bitsandbytes-rocm/bitsandbytes/cuda_setup/main.py

128 lines
4.2 KiB
Python
Raw Normal View History

"""
extract factors the build is dependent on:
2022-08-02 14:42:27 +00:00
[X] compute capability
[ ] TODO: Q - What if we have multiple GPUs of different makes?
- CUDA version
- Software:
- CPU-only: only CPU quantization functions (no optimizer, no matrix multipl)
- CuBLAS-LT: full-build 8-bit optimizer
- no CuBLAS-LT: no 8-bit matrix multiplication (`nomatmul`)
evaluation:
- if paths faulty, return meaningful error
- else:
- determine CUDA version
- determine capabilities
- based on that set the default path
"""
import ctypes
from pathlib import Path
from ..utils import execute_and_return
from .paths import determine_cuda_runtime_lib_path
def check_cuda_result(cuda, result_val):
2022-08-02 02:43:09 +00:00
# 3. Check for CUDA errors
if result_val != 0:
2022-08-02 02:43:09 +00:00
error_str = ctypes.c_char_p()
cuda.cuGetErrorString(result_val, ctypes.byref(error_str))
2022-08-02 02:43:09 +00:00
raise Exception(f"CUDA exception! ERROR: {error_str}")
def get_compute_capabilities():
"""
1. find libcuda.so library (GPU driver) (/usr/lib)
init_device -> init variables -> call function by reference
2. call extern C function to determine CC
(https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__DEVICE__DEPRECATED.html)
3. Check for CUDA errors
https://stackoverflow.com/questions/14038589/what-is-the-canonical-way-to-check-for-errors-using-the-cuda-runtime-api
# bits taken from https://gist.github.com/f0k/63a664160d016a491b2cbea15913d549
"""
2022-08-02 02:43:09 +00:00
# 1. find libcuda.so library (GPU driver) (/usr/lib)
try:
cuda = ctypes.CDLL("libcuda.so")
except OSError:
# TODO: shouldn't we error or at least warn here?
return None
nGpus = ctypes.c_int()
cc_major = ctypes.c_int()
cc_minor = ctypes.c_int()
result = ctypes.c_int()
device = ctypes.c_int()
2022-08-02 02:43:09 +00:00
check_cuda_result(cuda, cuda.cuInit(0))
2022-08-02 02:43:09 +00:00
check_cuda_result(cuda, cuda.cuDeviceGetCount(ctypes.byref(nGpus)))
ccs = []
for i in range(nGpus.value):
2022-08-02 02:43:09 +00:00
check_cuda_result(cuda, cuda.cuDeviceGet(ctypes.byref(device), i))
ref_major = ctypes.byref(cc_major)
ref_minor = ctypes.byref(cc_minor)
# 2. call extern C function to determine CC
check_cuda_result(
cuda, cuda.cuDeviceComputeCapability(ref_major, ref_minor, device)
)
ccs.append(f"{cc_major.value}.{cc_minor.value}")
return ccs.sort()
# def get_compute_capability()-> Union[List[str, ...], None]: # FIXME: error
def get_compute_capability():
"""
Extracts the highest compute capbility from all available GPUs, as compute
capabilities are downwards compatible. If no GPUs are detected, it returns
None.
"""
if ccs := get_compute_capabilities() is not None:
# TODO: handle different compute capabilities; for now, take the max
return ccs[-1]
return None
def evaluate_cuda_setup():
cuda_path = determine_cuda_runtime_lib_path()
print(f"CUDA SETUP: CUDA path found: {cuda_path}")
cc = get_compute_capability()
binary_name = "libbitsandbytes_cpu.so"
# FIXME: has_gpu is still unused
2022-08-01 10:22:12 +00:00
if not (has_gpu := bool(cc)):
print(
2022-08-02 02:43:09 +00:00
"WARNING: No GPU detected! Check your CUDA paths. Processing to load CPU-only library..."
)
return binary_name
# 7.5 is the minimum CC vor cublaslt
has_cublaslt = cc in ["7.5", "8.0", "8.6"]
# TODO:
2022-08-02 02:43:09 +00:00
# (1) CUDA missing cases (no CUDA installed by CUDA driver (nvidia-smi accessible)
# (2) Multiple CUDA versions installed
# FIXME: cuda_home is still unused
cuda_home = str(Path(cuda_path).parent.parent)
2022-08-02 02:43:09 +00:00
# we use ls -l instead of nvcc to determine the cuda version
# since most installations will have the libcudart.so installed, but not the compiler
ls_output, err = execute_and_return(f"ls -l {cuda_path}")
major, minor, revision = (
ls_output.split(" ")[-1].replace("libcudart.so.", "").split(".")
)
cuda_version_string = f"{major}{minor}"
def get_binary_name():
"if not has_cublaslt (CC < 7.5), then we have to choose _nocublaslt.so"
bin_base_name = "libbitsandbytes_cuda"
if has_cublaslt:
return f"{bin_base_name}{cuda_version_string}.so"
else:
return f"{bin_base_name}_nocublaslt.so"
return binary_name