reactphysics3d/src/engine/CollisionWorld.cpp

170 lines
6.7 KiB
C++
Raw Normal View History

/********************************************************************************
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
* Copyright (c) 2010-2013 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
// Libraries
#include "CollisionWorld.h"
#include <algorithm>
// Namespaces
using namespace reactphysics3d;
using namespace std;
// Constructor
CollisionWorld::CollisionWorld()
: mCollisionDetection(this, mMemoryAllocator), mCurrentBodyID(0),
mEventListener(NULL) {
2013-09-10 19:33:52 +00:00
}
// Destructor
CollisionWorld::~CollisionWorld() {
assert(mCollisionShapes.empty());
assert(mBodies.empty());
}
// Create a collision body and add it to the world
CollisionBody* CollisionWorld::createCollisionBody(const Transform& transform) {
// Get the next available body ID
bodyindex bodyID = computeNextAvailableBodyID();
// Largest index cannot be used (it is used for invalid index)
assert(bodyID < std::numeric_limits<reactphysics3d::bodyindex>::max());
// Create the collision body
CollisionBody* collisionBody = new (mMemoryAllocator.allocate(sizeof(CollisionBody)))
CollisionBody(transform, *this, bodyID);
assert(collisionBody != NULL);
// Add the collision body to the world
mBodies.insert(collisionBody);
// Return the pointer to the rigid body
return collisionBody;
}
// Destroy a collision body
void CollisionWorld::destroyCollisionBody(CollisionBody* collisionBody) {
// Remove all the collision shapes of the body
collisionBody->removeAllCollisionShapes();
// Add the body ID to the list of free IDs
mFreeBodiesIDs.push_back(collisionBody->getID());
// Call the destructor of the collision body
collisionBody->CollisionBody::~CollisionBody();
// Remove the collision body from the list of bodies
mBodies.erase(collisionBody);
// Free the object from the memory allocator
mMemoryAllocator.release(collisionBody, sizeof(CollisionBody));
}
// Return the next available body ID
bodyindex CollisionWorld::computeNextAvailableBodyID() {
// Compute the body ID
bodyindex bodyID;
if (!mFreeBodiesIDs.empty()) {
bodyID = mFreeBodiesIDs.back();
mFreeBodiesIDs.pop_back();
}
else {
bodyID = mCurrentBodyID;
mCurrentBodyID++;
}
return bodyID;
}
// Create a new collision shape in the world.
/// First, this methods checks that the new collision shape does not exist yet in the
/// world. If it already exists, we do not allocate memory for a new one but instead
/// we reuse the existing one. The goal is to only allocate memory for a single
/// collision shape if this one is used for several bodies in the world. To allocate
/// memory for a new collision shape, we use the memory allocator.
CollisionShape* CollisionWorld::createCollisionShape(const CollisionShape& collisionShape) {
// Check if there is already a similar collision shape in the world
std::list<CollisionShape*>::iterator it;
for (it = mCollisionShapes.begin(); it != mCollisionShapes.end(); ++it) {
if (collisionShape == (*(*it))) {
// Increment the number of similar created shapes
(*it)->incrementNbSimilarCreatedShapes();
// A similar collision shape already exists in the world, so we do not
// create a new one but we simply return a pointer to the existing one
return (*it);
}
}
// A similar collision shape does not already exist in the world, so we create a
// new one and add it to the world
void* allocatedMemory = mMemoryAllocator.allocate(collisionShape.getSizeInBytes());
CollisionShape* newCollisionShape = collisionShape.clone(allocatedMemory);
mCollisionShapes.push_back(newCollisionShape);
newCollisionShape->incrementNbSimilarCreatedShapes();
// Return a pointer to the new collision shape
return newCollisionShape;
}
// Remove a collision shape.
/// First, we check if another body is still using the same collision shape. If so,
/// we keep the allocated collision shape. If it is not the case, we can deallocate
/// the memory associated with the collision shape.
void CollisionWorld::removeCollisionShape(CollisionShape* collisionShape) {
assert(collisionShape->getNbSimilarCreatedShapes() != 0);
// Decrement the number of bodies using the same collision shape
collisionShape->decrementNbSimilarCreatedShapes();
// If no other body is using the collision shape in the world
if (collisionShape->getNbSimilarCreatedShapes() == 0) {
// Remove the shape from the set of shapes in the world
mCollisionShapes.remove(collisionShape);
// Compute the size (in bytes) of the collision shape
size_t nbBytesShape = collisionShape->getSizeInBytes();
// Call the destructor of the collision shape
collisionShape->CollisionShape::~CollisionShape();
// Deallocate the memory used by the collision shape
mMemoryAllocator.release(collisionShape, nbBytesShape);
}
}