2010-09-09 19:41:14 +00:00
|
|
|
/********************************************************************************
|
|
|
|
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
|
|
|
|
* Copyright (c) 2010 Daniel Chappuis *
|
|
|
|
*********************************************************************************
|
|
|
|
* *
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy *
|
|
|
|
* of this software and associated documentation files (the "Software"), to deal *
|
|
|
|
* in the Software without restriction, including without limitation the rights *
|
|
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell *
|
|
|
|
* copies of the Software, and to permit persons to whom the Software is *
|
|
|
|
* furnished to do so, subject to the following conditions: *
|
|
|
|
* *
|
|
|
|
* The above copyright notice and this permission notice shall be included in *
|
|
|
|
* all copies or substantial portions of the Software. *
|
|
|
|
* *
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR *
|
|
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE *
|
|
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER *
|
|
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, *
|
|
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN *
|
|
|
|
* THE SOFTWARE. *
|
|
|
|
********************************************************************************/
|
2009-02-04 14:51:42 +00:00
|
|
|
|
|
|
|
// Libraries
|
|
|
|
#include <iostream>
|
|
|
|
#include "Matrix3x3.h"
|
|
|
|
|
|
|
|
// Namespaces
|
|
|
|
using namespace reactphysics3d;
|
|
|
|
|
|
|
|
// Constructor of the class Matrix3x3
|
|
|
|
Matrix3x3::Matrix3x3() {
|
|
|
|
// Initialize all values in the matrix to zero
|
|
|
|
setAllValues(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Constructor with arguments
|
|
|
|
Matrix3x3::Matrix3x3(double a1, double a2, double a3, double b1, double b2, double b3, double c1, double c2, double c3) {
|
|
|
|
// Initialize the matrix with the values
|
|
|
|
setAllValues(a1, a2, a3, b1, b2, b3, c1, c2, c3);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Copy-constructor
|
2010-03-28 21:55:15 +00:00
|
|
|
// TODO : Test if this copy-constructor is correct (check if the the copy matrix use
|
|
|
|
// the same memory place for its array)
|
2009-02-04 14:51:42 +00:00
|
|
|
Matrix3x3::Matrix3x3(const Matrix3x3& matrix2) {
|
|
|
|
// Copy the values in the matrix
|
|
|
|
setAllValues(matrix2.array[0][0], matrix2.array[0][1], matrix2.array[0][2],
|
|
|
|
matrix2.array[1][0], matrix2.array[1][1], matrix2.array[1][2],
|
|
|
|
matrix2.array[2][0], matrix2.array[2][1], matrix2.array[2][2]);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Destructor
|
|
|
|
Matrix3x3::~Matrix3x3() {
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
// Return the inverse matrix
|
|
|
|
Matrix3x3 Matrix3x3::getInverse() const throw(MathematicsException) {
|
|
|
|
// Compute the determinant of the matrix
|
|
|
|
double determinant = getDeterminant();
|
|
|
|
|
|
|
|
// Check if the determinant is equal to zero
|
|
|
|
if (determinant != 0) {
|
|
|
|
double invDeterminant = 1.0 / determinant;
|
|
|
|
Matrix3x3 tempMatrix;
|
|
|
|
|
|
|
|
// Compute the inverse of the matrix
|
|
|
|
tempMatrix.setAllValues((array[1][1]*array[2][2]-array[2][1]*array[1][2]), -(array[1][0]*array[2][2]-array[2][0]*array[1][2]), (array[1][0]*array[2][1]-array[2][0]*array[1][1]),
|
|
|
|
-(array[0][1]*array[2][2]-array[2][1]*array[0][2]), (array[0][0]*array[2][2]-array[2][0]*array[0][2]), -(array[0][0]*array[2][1]-array[2][0]*array[0][1]),
|
|
|
|
(array[0][1]*array[1][2]-array[0][2]*array[1][1]), -(array[0][0]*array[1][2]-array[1][0]*array[0][2]), (array[0][0]*array[1][1]-array[0][1]*array[1][0]));
|
|
|
|
|
|
|
|
// Return the inverse matrix
|
|
|
|
return (invDeterminant * tempMatrix.getTranspose());
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
// Throw an exception because the inverse of the matrix doesn't exist if the determinant is equal to zero
|
|
|
|
throw MathematicsException("MathematicsException : Impossible to compute the inverse of the matrix because the determinant is equal to zero");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Return the 3x3 identity matrix
|
|
|
|
Matrix3x3 Matrix3x3::identity() {
|
|
|
|
// Return the isdentity matrix
|
|
|
|
return Matrix3x3(1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Overloaded operator for addition
|
|
|
|
Matrix3x3 Matrix3x3::operator+(const Matrix3x3& matrix2) const {
|
|
|
|
// Return the sum matrix
|
|
|
|
return Matrix3x3(array[0][0] + matrix2.array[0][0], array[0][1] + matrix2.array[0][1], array[0][2] + matrix2.array[0][2],
|
|
|
|
array[1][0] + matrix2.array[1][0], array[1][1] + matrix2.array[1][1], array[1][2] + matrix2.array[1][2],
|
|
|
|
array[2][0] + matrix2.array[2][0], array[2][1] + matrix2.array[2][1], array[2][2] + matrix2.array[2][2]);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Overloaded operator for substraction
|
|
|
|
Matrix3x3 Matrix3x3::operator-(const Matrix3x3& matrix2) const {
|
|
|
|
// Return the substraction matrix
|
|
|
|
return Matrix3x3(array[0][0] - matrix2.array[0][0], array[0][1] - matrix2.array[0][1], array[0][2] - matrix2.array[0][2],
|
|
|
|
array[1][0] - matrix2.array[1][0], array[1][1] - matrix2.array[1][1], array[1][2] - matrix2.array[1][2],
|
|
|
|
array[2][0] - matrix2.array[2][0], array[2][1] - matrix2.array[2][1], array[2][2] - matrix2.array[2][2]);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Overloaded operator for multiplication with a number
|
|
|
|
Matrix3x3 Matrix3x3::operator*(double nb) const {
|
|
|
|
// Return multiplied matrix
|
|
|
|
return Matrix3x3(array[0][0] * nb, array[0][1] * nb, array[0][2] * nb,
|
|
|
|
array[1][0] * nb, array[1][1] * nb, array[1][2] * nb,
|
|
|
|
array[2][0] * nb, array[2][1] * nb, array[2][2] * nb);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Overloaded operator for multiplication with a matrix
|
|
|
|
Matrix3x3 Matrix3x3::operator*(const Matrix3x3& matrix2) const {
|
|
|
|
// Compute and return the multiplication of the matrices
|
|
|
|
return Matrix3x3(array[0][0]*matrix2.array[0][0] + array[0][1]*matrix2.array[1][0] + array[0][2]*matrix2.array[2][0],
|
|
|
|
array[0][0]*matrix2.array[0][1] + array[0][1]*matrix2.array[1][1] + array[0][2]*matrix2.array[2][1],
|
|
|
|
array[0][0]*matrix2.array[0][2] + array[0][1]*matrix2.array[1][2] + array[0][2]*matrix2.array[2][2],
|
|
|
|
array[1][0]*matrix2.array[0][0] + array[1][1]*matrix2.array[1][0] + array[1][2]*matrix2.array[2][0],
|
|
|
|
array[1][0]*matrix2.array[0][1] + array[1][1]*matrix2.array[1][1] + array[1][2]*matrix2.array[2][1],
|
|
|
|
array[1][0]*matrix2.array[0][2] + array[1][1]*matrix2.array[1][2] + array[1][2]*matrix2.array[2][2],
|
|
|
|
array[2][0]*matrix2.array[0][0] + array[2][1]*matrix2.array[1][0] + array[2][2]*matrix2.array[2][0],
|
|
|
|
array[2][0]*matrix2.array[0][1] + array[2][1]*matrix2.array[1][1] + array[2][2]*matrix2.array[2][1],
|
|
|
|
array[2][0]*matrix2.array[0][2] + array[2][1]*matrix2.array[1][2] + array[2][2]*matrix2.array[2][2]);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Overloaded operator for assignment
|
|
|
|
Matrix3x3& Matrix3x3::operator=(const Matrix3x3& matrix2) {
|
|
|
|
// Check for self-assignment
|
|
|
|
if (this != &matrix2) {
|
|
|
|
setAllValues(matrix2.array[0][0], matrix2.array[0][1], matrix2.array[0][2],
|
|
|
|
matrix2.array[1][0], matrix2.array[1][1], matrix2.array[1][2],
|
|
|
|
matrix2.array[2][0], matrix2.array[2][1], matrix2.array[2][2]);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Return a reference to the matrix
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|