Added k-bit fp8 map.
This commit is contained in:
parent
caf1832526
commit
98cbc4bc4f
|
@ -143,14 +143,15 @@ def create_linear_map(signed=True, bits=8):
|
|||
return torch.Tensor(values[:l].tolist() + [0]*gap + values[l:].tolist())
|
||||
|
||||
|
||||
def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2):
|
||||
def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2, total_bits=8):
|
||||
e = exponent_bits
|
||||
p = precision_bits
|
||||
assert e+p == 7
|
||||
has_sign = 1 if signed else 0
|
||||
assert e+p == total_bits-has_sign
|
||||
# the exponent is biased to 2^(e-1) -1 == 0
|
||||
evalues = []
|
||||
pvalues = []
|
||||
for i, val in enumerate(range(-((2**(exponent_bits-1))), 2**(exponent_bits-1), 1)):
|
||||
for i, val in enumerate(range(-((2**(exponent_bits-has_sign))), 2**(exponent_bits-has_sign), 1)):
|
||||
evalues.append(2**val)
|
||||
|
||||
|
||||
|
@ -161,12 +162,17 @@ def create_fp8_map(signed=True, exponent_bits=5, precision_bits=2):
|
|||
value += pval*(2**-(i+1))
|
||||
pvalues.append(value)
|
||||
|
||||
assert len(evalues)*len(pvalues) == 128
|
||||
assert len(evalues)*len(pvalues) == 2**(total_bits-has_sign)
|
||||
values = []
|
||||
for ev in evalues:
|
||||
for pv in pvalues:
|
||||
values.append(-ev*pv)
|
||||
if signed:
|
||||
values.append(-ev*pv)
|
||||
values.append(ev*pv)
|
||||
if total_bits < 8:
|
||||
gap = 256 - len(values)
|
||||
for i in range(gap):
|
||||
values.append(0)
|
||||
values.sort()
|
||||
code = torch.Tensor(values)
|
||||
code /= code.max()
|
||||
|
|
|
@ -11,7 +11,7 @@ import bitsandbytes as bnb
|
|||
from bitsandbytes import functional as F
|
||||
|
||||
torch.set_printoptions(
|
||||
precision=4, sci_mode=False, linewidth=120, edgeitems=20, threshold=10000
|
||||
precision=5, sci_mode=False, linewidth=120, edgeitems=20, threshold=10000
|
||||
)
|
||||
k = 20
|
||||
|
||||
|
@ -2095,49 +2095,43 @@ def test_fp8_quant():
|
|||
def test_few_bit_quant():
|
||||
|
||||
for bits in range(2, 9):
|
||||
code = F.create_linear_map(True, bits=bits).cuda()
|
||||
assert code.numel() == 256
|
||||
print(bits)
|
||||
for i in range(100):
|
||||
for method in ['linear', 'fp8']:
|
||||
code = None
|
||||
if method == 'linear':
|
||||
code = F.create_linear_map(True, bits=bits).cuda()
|
||||
elif method == 'fp8':
|
||||
ebits = math.ceil(bits/2)
|
||||
pbits = bits-ebits-1
|
||||
code = F.create_fp8_map(True, ebits, pbits, bits).cuda()
|
||||
print(ebits, pbits, bits)
|
||||
print(code)
|
||||
assert code.numel() == 256
|
||||
print(bits)
|
||||
for i in range(10):
|
||||
|
||||
values = torch.randn(1, 24, device='cuda')
|
||||
values /= values.abs().max()
|
||||
#values[values.abs() < 1e-6] += 1e-5
|
||||
values = torch.randn(1, 32, device='cuda')
|
||||
values /= values.abs().max()
|
||||
#values[values.abs() < 1e-6] += 1e-5
|
||||
|
||||
q1 = []
|
||||
v1 = []
|
||||
for v in values[0]:
|
||||
idx = torch.abs(v-code).argmin()
|
||||
q1.append(idx.item())
|
||||
v1.append(code[idx].item())
|
||||
q1 = []
|
||||
v1 = []
|
||||
for v in values[0]:
|
||||
idx = torch.abs(v-code).argmin()
|
||||
q1.append(idx.item())
|
||||
v1.append(code[idx].item())
|
||||
|
||||
q1 = torch.Tensor(q1).cuda()
|
||||
v1 = torch.Tensor(v1).cuda()
|
||||
q1 = torch.Tensor(q1).cuda()
|
||||
v1 = torch.Tensor(v1).cuda()
|
||||
|
||||
q2, S2 = F.quantize(values, code=code)
|
||||
v2 = F.dequantize(q2, S2)
|
||||
q2, S2 = F.quantize(values, code=code)
|
||||
v2 = F.dequantize(q2, S2)
|
||||
|
||||
idx = torch.isclose(q1.int(), q2.int())
|
||||
if idx.sum():
|
||||
# some weird cases
|
||||
err1 = torch.abs(v1-values).mean()
|
||||
err2 = torch.abs(v2-values).mean()
|
||||
assert err2 <= err1
|
||||
idx = torch.isclose(q1.int(), q2.int())
|
||||
if idx.sum():
|
||||
# some weird cases
|
||||
err1 = torch.abs(v1-values).mean()
|
||||
err2 = torch.abs(v2-values).mean()
|
||||
assert err2 <= err1
|
||||
|
||||
else:
|
||||
torch.testing.assert_allclose(q1, q2)
|
||||
|
||||
#print(e_bits, p_bits)
|
||||
#abserr = []
|
||||
#relerr = []
|
||||
#for i in range(100):
|
||||
# A1 = torch.randn(1024, 1024, device="cuda")
|
||||
# C, SC = F.quantize_blockwise(A1, code=code)
|
||||
# A2 = F.dequantize_blockwise(C, SC)
|
||||
# diff = torch.abs(A1 - A2)
|
||||
# reldiff = diff/torch.abs(A1+1e-8)
|
||||
# abserr.append(diff.mean().item())
|
||||
# relerr.append(reldiff.mean().item())
|
||||
# #assert diff < 0.0075
|
||||
#print(sum(abserr)/len(abserr))
|
||||
#print(sum(relerr)/len(relerr))
|
||||
else:
|
||||
torch.testing.assert_allclose(q1, q2)
|
||||
|
|
Loading…
Reference in New Issue
Block a user