reactphysics3d/sources/mathematics/Matrix3x3.cpp

142 lines
7.4 KiB
C++
Raw Normal View History

/********************************************************************************
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
* Copyright (c) 2010 Daniel Chappuis *
*********************************************************************************
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy *
* of this software and associated documentation files (the "Software"), to deal *
* in the Software without restriction, including without limitation the rights *
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell *
* copies of the Software, and to permit persons to whom the Software is *
* furnished to do so, subject to the following conditions: *
* *
* The above copyright notice and this permission notice shall be included in *
* all copies or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR *
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE *
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER *
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, *
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN *
* THE SOFTWARE. *
********************************************************************************/
// Libraries
#include <iostream>
#include "Matrix3x3.h"
// Namespaces
using namespace reactphysics3d;
// Constructor of the class Matrix3x3
Matrix3x3::Matrix3x3() {
// Initialize all values in the matrix to zero
setAllValues(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0);
}
// Constructor with arguments
Matrix3x3::Matrix3x3(double a1, double a2, double a3, double b1, double b2, double b3, double c1, double c2, double c3) {
// Initialize the matrix with the values
setAllValues(a1, a2, a3, b1, b2, b3, c1, c2, c3);
}
// Copy-constructor
// TODO : Test if this copy-constructor is correct (check if the the copy matrix use
// the same memory place for its array)
Matrix3x3::Matrix3x3(const Matrix3x3& matrix2) {
// Copy the values in the matrix
setAllValues(matrix2.array[0][0], matrix2.array[0][1], matrix2.array[0][2],
matrix2.array[1][0], matrix2.array[1][1], matrix2.array[1][2],
matrix2.array[2][0], matrix2.array[2][1], matrix2.array[2][2]);
}
// Destructor
Matrix3x3::~Matrix3x3() {
}
// Return the inverse matrix
Matrix3x3 Matrix3x3::getInverse() const throw(MathematicsException) {
// Compute the determinant of the matrix
double determinant = getDeterminant();
// Check if the determinant is equal to zero
if (determinant != 0) {
double invDeterminant = 1.0 / determinant;
Matrix3x3 tempMatrix;
// Compute the inverse of the matrix
tempMatrix.setAllValues((array[1][1]*array[2][2]-array[2][1]*array[1][2]), -(array[1][0]*array[2][2]-array[2][0]*array[1][2]), (array[1][0]*array[2][1]-array[2][0]*array[1][1]),
-(array[0][1]*array[2][2]-array[2][1]*array[0][2]), (array[0][0]*array[2][2]-array[2][0]*array[0][2]), -(array[0][0]*array[2][1]-array[2][0]*array[0][1]),
(array[0][1]*array[1][2]-array[0][2]*array[1][1]), -(array[0][0]*array[1][2]-array[1][0]*array[0][2]), (array[0][0]*array[1][1]-array[0][1]*array[1][0]));
// Return the inverse matrix
return (invDeterminant * tempMatrix.getTranspose());
}
else {
// Throw an exception because the inverse of the matrix doesn't exist if the determinant is equal to zero
throw MathematicsException("MathematicsException : Impossible to compute the inverse of the matrix because the determinant is equal to zero");
}
}
// Return the 3x3 identity matrix
Matrix3x3 Matrix3x3::identity() {
// Return the isdentity matrix
return Matrix3x3(1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0);
}
// Overloaded operator for addition
Matrix3x3 Matrix3x3::operator+(const Matrix3x3& matrix2) const {
// Return the sum matrix
return Matrix3x3(array[0][0] + matrix2.array[0][0], array[0][1] + matrix2.array[0][1], array[0][2] + matrix2.array[0][2],
array[1][0] + matrix2.array[1][0], array[1][1] + matrix2.array[1][1], array[1][2] + matrix2.array[1][2],
array[2][0] + matrix2.array[2][0], array[2][1] + matrix2.array[2][1], array[2][2] + matrix2.array[2][2]);
}
// Overloaded operator for substraction
Matrix3x3 Matrix3x3::operator-(const Matrix3x3& matrix2) const {
// Return the substraction matrix
return Matrix3x3(array[0][0] - matrix2.array[0][0], array[0][1] - matrix2.array[0][1], array[0][2] - matrix2.array[0][2],
array[1][0] - matrix2.array[1][0], array[1][1] - matrix2.array[1][1], array[1][2] - matrix2.array[1][2],
array[2][0] - matrix2.array[2][0], array[2][1] - matrix2.array[2][1], array[2][2] - matrix2.array[2][2]);
}
// Overloaded operator for multiplication with a number
Matrix3x3 Matrix3x3::operator*(double nb) const {
// Return multiplied matrix
return Matrix3x3(array[0][0] * nb, array[0][1] * nb, array[0][2] * nb,
array[1][0] * nb, array[1][1] * nb, array[1][2] * nb,
array[2][0] * nb, array[2][1] * nb, array[2][2] * nb);
}
// Overloaded operator for multiplication with a matrix
Matrix3x3 Matrix3x3::operator*(const Matrix3x3& matrix2) const {
// Compute and return the multiplication of the matrices
return Matrix3x3(array[0][0]*matrix2.array[0][0] + array[0][1]*matrix2.array[1][0] + array[0][2]*matrix2.array[2][0],
array[0][0]*matrix2.array[0][1] + array[0][1]*matrix2.array[1][1] + array[0][2]*matrix2.array[2][1],
array[0][0]*matrix2.array[0][2] + array[0][1]*matrix2.array[1][2] + array[0][2]*matrix2.array[2][2],
array[1][0]*matrix2.array[0][0] + array[1][1]*matrix2.array[1][0] + array[1][2]*matrix2.array[2][0],
array[1][0]*matrix2.array[0][1] + array[1][1]*matrix2.array[1][1] + array[1][2]*matrix2.array[2][1],
array[1][0]*matrix2.array[0][2] + array[1][1]*matrix2.array[1][2] + array[1][2]*matrix2.array[2][2],
array[2][0]*matrix2.array[0][0] + array[2][1]*matrix2.array[1][0] + array[2][2]*matrix2.array[2][0],
array[2][0]*matrix2.array[0][1] + array[2][1]*matrix2.array[1][1] + array[2][2]*matrix2.array[2][1],
array[2][0]*matrix2.array[0][2] + array[2][1]*matrix2.array[1][2] + array[2][2]*matrix2.array[2][2]);
}
// Overloaded operator for assignment
Matrix3x3& Matrix3x3::operator=(const Matrix3x3& matrix2) {
// Check for self-assignment
if (this != &matrix2) {
setAllValues(matrix2.array[0][0], matrix2.array[0][1], matrix2.array[0][2],
matrix2.array[1][0], matrix2.array[1][1], matrix2.array[1][2],
matrix2.array[2][0], matrix2.array[2][1], matrix2.array[2][2]);
}
// Return a reference to the matrix
return *this;
}