func(dtype, orderA, orderOut, transpose=False):
name = f'ctransform_{(8 if dtype == torch.int8 else 32)}_{orderA}_to_{orderOut}_{"t" if transpose else "n"}'
if not hasattr(lib, name):
print(name)
raise ValueError(f'Transform function not supported: {orderA} to {orderOut} for data type {dtype} and transpose={transpose}')
else:
return getattr(lib, name)
class GlobalData(object):
_instance = None
def __init__(self):
raise RuntimeError('Call get_instance() instead')
def initialize(self):
self.data = {}
@classmethod
def get_instance(cls):
if cls._instance is None:
cls._instance = cls.__new__(cls)
cls._instance.initialize()
return cls._instance
def get_transform_buffer(shape, dtype, device, to_order, from_order='row', transpose=False):
#init_func = torch.empty
init_func = torch.zeros
dims = len(shape)
if dims == 2:
rows = shape[0]
elif dims == 3:
rows = shape[0]*shape[1]
cols = shape[-1]
state = (shape, to_order)
if transpose:
# swap dims
tmp = rows
rows = cols
cols = tmp
state = (shape[::-1], to_order)
if to_order == 'row' or to_order == 'col':
return init_func(shape, dtype=dtype, device=device), state
elif to_order == 'col32':
# blocks of 32 columns (padded)
cols = 32*((cols+31)//32)
return init_func((rows, cols), dtype=dtype, device=device), state
elif to_order == 'col_turing':
# blocks of 32 columns and 8 rows
cols = 32*((cols+31)//32)
rows = 8*((rows+7)//8)
return init_func((rows, cols), dtype=dtype, device=device), state
elif to_order == 'col_ampere':
# blocks of 32 columns and 32 rows
cols = 32*((cols+31)//32)
rows = 32*((rows+31)//32)
return init_func((rows, cols), dtype=dtype, device=device), state
else:
raise NotImplementedError(f'To_order not supported: {to_order}')
def nvidia_transform(A, to_order, from_order='row', out=None, transpose=False, state=None, ld=None):
if state is None: state = (A.shape, from_order)
else: from_order = state[1]
if out is None: out, new_state = get_transform_buffer(state[0], A.dtype, A.device, to_order, state[1])
else: new_state = (state[1], to_order)
func = get_transform_func(A.dtype, from_order, to_order, transpose)
shape = state[0]
if len(shape) == 2:
dim1 = ct.c_int32(shape[0])
dim2 = ct.c_int32(shape[1])
elif ld is not None:
n = math.prod(shape)
dim1 = math.prod([shape[i] for i in ld])
dim2 = ct.c_int32(n//dim1)
dim1 = ct.c_int32(dim1)
else:
dim1 = ct.c_int32(shape[0]*shape[1])
dim2 = ct.c_int32(shape[2])
ptr = CUBLAS_Context.get_instance().get_context(A.device)
ptrA = get_ptr(A)
ptrOut = get_ptr(out)
func(ptr, get_ptr(A), get_ptr(out), dim1, dim2)
return out, new_state
2021-10-06 02:16:20 +00:00
def estimate_quantiles(A: Tensor, out: Tensor=None, offset: float=1/512) -> Tensor:
'''
Estimates 256 equidistant quantiles on the input tensor eCDF.
Uses SRAM-Quantiles algorithm to quickly estimate 256 equidistant quantiles
via the eCDF of the input tensor `A`. This is a fast but approximate algorithm
and the extreme quantiles close to 0 and 1 have high variance / large estimation
errors. These large errors can be avoided by using the offset variable which trims
the distribution. The default offset value of 1/512 ensures minimum entropy encoding -- it
trims 1/512 = 0.2% from each side of the distrivution. An offset value of 0.01 to 0.02
usually has a much lower error but is not a minimum entropy encoding. Given an offset
of 0.02 equidistance points in the range [0.02, 0.98] are used for the quantiles.
Parameters
----------
A : torch.Tensor
The input tensor. Any shape.
out : torch.Tensor
Tensor with the 256 estimated quantiles.
offset : float
The offset for the first and last quantile from 0 and 1. Default: 1/512
Returns
-------
torch.Tensor:
The 256 quantiles in float32 datatype.
'''
if out is None: out = torch.zeros((256,), dtype=torch.float32, device=A.device)
if A.dtype == torch.float32:
lib.cestimate_quantiles_fp32(get_ptr(A), get_ptr(out), ct.c_float(offset), ct.c_int(A.numel()))
elif A.dtype == torch.float16:
lib.cestimate_quantiles_fp16(get_ptr(A), get_ptr(out), ct.c_float(offset), ct.c_int(A.numel()))
else:
2022-07-01 14:16:10 +00:00
raise NotImplementedError(f'Not supported data type {A.dtype}')
2021-10-06 02:16:20 +00:00
return out
def quantize_blockwise(A: Tensor, code: Tensor=None, absmax: Tensor=None, rand=None, out: Tensor=None) -> Tensor:
'''
Quantize tensor A in blocks of size 4096 values.
Quantizes tensor A by dividing it into blocks of 4096 values.
Then the absolute maximum value within these blocks is calculated
for the non-linear quantization.
Parameters
----------
A : torch.Tensor
The input tensor.
code : torch.Tensor
The quantization map.
absmax : torch.Tensor
The absmax values.
rand : torch.Tensor
The tensor for stochastic rounding.
out : torch.Tensor
The output tensor (8-bit).
Returns
-------
torch.Tensor:
The 8-bit tensor.
tuple(torch.Tensor, torch.Tensor):
The quantization state to undo the quantization.
'''
if code is None:
if 'dynamic' not in name2qmap: name2qmap['dynamic'] = create_dynamic_map().to(A.device)
code = name2qmap['dynamic']
code = code.to(A.device)
if absmax is None:
n = A.numel()
num_blocks = 4096
blocks = n//num_blocks
blocks += 1 if n % num_blocks > 0 else 0
absmax = torch.zeros((blocks,), device=A.device)
if out is None: out = torch.zeros_like(A, dtype=torch.uint8)
if A.device.type != 'cpu':
if rand is not None:
assert rand.numel() >= 1024
rand_offset = random.randint(0, 1023)
if A.dtype == torch.float32:
lib.cquantize_blockwise_stochastic_fp32(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), get_ptr(rand), ct.c_int32(rand_offset), ct.c_int(A.numel()))
elif A.dtype == torch.float16:
lib.cquantize_blockwise_stochastic_fp16(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), get_ptr(rand), ct.c_int32(rand_offset), ct.c_int(A.numel()))
else:
raise ValueError(f'Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}')
else:
if A.dtype == torch.float32:
lib.cquantize_blockwise_fp32(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(A.numel()))
elif A.dtype == torch.float16:
lib.cquantize_blockwise_fp16(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(A.numel()))
else:
raise ValueError(f'Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}')
else:
# cpu
assert rand is None
lib.cquantize_blockwise_cpu_fp32(get_ptr(code), get_ptr(A), get_ptr(absmax), get_ptr(out), ct.c_int(A.numel()))
return out, (absmax, code)
def dequantize_blockwise(A: Tensor, quant_state: Tuple[Tensor, Tensor]=None,
absmax: Tensor=None, code: Tensor=None, out: Tensor=None,
blocksize: int=4096) -> Tensor:
'''
Dequantizes blockwise quantized values.
Dequantizes the tensor A with maximum absolute values absmax in
blocks of size 4096.
Parameters
----------
A : torch.Tensor
The input 8-bit tensor.
quant_state : tuple(torch.Tensor, torch.Tensor)
Tuple of code and absmax values.
absmax : torch.Tensor
The absmax values.
code : torch.Tensor
The quantization map.
out : torch.Tensor
Dequantized output tensor (default: float32)
Returns
-------
torch.Tensor:
Dequantized tensor (default: float32)
'''
assert quant_state is not None or absmax is not None
if code is None and quant_state is None:
if 'dynamic' not in name2qmap: name2qmap['dynamic'] = create_dynamic_map().to(A.device)
code = name2qmap['dynamic']
code = code.to(A.device)
if out is None: out = torch.zeros_like(A, dtype=torch.float32)
if quant_state is None: quant_state = (absmax, code)
if blocksize not in [2048, 4096]:
raise ValueError(f'The blockwise of {blocksize} is not supported. Supported values: [2048 4096]')
if A.device.type != 'cpu':
if out.dtype == torch.float32:
lib.cdequantize_blockwise_fp32(get_ptr(quant_state[1]), get_ptr(A), get_ptr(quant_state[0]), get_ptr(out), ct.c_int(blocksize), ct.c_int(A.numel()))
elif out.dtype == torch.float16:
lib.cdequantize_blockwise_fp16(get_ptr(quant_state[1]), get_ptr(A), get_ptr(quant_state[0]), get_ptr(out), ct.c_int(blocksize), ct.c_int(A.numel()))
else:
raise ValueError(f'Blockwise quantization only supports 16/32-bit floats, but got {A.dtype}')
else:
lib.cdequantize_blockwise_cpu_fp32(get_ptr(quant_state[1]), get_ptr(A), get_ptr(quant_state[0]), get_ptr(out), ct.c_int(A.numel()))
return out
def quantize(A: Tensor, code: Tensor=None, out: Tensor=None) -> Tensor:
if code is None:
if 'dynamic' not in name2qmap: name2qmap['dynamic'] = create_dynamic_map().to(A.device)
code = name2qmap['dynamic']
code = code.to(A.device)
absmax = torch.abs(A).max()
inp = A/absmax
out = quantize_no_absmax(inp, code, out)
return out, (absmax, code)
def dequantize(A: Tensor, quant_state: Tuple[Tensor, Tensor]=None, absmax: Tensor=None, code: Tensor=None, out: Tensor=None) -> Tensor:
assert quant_state is not None or absmax is not None
if code is None and quant_state is None:
if 'dynamic' not in name2qmap: name2qmap['dynamic'] = create_dynamic_map().to(A.device)
code = name2qmap['dynamic']
code = code.to(A.device)
if quant_state is None: quant_state = (absmax, code)
out = dequantize_no_absmax(A, quant_state[1], out)
return out*quant_state[0]
def quantize_no_absmax(A: Tensor, code: Tensor, out: Tensor=None) -> Tensor:
'''
Quantizes input tensor to 8-bit.
Quantizes the 32-bit input tensor `A` to the 8-bit output tensor
`out` using the quantization map `code`.
Parameters
----------
A : torch.Tensor
The input tensor.
code : torch.Tensor
The quantization map.
out : torch.Tensor, optional
The output tensor. Needs to be of type byte.
Returns
-------
torch.Tensor:
Quantized 8-bit tensor.
'''
if out is None: out = torch.zeros_like(A, dtype=torch.uint8)
lib.cquantize(get_ptr(code), get_ptr(A), get_ptr(out), ct.c_int(A.numel()))
return out
def dequantize_no_absmax(A: Tensor, code: Tensor, out: Tensor=None) -> Tensor:
'''
Dequantizes the 8-bit tensor to 32-bit.
Dequantizes the 8-bit tensor `A` to the 32-bit tensor `out` via
the quantization map `code`.
Parameters
----------
A : torch.Tensor
The 8-bit input tensor.
code : torch.Tensor
The quantization map.
out : torch.Tensor
The 32-bit output tensor.
Returns
-------
torch.Tensor:
32-bit output tensor.
'''
if out is None: out = torch.zeros_like(A, dtype=torch.float32)
lib.cdequantize(get_ptr(code), get_ptr(A), get_ptr(out), ct.c_int(A.numel()))
return out
def optimizer_update_32bit(optimizer_name:str, g: Tensor, p: Tensor, state1: Tensor,
beta1: float, eps: float, step: int, lr: float,
state2: Tensor=None, beta2: float=0.0,
weight_decay: float=0.0, gnorm_scale: float=1.0,
2021-10-21 01:37:44 +00:00
unorm_vec: Tensor=None, max_unorm: float=0.0, skip_zeros=False) -> None:
2021-10-06 02:16:20 +00:00
'''
Performs an inplace optimizer update with one or two optimizer states.
Universal optimizer update for 32-bit state and 32/16-bit gradients/weights.
Parameters
----------
optimizer_name : str
The name of the optimizer: {adam}.
g : torch.Tensor
Gradient tensor.
p : torch.Tensor
Parameter tensor.
state1 : torch.Tensor
Optimizer state 1.
beta1 : float
Optimizer beta1.
eps : float
Optimizer epsilon.
weight_decay : float
Weight decay.
step : int
Current optimizer step.
lr : float
The learning rate.
state2 : torch.Tensor
Optimizer state 2.
beta2 : float
Optimizer beta2.
gnorm_scale : float
The factor to rescale the gradient to the max clip value.
2021-10-21 01:37:44 +00:00
unorm_vec : torch.Tensor
The tensor for the update norm.
max_unorm : float
The maximum update norm relative to the weight norm.
skip_zeros : bool
Whether to skip zero-valued gradients or not (default: False).
2021-10-06 02:16:20 +00:00
'''
param_norm = 0.0
if max_unorm > 0.0:
param_norm = torch.norm(p.data.float())
if optimizer_name not in str2optimizer32bit:
2022-07-01 14:16:10 +00:00
raise NotImplementedError(f'Optimizer not implemented: {optimizer_name}. Choices: {",".join(str2optimizer32bit.keys())}')
2021-10-06 02:16:20 +00:00
if g.dtype == torch.float32 and state1.dtype == torch.float32:
str2optimizer32bit[optimizer_name][0](get_ptr(g), get_ptr(p), get_ptr(state1), get_ptr(state2), get_ptr(unorm_vec), ct.c_float(max_unorm),
ct.c_float(param_norm), ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps), ct.c_float(weight_decay),
2021-10-21 01:37:44 +00:00
ct.c_int32(step), ct.c_float(lr), ct.c_float(gnorm_scale), ct.c_bool(skip_zeros), ct.c_int32(g.numel()))
2021-10-06 02:16:20 +00:00
elif g.dtype == torch.float16 and state1.dtype == torch.float32:
str2optimizer32bit[optimizer_name][1](get_ptr(g), get_ptr(p), get_ptr(state1), get_ptr(state2), get_ptr(unorm_vec), ct.c_float(max_unorm),
ct.c_float(param_norm), ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps), ct.c_float(weight_decay),
2021-10-21 01:37:44 +00:00
ct.c_int32(step), ct.c_float(lr), ct.c_float(gnorm_scale), ct.c_bool(skip_zeros), ct.c_int32(g.numel()))
2021-10-06 02:16:20 +00:00
else:
raise ValueError(f'Gradient+optimizer bit data type combination not supported: grad {g.dtype}, optimizer {state1.dtype}')
def optimizer_update_8bit(optimizer_name: str, g: Tensor, p: Tensor, state1: Tensor, state2: Tensor,
beta1: float, beta2: float, eps: float,
step: int, lr: float, qmap1: Tensor, qmap2: Tensor,
max1: Tensor, max2: Tensor, new_max1: Tensor, new_max2: Tensor,
weight_decay: float=0.0, gnorm_scale: float=1.0,
unorm_vec: Tensor=None, max_unorm: float=0.0) -> None:
'''
Performs an inplace Adam update.
Universal Adam update for 32/8-bit state and 32/16-bit gradients/weights.
Uses AdamW formulation if weight decay > 0.0.
Parameters
----------
optimizer_name : str
The name of the optimizer. Choices {adam, momentum}
g : torch.Tensor
Gradient tensor.
p : torch.Tensor
Parameter tensor.
state1 : torch.Tensor
Adam state 1.
state2 : torch.Tensor
Adam state 2.
beta1 : float
Adam beta1.
beta2 : float
Adam beta2.
eps : float
Adam epsilon.
weight_decay : float
Weight decay.
step : int
Current optimizer step.
lr : float
The learning rate.
qmap1 : torch.Tensor
Quantization map for first Adam state.
qmap2 : torch.Tensor
Quantization map for second Adam state.
max1 : torch.Tensor
Max value for first Adam state update.
max2 : torch.Tensor
Max value for second Adam state update.
new_max1 : torch.Tensor
Max value for the next Adam update of the first state.
new_max2 : torch.Tensor
Max value for the next Adam update of the second state.
gnorm_scale : float
The factor to rescale the gradient to the max clip value.
2021-10-21 01:37:44 +00:00
unorm_vec : torch.Tensor
The tensor for the update norm.
max_unorm : float
The maximum update norm relative to the weight norm.
2021-10-06 02:16:20 +00:00
'''
param_norm = 0.0
if max_unorm > 0.0:
param_norm = torch.norm(p.data.float())
if g.dtype == torch.float32 and state1.dtype == torch.uint8:
str2optimizer8bit[optimizer_name][0](get_ptr(p), get_ptr(g), get_ptr(state1), get_ptr(state2),
get_ptr(unorm_vec), ct.c_float(max_unorm), ct.c_float(param_norm),
ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps),
ct.c_int32(step), ct.c_float(lr),
get_ptr(qmap1), get_ptr(qmap2),
get_ptr(max1), get_ptr(max2), get_ptr(new_max1), get_ptr(new_max2),
ct.c_float(weight_decay),ct.c_float(gnorm_scale), ct.c_int32(g.numel()))
elif g.dtype == torch.float16 and state1.dtype == torch.uint8:
str2optimizer8bit[optimizer_name][1](get_ptr(p), get_ptr(g), get_ptr(state1), get_ptr(state2),
get_ptr(unorm_vec), ct.c_float(max_unorm), ct.c_float(param_norm),
ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps),
ct.c_int32(step), ct.c_float(lr),
get_ptr(qmap1), get_ptr(qmap2),
get_ptr(max1), get_ptr(max2), get_ptr(new_max1), get_ptr(new_max2),
ct.c_float(weight_decay),ct.c_float(gnorm_scale), ct.c_int32(g.numel()))
else:
raise ValueError(f'Gradient+optimizer bit data type combination not supported: grad {g.dtype}, optimizer {state1.dtype}')
def optimizer_update_8bit_blockwise(optimizer_name: str, g: Tensor, p: Tensor, state1: Tensor, state2: Tensor,
beta1: float, beta2: float, eps: float,
step: int, lr: float, qmap1: Tensor, qmap2: Tensor,
2021-10-21 01:37:44 +00:00
absmax1: Tensor, absmax2: Tensor, weight_decay: float=0.0, gnorm_scale: float=1.0,
skip_zeros=False) -> None:
2021-10-06 02:16:20 +00:00
if g.dtype == torch.float32 and state1.dtype == torch.uint8:
str2optimizer8bit_blockwise[optimizer_name][0](get_ptr(p), get_ptr(g), get_ptr(state1), get_ptr(state2),
ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps),
ct.c_int32(step), ct.c_float(lr), get_ptr(qmap1), get_ptr(qmap2),
2021-10-21 02:15:47 +00:00
get_ptr(absmax1), get_ptr(absmax2), ct.c_float(weight_decay), ct.c_float(gnorm_scale),
2021-10-21 01:37:44 +00:00
ct.c_bool(skip_zeros), ct.c_int32(g.numel()))
2021-10-06 02:16:20 +00:00
elif g.dtype == torch.float16 and state1.dtype == torch.uint8:
str2optimizer8bit_blockwise[optimizer_name][1](get_ptr(p), get_ptr(g), get_ptr(state1), get_ptr(state2),
ct.c_float(beta1), ct.c_float(beta2), ct.c_float(eps),
ct.c_int32(step), ct.c_float(lr), get_ptr(qmap1), get_ptr(qmap2),
2021-10-21 02:15:47 +00:00
get_ptr(absmax1), get_ptr(absmax2), ct.c_float(weight_decay), ct.c_float(gnorm_scale),
2021-10-21 01:37:44 +00:00
ct.c_bool(skip_zeros), ct.c_int32(g.numel()))
2021-10-06 02:16:20 +00:00
else:
raise ValueError(f'Gradient+optimizer bit data type combination not supported: grad {g.dtype}, optimizer {state1.dtype}')
def percentile_clipping(grad: Tensor, gnorm_vec: Tensor, step: int, percentile: int=5):
"""Applies percentile clipping
grad: torch.Tensor
The gradient tensor.
gnorm_vec: torch.Tensor
Vector of gradient norms. 100 elements expected.
step: int
The current optimiation steps (number of past gradient norms).
"""
if grad.dtype == torch.float32:
lib.cpercentile_clipping_g32(get_ptr(grad), get_ptr(gnorm_vec), ct.c_int32(step), ct.c_int32(grad.numel()))
elif grad.dtype == torch.float16:
lib.cpercentile_clipping_g16(get_ptr(grad), get_ptr(gnorm_vec), ct.c_int32(step), ct.c_int32(grad.numel()))
else:
raise ValueError(f'Gradient type {grad.dtype} not supported!')
current_gnorm = torch.sqrt(gnorm_vec[step % 100])
vals, idx = torch.sort(gnorm_vec)
clip_value = torch.sqrt(vals[percentile])
gnorm_scale = 1.0
if current_gnorm > clip_value:
gnorm_scale = clip_value/current_gnorm
return current_gnorm, clip_value, gnorm_scale
def histogram_scatter_add_2d(histogram: Tensor, index1: Tensor, index2: Tensor, source: Tensor):
assert len(histogram.shape) == 2
assert histogram.dtype == torch.float32
assert source.dtype == torch.float32
assert index1.dtype == torch.int32
assert index2.dtype == torch.int32
assert histogram.device.type == 'cuda'
assert index1.device.type == 'cuda'
assert index2.device.type == 'cuda'
assert source.device.type == 'cuda'
maxdim1 = ct.c_int32(histogram.shape[0])
n = ct.c_int32(index1.numel())
lib.chistogram_scatter_add_2d(get_ptr(histogram), get_ptr(index1), get_ptr(index2), get_ptr(source), maxdim1, n)
2022-07-22 21:41:05 +00:00
def check_matmul(A, B, out, transposed_A, transposed_B, expected_type=torch.int8):
if not torch.cuda.is_initialized(): torch.cuda.init()
if A.dtype != expected_type or B.dtype != expected_type:
raise TypeError(f'Expected torch.int8 input tensors A and B, but got {A.dtype} and {B.dtype}')
sA = A.shape
sB = B.shape
tA = transposed_A
tB = transposed_B
correct = True
if len(sA) == 2 and len(sB) == 2:
if not tA and not tB and A.shape[1] != B.shape[0]: correct = False
elif tA and not tB and A.shape[0] != B.shape[0]: correct = False
elif tA and tB and A.shape[0] != B.shape[1]: correct = False
elif not tA and tB and A.shape[1] != B.shape[1]: correct = False
elif len(sA) == 3 and len(sB) == 2:
if not tA and not tB and A.shape[2] != B.shape[0]: correct = False
elif tA and not tB and A.shape[1] != B.shape[0]: correct = False
elif tA and tB and A.shape[1] != B.shape[1]: correct = False
elif not tA and tB and A.shape[2] != B.shape[1]: correct = False
elif len(sA) == 3 and len(sB) == 3:
if not tA and not tB and A.shape[2] != B.shape[1]: correct = False
elif tA and not tB and A.shape[1] != B.shape[1]: correct = False
elif tA and tB and A.shape[1] != B.shape[2]: correct = False
elif not tA and tB and A.shape[2] != B.shape[2]: correct = False
if out is not None:
sout = out.shape
# special case common in backprop
if not correct and len(sA) == 3 and len(sB) == 3:
if (sout[0] == sA[2] and sout[1] == sB[2] and
sA[0] == sB[0] and sA[1] == sB[1]):
correct = True
else:
if len(sA) == 2 and len(sB) == 2:
if not tA and not tB: sout = (sA[0], sB[1])
elif tA and tB: sout = (sA[1], sB[0])
elif tA and not tB: sout = (sA[1], sB[1])
elif not tA and tB: sout = (sA[0], sB[0])
elif len(sA) == 3 and len(sB) == 2:
if not tA and not tB: sout = (sA[0], sA[1], sB[1])
elif tA and tB: sout = (sA[0], sA[2], sB[0])
elif tA and not tB: sout = (sA[0], sA[2], sB[1])
elif not tA and tB: sout = (sA[0], sA[1], sB[0])
elif len(sA) == 3 and len(sB) == 3:
if not tA and not tB: sout = (sA[0], sA[1], sB[2])
elif tA and tB: sout = (sA[0], sA[2], sB[1])
elif tA and not tB: sout = (sA[0], sA[2], sB[2])
elif not tA and tB: sout = (sA[0], sA[1], sB[1])
if not correct:
raise ValueError(f'Tensor dimensions incorrect for matrix mulitiplication: A x B: {sA} x {sB} with transpose for A x B: {tA} x {tB}.')
return sout
def igemm(A: Tensor, B: Tensor, out: Tensor=None, transposed_A=False, transposed_B=False):
sout = check_matmul(A, B, out, transposed_A, transposed_B)
if out is None: out = torch.zeros(size=sout, dtype=torch.int32, device=A.device)
if len(A.shape) == 3 and len(B.shape) == 3:
if A.shape[0] == B.shape[0] and A.shape[2] == B.shape[1]:
return batched_igemm(A, B, out)
sA = A.shape
sB = B.shape
if transposed_A and len(sA) == 2: sA = (sA[1], sA[0])
elif transposed_A and len(sA) == 3: sA = (sA[0], sA[2], sA[0])
if transposed_B and len(sB) == 2: sB = (sB[1], sB[0])
elif transposed_B and len(sB) == 3: sB = (sB[0], sB[2], sB[0])
# this is a mess: cuBLAS expect column major, but PyTorch is row major.
# So to perform the matrix multiplication, we have to treat A, B, and C matrices
# (transpose of row major is column major)
# This means we compute B^T A^T = C^T and we explicitly switch the dimensions of each of these
# matrices in the input arguments for cuBLAS
# column major: A @ B = C: [m, k] @ [k, n] = [m, n]
# row major: B^T @ A^T = C^T: [m, k] @ [k, n] = [m, n]
# column major with row major layout: B^T @ A^T = C^T: [k, m] @ [n, k] = [n, m]
if len(sB) == 2:
if B.stride()[0] == B.shape[1]: transposed_B = False
elif B.stride()[1] == B.shape[0]: transposed_B = True
if len(A.shape) == 2:
if A.stride()[0] == A.shape[1]: transposed_A = False
elif A.stride()[1] == A.shape[0]: transposed_A = True
else:
if A.stride()[1] == A.shape[2]: transposed_A = False
elif A.stride()[2] == A.shape[1]: transposed_A = True
if len(sA) == 2:
n = sA[0]
ldb = A.stride()[1 if transposed_A else 0]
elif len(sA) == 3 and len(sB) == 2:
n = sA[0]*sA[1]
ldb = sA[2]
m = sB[1]
k = sB[0]
lda = B.stride()[(1 if transposed_B else 0)]
ldc = sB[1]
elif len(sB) == 3:
# special case
assert len(sA) == 3
if not (sA[0] == sB[0] and sA[1] == sB[1]):
raise ValueError(f'Only bsi,bso->io supported for tensor contractions, but dims for A x B were: {sA} x {sB}')
transposed_A = True
transposed_B = False
m = sB[2]
n = sA[2]
k = sB[0]*sB[1]
lda = m
ldb = sA[2]
ldc = m
ptr = CUBLAS_Context.get_instance().get_context(A.device)
# B^T @ A^T = C^T
# [km, nk -> mn]
lib.cigemm(ptr, ct.c_bool(transposed_B), ct.c_bool(transposed_A), ct.c_int32(m), ct.c_int32(n), ct.c_int32(k),
get_ptr(B), get_ptr(A), get_ptr(out), ct.c_int32(lda), ct.c_int32(ldb), ct.c_int32(ldc))
return out
def batched_igemm(A: Tensor, B: Tensor, out: Tensor=None, transposed_A=False, transposed_B=False):
if not len(A.shape) == 3 or not len(B.shape) == 3:
raise ValueError(f'Expected 3-dimensional tensors for bmm, but got shapes A and B: {A.shape} and {B.shape}')
sout = check_matmul(A, B, out, transposed_A, transposed_B)
if out is None: out = torch.zeros(size=sout, dtype=torch.int32, device=A.device)
if B.is_contiguous():
lda = B.stride()[1]
transposed_A = False
else:
s = B.stride()
if s[0] != B.shape[0]:
B = B.contiguous()
lda = B.stride()[1]
elif s[2] == B.shape[1]:
transposed_A = True
lda = B.stride()[2]
else:
if s[2] == 1:
B = B.contiguous()
lda = B.stride()[1]
elif s[1] == 1:
B = B.contiguous()
lda = B.stride()[1]
else:
B = B.contiguous()
lda = B.stride()[1]
if A.is_contiguous():
ldb = A.stride()[1]
transposed_B = False
else:
s = A.stride()
if s[0] != A.shape[0]:
A = A.contiguous()
ldb = A.stride()[1]
transposed_B = False
elif s[2] == A.shape[1]:
ldb = A.stride()[2]
transposed_B = True
else:
A = A.contiguous()
ldb = A.stride()[1]
transposed_B = False
# this is a mess: cuBLAS expect column major, but PyTorch is row major.
# So to perform the matrix multiplication, we have to treat A, B, and C matrices
# (transpose of row major is column major)
# This means we compute B^T A^T = C^T and we explicitly switch the dimensions of each of these
# matrices in the input arguments for cuBLAS
# column major: A @ B = C: [batch, m, k] @ [batch, k, n] = [batch, m, n]
# row major: B^T @ A^T = C^T: [batch, m, k] @ [batch, k, n] = [batch, m, n]
# column major with row major layout: B^T @ A^T = C^T: [batch, k, m] @ [batch, n, k] = [batch, n, m]
num_batch = A.shape[0]
n = A.shape[1]
m = B.shape[2]
k = B.shape[1]
ldc = m
strideA = B.shape[1]*B.shape[2]
strideB = A.shape[1]*A.shape[2]
strideC = A.shape[1]*B.shape[2]
ptr = CUBLAS_Context.get_instance().get_context(A.device)
lib.cbatched_igemm(ptr, ct.c_bool(transposed_B), ct.c_bool(transposed_A), ct.c_int32(m), ct.c_int32(n), ct.c_int32(k),
get_ptr(B), get_ptr(A), get_ptr(out), ct.c_int32(lda), ct.c_int32(ldb), ct.c_int32(ldc),
ct.c_long(strideA), ct.c_long(strideB), ct.c_long(strideC), ct.c_uint32(num_batch))
return out
def igemmlt(A, B, SA, SB, out=None, Sout=None, dtype=torch.int32):
2022-07-22 21:41:05 +00:00
shapeA = SA[0]
shapeB = SB[0]
dimsA = len(shapeA)
dimsB = len(shapeB)
if dimsA == 2:
m = shapeA[0]
elif dimsA == 3:
m = shapeA[0]*shapeA[1]
if dimsB == 2:
rows = n = shapeB[0]
elif dimsB == 3:
rows = n = shapeB[0]*shapeB[1]
if dimsA == 2 and out is None:
out, Sout = get_transform_buffer((shapeA[0], shapeB[0]), dtype, A.device, 'col32', 'row')
elif dimsA == 3 and out is None:
out, Sout = get_transform_buffer((shapeA[0], shapeA[1], shapeB[0]), dtype, A.device, 'col32', 'row')
assert dimsB != 3, 'len(B.shape)==3 not supported'
assert A.device.type == 'cuda'
assert B.device.type == 'cuda'
assert A.dtype == torch.int8
assert B.dtype == torch.int8
assert out.dtype == dtype
assert SA[1] == 'col32'
assert SB[1] in ['col_turing', 'col_ampere']
assert Sout[1] == 'col32'
assert shapeA[-1] == shapeB[-1], f'Matmullt only supports A @ B^T. Inner matrix dimensions do not match: A @ B = {shapeA} @ {shapeB}'
formatB = SB[1]
prev_device = A.device
torch.cuda.set_device(A.device)
ptr = CUBLAS_Context.get_instance().get_context(A.device)
ptrA = get_ptr(A)
ptrB = get_ptr(B)
ptrC = get_ptr(out)
k = shapeA[-1]
lda = ct.c_int32(m*32)
if formatB == 'col_turing':
# turing: tiles with rows filled up to multiple of 8 rows by 32 columns
# n = rows
ldb = ct.c_int32(((rows+7)//8)*8*32)
else:
# ampere: tiles with rows filled up to multiple of 32 rows by 32 columns
# n = rows
ldb = ct.c_int32(((rows+31)//32)*32*32)
ldc = ct.c_int32(m*32)
m = ct.c_int32(m)
n = ct.c_int32(n)
k = ct.c_int32(k)
has_error = 0
ptrRowScale = get_ptr(None)
2022-07-22 21:41:05 +00:00
if formatB == 'col_turing':
if dtype == torch.int32:
has_error = lib.cigemmlt_turing_32(ptr, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc)
else:
has_error = lib.cigemmlt_turing_8(ptr, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc)
2022-07-22 21:41:05 +00:00
elif formatB == 'col_ampere':
if dtype == torch.int32:
has_error = lib.cigemmlt_ampere_32(ptr, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc)
else:
has_error = lib.cigemmlt_ampere_8(ptr, m, n, k, ptrA, ptrB, ptrC, ptrRowScale, lda, ldb, ldc)
2022-07-22 21:41:05 +00:00
if has_error == 1:
raise Exception('cublasLt ran into an error!')
torch.cuda.set_device(prev_device)
return out, Sout
def mm_dequant(A, quant_state, row_stats, col_stats, out=None, new_row_stats=None, new_col_stats=None):
assert A.dtype == torch.int32
out_shape = quant_state[0]
if len(out_shape) == 3: out_shape = (out_shape[0]*out_shape[1], out_shape[2])
if out is None: out = torch.empty(out_shape, dtype=torch.float16, device=A.device)
if new_row_stats is None: new_row_stats = torch.empty(out_shape[0], dtype=torch.float32, device=A.device)
if new_col_stats is None: new_col_stats = torch.empty(out_shape[1], dtype=torch.float32, device=A.device)
assert new_row_stats.shape[0] == row_stats.shape[0], f"{new_row_stats.shape} vs {row_stats.shape}"
assert new_col_stats.shape[0] == col_stats.shape[0], f"{new_col_stats.shape} vs {col_stats.shape}"
ptrA = get_ptr(A)
ptrOut = get_ptr(out)
ptrRowStats = get_ptr(row_stats)
ptrColStats = get_ptr(col_stats)
ptrNewRowStats = get_ptr(new_row_stats)
ptrNewColStats = get_ptr(new_col_stats)
numRows = ct.c_int32(out_shape[0])
numCols = ct.c_int32(out_shape[1])
lib.cdequant_mm_int32_fp16(ptrA, ptrRowStats, ptrColStats, ptrOut, ptrNewRowStats, ptrNewColStats, numRows, numCols)
return out
def get_colrow_absmax(A, row_stats=None, col_stats=None, nnz_block_ptr=None, threshold=0.0):
assert A.dtype == torch.float16
device = A.device
cols = A.shape[-1]
if len(A.shape) == 3:
rows = A.shape[0]*A.shape[1]
else:
rows = A.shape[0]
col_tiles = (cols+255)//256
tiled_rows = ((rows+15)//16)*16
if row_stats is None: row_stats = torch.empty((rows,), dtype=torch.float32, device=device).fill_(-50000.0)
if col_stats is None: col_stats = torch.empty((cols,), dtype=torch.float32, device=device).fill_(-50000.0)
if nnz_block_ptr is None and threshold > 0.0: nnz_block_ptr = torch.zeros(((tiled_rows*col_tiles)+1,), dtype=torch.int32, device=device)
ptrA = get_ptr(A)
ptrRowStats = get_ptr(row_stats)
ptrColStats = get_ptr(col_stats)
ptrNnzrows = get_ptr(nnz_block_ptr)
rows = ct.c_int32(rows)
cols = ct.c_int32(cols)
prev_device = pre_call(A.device)
lib.cget_col_row_stats(ptrA, ptrRowStats, ptrColStats, ptrNnzrows, ct.c_float(threshold), rows, cols)
post_call(prev_device)
if threshold > 0.0:
nnz_block_ptr.cumsum_(0)
return row_stats, col_stats, nnz_block_ptr
class COOSparseTensor(object):
def __init__(self, rows, cols, nnz, rowidx, colidx, values):
assert rowidx.dtype == torch.int32
assert colidx.dtype == torch.int32
assert values.dtype == torch.float16
assert values.numel() == nnz
assert rowidx.numel() == nnz
assert colidx.numel() == nnz
self.rows = rows
self.cols = cols
self.nnz = nnz
self.rowidx = rowidx
self.colidx = colidx
self.values = values
class CSRSparseTensor(object):
def __init__(self, rows, cols, nnz, rowptr, colidx, values):
assert rowptr.dtype == torch.int32
assert colidx.dtype == torch.int32
assert values.dtype == torch.float16
assert values.numel() == nnz
assert colidx.numel() == nnz
assert rowptr.numel() == rows+1
self.rows = rows
self.cols = cols
self.nnz = nnz
self.rowptr = rowptr
self.colidx = colidx
self.values = values
class CSCSparseTensor(object):
def __init__(self, rows, cols, nnz, colptr, rowidx, values):
assert colptr.dtype == torch.int32
assert rowidx.dtype == torch.int32
assert values.dtype == torch.float16
assert values.numel() == nnz
assert rowidx.numel() == nnz
assert colptr.numel() == cols+1
self.rows = rows
self.cols = cols
self.nnz = nnz
self.colptr = colptr
self.rowidx = rowidx
self.values = values
def coo2csr(cooA):
values, counts = torch.unique(cooA.rowidx, return_counts=True)
values.add_(1)
rowptr = torch.zeros((cooA.rows+1, ), dtype=torch.int32, device=cooA.rowidx.device)
rowptr.scatter_(index=values.long(), src=counts.int(), dim=0)
rowptr.cumsum_(0)
return CSRSparseTensor(cooA.rows, cooA.cols, cooA.nnz, rowptr, cooA.colidx, cooA.values)
def coo2csc(cooA):
val, col2rowidx = torch.sort(cooA.colidx)
rowidx = cooA.rowidx[col2rowidx]
values = cooA.values[col2rowidx]
colvalues, counts = torch.unique(val, return_counts=True)
colvalues.add_(1)
colptr = torch.zeros((cooA.cols+1, ), dtype=torch.int32, device=cooA.colidx.device)
colptr.scatter_(index=colvalues.long(), src=counts.int(), dim=0)
colptr.cumsum_(0)
return CSCSparseTensor(cooA.rows, cooA.cols, cooA.nnz, colptr, rowidx, values)
def coo_zeros(rows, cols, nnz, device, dtype=torch.half):
rowidx = torch.zeros((nnz,), dtype=torch.int32, device=device)
colidx = torch.zeros((nnz,), dtype=torch.int32, device=device)
values = torch.zeros((nnz,), dtype=dtype, device=device)
return COOSparseTensor(rows, cols, nnz, rowidx, colidx, values)
def double_quant(A, col_stats=None, row_stats=None, out_col=None, out_row=None, threshold=0.0):
device = A.device
assert A.dtype == torch.half
assert device.type == 'cuda'
prev_device = pre_call(A.device)
cols = A.shape[-1]
if len(A.shape) == 3:
rows = A.shape[0]*A.shape[1]
else:
rows = A.shape[0]
if row_stats is None or col_stats is None:
row_stats, col_stats, nnz_row_ptr = get_colrow_absmax(A, threshold=threshold)
if out_col is None: out_col = torch.zeros(A.shape, device=device, dtype=torch.int8)
if out_row is None: out_row = torch.zeros(A.shape, device=device, dtype=torch.int8)
coo_tensor = None
ptrA = get_ptr(A)
ptrColStats = get_ptr(col_stats)
ptrRowStats = get_ptr(row_stats)
ptrOutCol = get_ptr(out_col)
ptrOutRow = get_ptr(out_row)
if threshold > 0.0:
nnz = nnz_row_ptr[-1].item()
if nnz > 0:
coo_tensor = coo_zeros(A.shape[0], A.shape[1], nnz_row_ptr[-1].item(), device)
ptrRowIdx = get_ptr(coo_tensor.rowidx)
ptrColIdx = get_ptr(coo_tensor.colidx)
ptrVal = get_ptr(coo_tensor.values)
ptrRowPtr = get_ptr(nnz_row_ptr)
lib.cdouble_rowcol_quant(ptrA, ptrRowStats, ptrColStats, ptrOutCol, ptrOutRow, ptrRowIdx, ptrColIdx, ptrVal, ptrRowPtr, ct.c_float(threshold), ct.c_int32(rows), ct.c_int32(cols))
val, idx = torch.sort(coo_tensor.rowidx)
coo_tensor.rowidx = val
coo_tensor.colidx = coo_tensor.colidx[idx]
coo_tensor.values = coo_tensor.values[idx]
else:
lib.cdouble_rowcol_quant(ptrA, ptrRowStats, ptrColStats, ptrOutCol, ptrOutRow, None, None, None, None, ct.c_float(0.0), ct.c_int32(rows), ct.c_int32(cols))
else:
lib.cdouble_rowcol_quant(ptrA, ptrRowStats, ptrColStats, ptrOutCol, ptrOutRow, None, None, None, None, ct.c_float(threshold), ct.c_int32(rows), ct.c_int32(cols))
post_call(prev_device)
return out_row, out_col, row_stats, col_stats, coo_tensor
def get_special_format_str():
major, minor = torch.cuda.get_device_capability()
if major < 7:
print(f'Device with CUDA capability of {major} not supported for 8-bit matmul. Device has no tensor cores!')
assert major >= 7
if major == 7: return 'col_turing'
elif major == 8: return 'col_ampere'
else: return 'col_turing'
def transform(A, to_order, from_order='row', out=None, transpose=False, state=None, ld=None):
if state is None: state = (A.shape, from_order)
else: from_order = state[1]
if out is None: out, new_state = get_transform_buffer(state[0], A.dtype, A.device, to_order, state[1], transpose)
else: new_state = (state[0], to_order) # (shape, order)
shape = state[0]
if len(shape) == 2:
dim1 = ct.c_int32(shape[0])
dim2 = ct.c_int32(shape[1])
else:
dim1 = ct.c_int32(shape[0]*shape[1])
dim2 = ct.c_int32(shape[2])
ptrA = get_ptr(A)
ptrOut = get_ptr(out)
if to_order == 'col32':
if transpose:
lib.ctransform_row2col32T(get_ptr(A), get_ptr(out), dim1, dim2)
else:
lib.ctransform_row2col32(get_ptr(A), get_ptr(out), dim1, dim2)
elif to_order == 'col_turing':
if transpose:
lib.ctransform_row2turingT(get_ptr(A), get_ptr(out), dim1, dim2)
else:
lib.ctransform_row2turing(get_ptr(A), get_ptr(out), dim1, dim2)
elif to_order == 'col_ampere':
if transpose:
lib.ctransform_row2ampereT(get_ptr(A), get_ptr(out), dim1, dim2)
else:
lib.ctransform_row2ampere(get_ptr(A), get_ptr(out), dim1, dim2)
elif to_order == 'row':
if from_order == 'col_turing':
lib.ctransform_turing2row(get_ptr(A), get_ptr(out), dim1, dim2)
elif from_order == 'col_ampere':
lib.ctransform_ampere2row(get_ptr(A), get_ptr(out), dim1, dim2)
else:
raise NotImplementedError(f'Transform function not implemented: From {from_order} to {to_order}')
return out, new_state
def spmm_coo(cooA, B, out=None):
if out is None: out = torch.empty((cooA.rows, B.shape[1]), device=B.device, dtype=B.dtype)
nnz = cooA.nnz
assert cooA.rowidx.numel() == nnz
assert cooA.colidx.numel() == nnz
assert cooA.values.numel() == nnz
assert cooA.cols == B.shape[0]
transposed_B = (False if B.is_contiguous() else True)
ldb = B.stride()[(1 if transposed_B else 0)]
ldc = B.shape[1]
ptr = Cusparse_Context.get_instance().context
ptrRowidx = get_ptr(cooA.rowidx)
ptrColidx = get_ptr(cooA.colidx)
ptrValues = get_ptr(cooA.values)
ptrB = get_ptr(B)
ptrC = get_ptr(out)
cnnz = ct.c_int32(cooA.nnz)
crowsA = ct.c_int32(cooA.rows)
ccolsA = ct.c_int32(cooA.cols)
ccolsB = ct.c_int32(B.shape[1])
cldb = ct.c_int32(ldb)
cldc = ct.c_int32(ldc)
lib.cspmm_coo(ptr, ptrRowidx, ptrColidx, ptrValues, cnnz, crowsA, ccolsA, ccolsB, cldb, ptrB, cldc, ptrC, ct.c_bool(transposed_B))
return out
def spmm_coo_very_sparse(cooA, B, dequant_stats=None, out=None):
if out is None: out = torch.zeros((cooA.rows, B.shape[1]), device=B.device, dtype=cooA.values.dtype)
nnz = cooA.nnz
assert cooA.rowidx.numel() == nnz
assert cooA.colidx.numel() == nnz
assert cooA.values.numel() == nnz
assert cooA.cols == B.shape[0], f'{cooA.cols} vs {B.shape}'
transposed_B = (False if B.is_contiguous() else True)
ldb = B.stride()[(1 if transposed_B else 0)]
ldc = B.shape[1]
values, counts = torch.unique(cooA.rowidx, return_counts=True)
offset = counts.cumsum(0).int()
max_count, max_idx = torch.sort(counts, descending=True)
max_idx = max_idx.int()
max_count = max_count.int()
assert max_count[0] <= 32, f'Current max count per row is 8 but found {max_count[0]}.'
assert B.dtype in [torch.float16, torch.int8]
ptrOffset = get_ptr(offset)
ptrMaxCount = get_ptr(max_count)
ptrMaxIdx = get_ptr(max_idx)
ptrRowidx = get_ptr(cooA.rowidx)
ptrColidx = get_ptr(cooA.colidx)
ptrValues = get_ptr(cooA.values)
ptrB = get_ptr(B)
ptrC = get_ptr(out)
ptrDequantStats = get_ptr(dequant_stats)
cnnz_rows = ct.c_int32(counts.numel())
cnnz = ct.c_int32(cooA.nnz)
crowsA = ct.c_int32(cooA.rows)
ccolsA = ct.c_int32(cooA.cols)
crowsB = ct.c_int32(B.shape[1])
ccolsB = ct.c_int32(B.shape[1])
cldb = ct.c_int32(ldb)
cldc = ct.c_int32(ldc)
#print(cooA.rowidx[:64])
#print(cooA.colidx[:64].sort()[0])
if B.dtype == torch.float16:
lib.cspmm_coo_very_sparse_naive_fp16(ptrMaxCount, ptrMaxIdx, ptrOffset, ptrRowidx, ptrColidx, ptrValues, ptrB, ptrC, ptrDequantStats, cnnz_rows, cnnz, crowsA, crowsB, ccolsB)
elif B.dtype == torch.int8:
lib.cspmm_coo_very_sparse_naive_int8(ptrMaxCount, ptrMaxIdx, ptrOffset, ptrRowidx, ptrColidx, ptrValues, ptrB, ptrC, ptrDequantStats, cnnz_rows, cnnz, crowsA, crowsB, ccolsB)
#else: assertion error
return out
C = 127.0
def vectorwise_quant(x, dim=1, quant_type='vector'):
if quant_type == 'linear':
max1 = torch.abs(x).max().float()
xq = torch.round(x/max1*127).to(torch.int8)
return xq, max1
elif quant_type in ['vector', 'row']:
max1 = torch.amax(torch.abs(x), dim=dim, keepdim=True)
xq = torch.round(x*(C/max1)).to(torch.int8)
return xq, max1
elif quant_type == 'zeropoint':
dtype = x.dtype
x = x.float()
dyna = x.max() - x.min()
if dyna == 0: dyna = 1
qx = 255./dyna
minx = x.min()
zpx = torch.round(minx* qx)
x = torch.round(qx*x - zpx) + zpx
return x, qx
elif quant_type in ['vector-zeropoint', 'row-zeropoint']:
dtype = x.dtype
x = x.float()
dyna = (torch.amax(x, dim=dim, keepdim=True) - torch.amin(x, dim=dim, keepdim=True))
dyna[dyna==0] = 1
qx = 255./dyna
minx = torch.amin(x, dim=dim, keepdim=True)
zpx = torch.round(minx* qx)
x = torch.round(qx*x - zpx) + zpx
return x, qx
elif quant_type == 'truncated-vector':
with torch.no_grad():
absx = torch.abs(x)
max1 = torch.amax(absx, dim=dim, keepdim=True)
max1 = max1*0.7
idx = (absx > max1.expand_as(absx))
sign = torch.sign(x[idx])
x[idx] = max1.expand_as(absx)[idx]*sign
xq = torch.round(x/max1*C).to(torch.int8)
return xq, max1
else: return None
def vectorwise_dequant(xq, max1, quant_type='vector'):
if quant_type == 'vector':
x = (xq/C*max1).to(torch.float32)
return x
else: return None
def vectorwise_mm_dequant(xq, S1, S2, dtype=torch.half, quant_type='vector'):
if quant_type == 'linear':
norm = S1*S2/(C*C)
# double cast needed to prevent overflows
return (xq.float()*norm).to(dtype)
elif quant_type == 'zeropoint':
norm = 1.0/(S1*S2)
return (xq.float()*norm).to(dtype)
elif quant_type == 'row-zeropoint':
norm = 1.0/(S1*S2)
x = xq.float()
if len(S1.shape) == 3 and len(x.shape) == 2: S1 = S1.squeeze(0)
if len(S2.shape) == 3 and len(x.shape) == 2: S2 = S2.squeeze(0)
if len(S1.shape) == 2:
x *= norm
else:
x *= norm
return x.to(dtype)
elif quant_type == 'vector-zeropoint':
x = xq.float()
if len(S1.shape) == 3 and len(x.shape) == 2: S1 = S1.squeeze(0)
if len(S2.shape) == 3 and len(x.shape) == 2: S2 = S2.squeeze(0)
if len(S1.shape) == 2:
x *= 1.0/S1
else:
x *= 1.0/S1
x *= 1.0/S2.t()
return x.to(dtype)
elif quant_type == 'row':
x = xq.float()
if len(S1.shape) == 3 and len(x.shape) == 2: S1 = S1.squeeze(0)
if len(S2.shape) == 3 and len(x.shape) == 2: S2 = S2.squeeze(0)
if len(S1.shape) == 2:
x *= S1*S2/(C*C)
else:
x *= S1*S2/(C*C)
return x.to(dtype)
elif quant_type in ['truncated-vector', 'vector']:
x = xq.float()
if len(S1.shape) == 3 and len(x.shape) == 2: S1 = S1.squeeze(0)
if len(S2.shape) == 3 and len(x.shape) == 2: S2 = S2.squeeze(0)
if len(S1.shape) == 2:
x *= S1/C
else:
x *= S1/C
x *= S2/C
return x.to(dtype)
else: return None
def dequant_min_max(xq, A, B, SA, SB, dtype=torch.half):
offset = B.float().t().sum(0)*(SA[0]+SA[1])
x = xq.float()
if len(xq.shape) == 2 and len(SB.shape) == 3: SB = SB.squeeze(0)
if len(SB.shape) == 2:
x *= SB.t()/127
else:
x *= SB/127
x *= SA[1]/127
x +=offset
return x.to(dtype)
def extract_outliers(A, SA, idx):
shapeA = SA[0]
formatA = SA[1]
assert formatA in ['col_turing', 'col_ampere']
assert A.device.type == 'cuda'
out = torch.zeros((shapeA[0], idx.numel()), dtype=torch.int8, device=A.device)
idx_size = ct.c_int32(idx.numel())
rows = ct.c_int32(shapeA[0])
cols = ct.c_int32(shapeA[1])
ptrA = get_ptr(A)
ptrIdx = get_ptr(idx)
ptrOut = get_ptr(out)
if formatA == 'col_turing':
lib.cextractOutliers_turing(ptrA, ptrIdx, ptrOut, idx_size, rows, cols)
elif formatA == 'col_ampere':
lib.cextractOutliers_ampere(ptrA, ptrIdx, ptrOut, idx_size, rows, cols)
return out