reactphysics3d/src/collision/shapes/TriangleShape.h

192 lines
8.4 KiB
C
Raw Normal View History

/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2015 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef REACTPHYSICS3D_TRIANGLE_SHAPE_H
#define REACTPHYSICS3D_TRIANGLE_SHAPE_H
// Libraries
#include "mathematics/mathematics.h"
#include "CollisionShape.h"
/// ReactPhysics3D namespace
namespace reactphysics3d {
// Class TriangleShape
/**
* This class represents a triangle collision shape that is centered
* at the origin and defined three points.
*/
class TriangleShape : public CollisionShape {
protected:
// -------------------- Attribute -------------------- //
/// Three points of the triangle
Vector3 mPoints[3];
// -------------------- Methods -------------------- //
/// Private copy-constructor
TriangleShape(const TriangleShape& shape);
/// Private assignment operator
TriangleShape& operator=(const TriangleShape& shape);
/// Return a local support point in a given direction with the object margin
virtual Vector3 getLocalSupportPointWithMargin(const Vector3& direction,
void** cachedCollisionData) const;
/// Return a local support point in a given direction without the object margin
virtual Vector3 getLocalSupportPointWithoutMargin(const Vector3& direction,
void** cachedCollisionData) const;
/// Return true if a point is inside the collision shape
virtual bool testPointInside(const Vector3& localPoint, ProxyShape* proxyShape) const;
/// Raycast method with feedback information
virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const;
/// Allocate and return a copy of the object
virtual TriangleShape* clone(void* allocatedMemory) const;
/// Return the number of bytes used by the collision shape
virtual size_t getSizeInBytes() const;
public:
// -------------------- Methods -------------------- //
/// Constructor
TriangleShape(const Vector3& point1, const Vector3& point2,
const Vector3& point3, decimal margin);
/// Destructor
virtual ~TriangleShape();
/// Return the local bounds of the shape in x, y and z directions.
virtual void getLocalBounds(Vector3& min, Vector3& max) const;
/// Return the local inertia tensor of the collision shape
virtual void computeLocalInertiaTensor(Matrix3x3& tensor, decimal mass) const;
/// Update the AABB of a body using its collision shape
virtual void computeAABB(AABB& aabb, const Transform& transform);
/// Test equality between two triangle shapes
virtual bool isEqualTo(const CollisionShape& otherCollisionShape) const;
};
/// Allocate and return a copy of the object
inline TriangleShape* TriangleShape::clone(void* allocatedMemory) const {
return new (allocatedMemory) TriangleShape(*this);
}
// Return the number of bytes used by the collision shape
inline size_t TriangleShape::getSizeInBytes() const {
return sizeof(TriangleShape);
}
// Return a local support point in a given direction with the object margin
inline Vector3 TriangleShape::getLocalSupportPointWithMargin(const Vector3& direction,
void** cachedCollisionData) const {
// TODO : Do we need to use margin for triangle support point ?
return getLocalSupportPointWithoutMargin(direction, cachedCollisionData);
}
// Return a local support point in a given direction without the object margin
inline Vector3 TriangleShape::getLocalSupportPointWithoutMargin(const Vector3& direction,
void** cachedCollisionData) const {
Vector3 dotProducts(direction.dot(mPoints[0]), direction.dot(mPoints[1], direction.dot(mPoints[2])));
return mPoints[dotProducts.getMaxAxis()];
}
// Return the local bounds of the shape in x, y and z directions.
// This method is used to compute the AABB of the box
/**
* @param min The minimum bounds of the shape in local-space coordinates
* @param max The maximum bounds of the shape in local-space coordinates
*/
inline void TriangleShape::getLocalBounds(Vector3& min, Vector3& max) const {
// TODO :This code is wrong
const Vector3 xAxis(worldPoint1.X, worldPoint2.X, worldPoint3.X);
const Vector3 yAxis(worldPoint1.Y, worldPoint2.Y, worldPoint3.Y);
const Vector3 zAxis(worldPoint1.Z, worldPoint2.Z, worldPoint3.Z);
min.setAllValues(xAxis.getMinAxis(), yAxis.getMinAxis(), zAxis.getMinAxis());
max.setAllValues(xAxis.getMaxAxis(), yAxis.getMaxAxis(), zAxis.getMaxAxis());
}
// Return the local inertia tensor of the triangle shape
/**
* @param[out] tensor The 3x3 inertia tensor matrix of the shape in local-space
* coordinates
* @param mass Mass to use to compute the inertia tensor of the collision shape
*/
inline void TriangleShape::computeLocalInertiaTensor(Matrix3x3& tensor, decimal mass) const {
tensor.setToZero();
}
// Update the AABB of a body using its collision shape
/**
* @param[out] aabb The axis-aligned bounding box (AABB) of the collision shape
* computed in world-space coordinates
* @param transform Transform used to compute the AABB of the collision shape
*/
inline void TriangleShape::computeAABB(AABB& aabb, const Transform& transform) {
// TODO :This code is wrong
const Vector3 worldPoint1 = transform * mPoints[0];
const Vector3 worldPoint2 = transform * mPoints[1];
const Vector3 worldPoint3 = transform * mPoints[2];
const Vector3 xAxis(worldPoint1.X, worldPoint2.X, worldPoint3.X);
const Vector3 yAxis(worldPoint1.Y, worldPoint2.Y, worldPoint3.Y);
const Vector3 zAxis(worldPoint1.Z, worldPoint2.Z, worldPoint3.Z);
aabb.setMin(Vector3(xAxis.getMinAxis(), yAxis.getMinAxis(), zAxis.getMinAxis()));
aabb.setMax(Vector3(xAxis.getMaxAxis(), yAxis.getMaxAxis(), zAxis.getMaxAxis()));
}
// Test equality between two triangle shapes
inline bool TriangleShape::isEqualTo(const CollisionShape& otherCollisionShape) const {
const TriangleShape& otherShape = dynamic_cast<const TriangleShape&>(otherCollisionShape);
return (mPoints[0] == otherShape.mPoints[0] &&
mPoints[1] == otherShape.mPoints[1] &&
mPoints[2] == otherShape.mPoints[2]);
}
// Return true if a point is inside the collision shape
inline bool TriangleShape::testPointInside(const Vector3& localPoint, ProxyShape* proxyShape) const {
return false;
}
}
#endif