bitsandbytes-rocm/CHANGELOG.md
2022-09-19 21:13:40 -07:00

4.7 KiB

0.0.21

  • Ampere, RTX 30 series GPUs now compatible with the library.

0.0.22:

  • Fixed an error where a reset_parameters() call on the StableEmbedding would lead to an error in older PyTorch versions (from 1.7.0).

0.0.23:

Bugs:

  • Unified quantization API: each quantization function now returns Q, S where Q is the quantized tensor and S the quantization state which may hold absolute max values, a quantization map or more. For dequantization all functions now accept the inputs Q, S so that Q is dequantized with the quantization state S.
  • Fixed an issue where the CUDA 11.1 binary was not compiled with the right headers

API changes:

  • Block-wise quantization for optimizers now enabled by default

Features:

  • Block-wise quantization routines now support CPU Tensors.

0.0.24:

  • Fixed a bug where a float/half conversion led to a compilation error for CUDA 11.1 on Turning GPUs.
  • removed Apex dependency for bnb LAMB

0.0.25:

Features:

  • Added skip_zeros for block-wise and 32-bit optimizers. This ensures correct updates for sparse gradients and sparse models.
  • Added support for Kepler GPUs. (#4)
  • Added Analysis Adam to track 8-bit vs 32-bit quantization errors over time.
  • Make compilation more user friendly.

Bug fixes:

  • fixed "undefined symbol: __fatbinwrap_38" error for P100 GPUs on CUDA 10.1 (#5)

Docs:

  • Added docs with instructions to compile from source.

0.26.0:

Features:

  • Added Adagrad (without grad clipping) as 32-bit and 8-bit block-wise optimizer.
  • Added AdamW (copy of Adam with weight decay init 1e-2). #10
  • Introduced ModuleConfig overrides which can be seamlessly be used at initialization time of a module.
  • Added bnb.nn.Embedding layer which runs at 32-bit but without the layernorm. This works well if you need to fine-tune pretrained models that do not have a embedding layer norm. #19

Bug fixes:

  • Fixed a bug where weight decay was incorrectly applied to 32-bit Adam. #13
  • Fixed an unsafe use of eval. #8
  • Fixed a bug where the StableEmbedding layer 32-bit optimizer override would not work without registering the whole model first (bnb.optim.GlobalOptimManager.get_instance().register_parameters(model.parameters())). #13 #15

Docs:

  • Added instructions how to solve "__fatbinwrap_" errors.

0.30.0

8-bit Inference Update

Features:

  • Added 8-bit matrix multiplication form cuBLAS, and cuBLASLt as well as multiple GEMM kernels (GEMM, GEMMEx, GEMMLt)
  • Added 8-bit Linear layers with 8-bit Params that perform memory efficient inference with an option for 8-bit mixed precision matrix decomposition for inference without performance degradation
  • Added quantization methods for "fake" quantization as well as optimized kernels vector-wise quantization and equalization as well as optimized cuBLASLt transformations
  • CPU only build now available (Thank you, @mryab)

Deprecated:

  • Pre-compiled release for CUDA 9.2, 10.0, 10.2 no longer available

0.31.0

8-bit Inference and Packaging Update

Features:

  • added direct outlier extraction. This enables outlier extraction without fp16 weights without performance degradation.
  • Added automatic CUDA SETUP procedure and packaging all binaries into a single bitsandbytes package.

0.32.0

8-bit Inference Performance Enhancements

We added performance enhancements for small models. This makes small models about 2x faster for LLM.int8() inference.

Features:

  • Int32 dequantization now supports fused biases.
  • Linear8bitLt now uses a fused bias implementation.
  • Change .data.storage().data_ptr() to .data.data_ptr() to enhance inference performance.

Bug fixes:

  • Now throws and error if LLM.int8() is used on a GPU that is not supported.
  • Enhances error messaging if CUDA SETUP fails.

0.33.0

Various bug fixes

Features:

  • CPU quantization now supports a variable blocksize variable to enhance quantization speed or precision.

Bug fixes:

  • fixed an issue in CPU quantization where tensors with more than 2^31 elements would fail 19a7adca7a
  • fixed a bug where cpu binaries would fail if no GPU would be detected eab4d8232d
  • fixed an issue where cpu binaries cause additional stdout messages 92a3363096
  • fixed an import of bnb.utils 2e630b55f5

We thank @mryab, @mbrukman, @chessgecko, @dbaranchuk for pull request with bug fixes and new features.

0.34.0

Bug fixes and memory efficient backprop

Features:

  • Linear8bitLt layer now supports memory_efficient_backward=True which enables backprop of gradients through frozen weights.

Bug fixes:

  • fixed an issue where too many threads were created in blockwise quantization on the CPU for large tensors