Add the fixed joint
This commit is contained in:
parent
c4d6206ee2
commit
1c0726d9d6
|
@ -208,7 +208,7 @@ inline const Transform& CollisionBody::getTransform() const {
|
|||
inline void CollisionBody::setTransform(const Transform& transform) {
|
||||
|
||||
// Check if the body has moved
|
||||
if (this->mTransform != transform) {
|
||||
if (mTransform != transform) {
|
||||
mHasMoved = true;
|
||||
}
|
||||
|
||||
|
|
|
@ -27,7 +27,6 @@
|
|||
#include "BallAndSocketJoint.h"
|
||||
#include "../engine/ConstraintSolver.h"
|
||||
|
||||
// TODO : Solve 2x2 or 3x3 linear systems without inverting the A matrix (direct resolution)
|
||||
|
||||
using namespace reactphysics3d;
|
||||
|
||||
|
|
|
@ -84,12 +84,6 @@ class BallAndSocketJoint : public Constraint {
|
|||
/// Bias vector for the constraint
|
||||
Vector3 mBiasVector;
|
||||
|
||||
/// Skew-Symmetric matrix for cross product with vector mR1World
|
||||
Matrix3x3 mSkewSymmetricMatrixR1World;
|
||||
|
||||
/// Skew-Symmetric matrix for cross product with vector mR2World
|
||||
Matrix3x3 mSkewSymmetricMatrixR2World;
|
||||
|
||||
/// Inverse mass matrix K=JM^-1J^-t of the constraint
|
||||
Matrix3x3 mInverseMassMatrix;
|
||||
|
||||
|
|
|
@ -35,7 +35,7 @@
|
|||
namespace reactphysics3d {
|
||||
|
||||
// Enumeration for the type of a constraint
|
||||
enum ConstraintType {CONTACT, BALLSOCKETJOINT, SLIDERJOINT, HINGEJOINT};
|
||||
enum ConstraintType {CONTACT, BALLSOCKETJOINT, SLIDERJOINT, HINGEJOINT, FIXEDJOINT};
|
||||
|
||||
// Class declarations
|
||||
struct ConstraintSolverData;
|
||||
|
|
248
src/constraint/FixedJoint.cpp
Normal file
248
src/constraint/FixedJoint.cpp
Normal file
|
@ -0,0 +1,248 @@
|
|||
/********************************************************************************
|
||||
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
|
||||
* Copyright (c) 2010-2013 Daniel Chappuis *
|
||||
*********************************************************************************
|
||||
* *
|
||||
* This software is provided 'as-is', without any express or implied warranty. *
|
||||
* In no event will the authors be held liable for any damages arising from the *
|
||||
* use of this software. *
|
||||
* *
|
||||
* Permission is granted to anyone to use this software for any purpose, *
|
||||
* including commercial applications, and to alter it and redistribute it *
|
||||
* freely, subject to the following restrictions: *
|
||||
* *
|
||||
* 1. The origin of this software must not be misrepresented; you must not claim *
|
||||
* that you wrote the original software. If you use this software in a *
|
||||
* product, an acknowledgment in the product documentation would be *
|
||||
* appreciated but is not required. *
|
||||
* *
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be *
|
||||
* misrepresented as being the original software. *
|
||||
* *
|
||||
* 3. This notice may not be removed or altered from any source distribution. *
|
||||
* *
|
||||
********************************************************************************/
|
||||
|
||||
// Libraries
|
||||
#include "FixedJoint.h"
|
||||
#include "../engine/ConstraintSolver.h"
|
||||
|
||||
using namespace reactphysics3d;
|
||||
|
||||
// Static variables definition
|
||||
const decimal FixedJoint::BETA = decimal(0.2);
|
||||
|
||||
// Constructor
|
||||
FixedJoint::FixedJoint(const FixedJointInfo& jointInfo)
|
||||
: Constraint(jointInfo), mImpulseTranslation(0, 0, 0), mImpulseRotation(0, 0, 0) {
|
||||
|
||||
// Compute the local-space anchor point for each body
|
||||
const Transform& transform1 = mBody1->getTransform();
|
||||
const Transform& transform2 = mBody2->getTransform();
|
||||
mLocalAnchorPointBody1 = transform1.getInverse() * jointInfo.anchorPointWorldSpace;
|
||||
mLocalAnchorPointBody2 = transform2.getInverse() * jointInfo.anchorPointWorldSpace;
|
||||
|
||||
// Compute the inverse of the initial orientation difference between the two bodies
|
||||
mInitOrientationDifferenceInv = transform2.getOrientation() *
|
||||
transform1.getOrientation().getInverse();
|
||||
mInitOrientationDifferenceInv.normalize();
|
||||
mInitOrientationDifferenceInv.inverse();
|
||||
}
|
||||
|
||||
// Destructor
|
||||
FixedJoint::~FixedJoint() {
|
||||
|
||||
}
|
||||
|
||||
// Initialize before solving the constraint
|
||||
void FixedJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverData) {
|
||||
|
||||
// Initialize the bodies index in the velocity array
|
||||
mIndexBody1 = constraintSolverData.mapBodyToConstrainedVelocityIndex.find(mBody1)->second;
|
||||
mIndexBody2 = constraintSolverData.mapBodyToConstrainedVelocityIndex.find(mBody2)->second;
|
||||
|
||||
// Get the bodies positions and orientations
|
||||
const Vector3& x1 = mBody1->getTransform().getPosition();
|
||||
const Vector3& x2 = mBody2->getTransform().getPosition();
|
||||
const Quaternion& orientationBody1 = mBody1->getTransform().getOrientation();
|
||||
const Quaternion& orientationBody2 = mBody2->getTransform().getOrientation();
|
||||
|
||||
// Get the inertia tensor of bodies
|
||||
const Matrix3x3 I1 = mBody1->getInertiaTensorInverseWorld();
|
||||
const Matrix3x3 I2 = mBody2->getInertiaTensorInverseWorld();
|
||||
|
||||
// Compute the vector from body center to the anchor point in world-space
|
||||
mR1World = orientationBody1 * mLocalAnchorPointBody1;
|
||||
mR2World = orientationBody2 * mLocalAnchorPointBody2;
|
||||
|
||||
// Compute the corresponding skew-symmetric matrices
|
||||
Matrix3x3 skewSymmetricMatrixU1= Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(mR1World);
|
||||
Matrix3x3 skewSymmetricMatrixU2= Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(mR2World);
|
||||
|
||||
// Compute the matrix K=JM^-1J^t (3x3 matrix)
|
||||
decimal inverseMassBodies = 0.0;
|
||||
if (mBody1->getIsMotionEnabled()) {
|
||||
inverseMassBodies += mBody1->getMassInverse();
|
||||
}
|
||||
if (mBody2->getIsMotionEnabled()) {
|
||||
inverseMassBodies += mBody2->getMassInverse();
|
||||
}
|
||||
Matrix3x3 massMatrix = Matrix3x3(inverseMassBodies, 0, 0,
|
||||
0, inverseMassBodies, 0,
|
||||
0, 0, inverseMassBodies);
|
||||
if (mBody1->getIsMotionEnabled()) {
|
||||
massMatrix += skewSymmetricMatrixU1 * I1 * skewSymmetricMatrixU1.getTranspose();
|
||||
}
|
||||
if (mBody2->getIsMotionEnabled()) {
|
||||
massMatrix += skewSymmetricMatrixU2 * I2 * skewSymmetricMatrixU2.getTranspose();
|
||||
}
|
||||
|
||||
// Compute the inverse mass matrix K^-1 for the 3 translation constraints
|
||||
mInverseMassMatrixTranslation.setToZero();
|
||||
if (mBody1->getIsMotionEnabled() || mBody2->getIsMotionEnabled()) {
|
||||
mInverseMassMatrixTranslation = massMatrix.getInverse();
|
||||
}
|
||||
|
||||
// Compute the bias "b" of the constraint for the 3 translation constraints
|
||||
decimal biasFactor = (BETA / constraintSolverData.timeStep);
|
||||
mBiasTranslation.setToZero();
|
||||
if (mPositionCorrectionTechnique == BAUMGARTE_JOINTS) {
|
||||
mBiasTranslation = biasFactor * (x2 + mR2World - x1 - mR1World);
|
||||
}
|
||||
|
||||
// Compute the inverse of the mass matrix K=JM^-1J^t for the 3 rotation
|
||||
// contraints (3x3 matrix)
|
||||
mInverseMassMatrixRotation.setToZero();
|
||||
if (mBody1->getIsMotionEnabled()) {
|
||||
mInverseMassMatrixRotation += I1;
|
||||
}
|
||||
if (mBody2->getIsMotionEnabled()) {
|
||||
mInverseMassMatrixRotation += I2;
|
||||
}
|
||||
if (mBody1->getIsMotionEnabled() || mBody2->getIsMotionEnabled()) {
|
||||
mInverseMassMatrixRotation = mInverseMassMatrixRotation.getInverse();
|
||||
}
|
||||
|
||||
// Compute the bias "b" for the 3 rotation constraints
|
||||
mBiasRotation.setToZero();
|
||||
if (mPositionCorrectionTechnique == BAUMGARTE_JOINTS) {
|
||||
Quaternion currentOrientationDifference = orientationBody2 * orientationBody1.getInverse();
|
||||
currentOrientationDifference.normalize();
|
||||
const Quaternion qError = currentOrientationDifference * mInitOrientationDifferenceInv;
|
||||
mBiasRotation = biasFactor * decimal(2.0) * qError.getVectorV();
|
||||
}
|
||||
|
||||
// If warm-starting is not enabled
|
||||
if (!constraintSolverData.isWarmStartingActive) {
|
||||
|
||||
// Reset the accumulated impulses
|
||||
mImpulseTranslation.setToZero();
|
||||
mImpulseRotation.setToZero();
|
||||
}
|
||||
}
|
||||
|
||||
// Warm start the constraint (apply the previous impulse at the beginning of the step)
|
||||
void FixedJoint::warmstart(const ConstraintSolverData& constraintSolverData) {
|
||||
|
||||
// Get the velocities
|
||||
Vector3& v1 = constraintSolverData.linearVelocities[mIndexBody1];
|
||||
Vector3& v2 = constraintSolverData.linearVelocities[mIndexBody2];
|
||||
Vector3& w1 = constraintSolverData.angularVelocities[mIndexBody1];
|
||||
Vector3& w2 = constraintSolverData.angularVelocities[mIndexBody2];
|
||||
|
||||
// Get the inverse mass and inverse inertia tensors of the bodies
|
||||
const decimal inverseMassBody1 = mBody1->getMassInverse();
|
||||
const decimal inverseMassBody2 = mBody2->getMassInverse();
|
||||
const Matrix3x3 I1 = mBody1->getInertiaTensorInverseWorld();
|
||||
const Matrix3x3 I2 = mBody2->getInertiaTensorInverseWorld();
|
||||
|
||||
// Compute the impulse P=J^T * lambda for the 3 translation constraints
|
||||
Vector3 linearImpulseBody1 = -mImpulseTranslation;
|
||||
Vector3 angularImpulseBody1 = mImpulseTranslation.cross(mR1World);
|
||||
Vector3 linearImpulseBody2 = mImpulseTranslation;
|
||||
Vector3 angularImpulseBody2 = -mImpulseTranslation.cross(mR2World);
|
||||
|
||||
// Compute the impulse P=J^T * lambda for the 3 rotation constraints
|
||||
angularImpulseBody1 += -mImpulseRotation;
|
||||
angularImpulseBody2 += mImpulseRotation;
|
||||
|
||||
// Apply the impulse to the bodies of the joint
|
||||
if (mBody1->getIsMotionEnabled()) {
|
||||
v1 += inverseMassBody1 * linearImpulseBody1;
|
||||
w1 += I1 * angularImpulseBody1;
|
||||
}
|
||||
if (mBody2->getIsMotionEnabled()) {
|
||||
v2 += inverseMassBody2 * linearImpulseBody2;
|
||||
w2 += I2 * angularImpulseBody2;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// Solve the velocity constraint
|
||||
void FixedJoint::solveVelocityConstraint(const ConstraintSolverData& constraintSolverData) {
|
||||
|
||||
// Get the velocities
|
||||
Vector3& v1 = constraintSolverData.linearVelocities[mIndexBody1];
|
||||
Vector3& v2 = constraintSolverData.linearVelocities[mIndexBody2];
|
||||
Vector3& w1 = constraintSolverData.angularVelocities[mIndexBody1];
|
||||
Vector3& w2 = constraintSolverData.angularVelocities[mIndexBody2];
|
||||
|
||||
// Get the inverse mass and inverse inertia tensors of the bodies
|
||||
decimal inverseMassBody1 = mBody1->getMassInverse();
|
||||
decimal inverseMassBody2 = mBody2->getMassInverse();
|
||||
Matrix3x3 I1 = mBody1->getInertiaTensorInverseWorld();
|
||||
Matrix3x3 I2 = mBody2->getInertiaTensorInverseWorld();
|
||||
|
||||
// --------------- Translation Constraints --------------- //
|
||||
|
||||
// Compute J*v for the 3 translation constraints
|
||||
const Vector3 JvTranslation = v2 + w2.cross(mR2World) - v1 - w1.cross(mR1World);
|
||||
|
||||
// Compute the Lagrange multiplier lambda
|
||||
const Vector3 deltaLambda = mInverseMassMatrixTranslation *
|
||||
(-JvTranslation - mBiasTranslation);
|
||||
mImpulseTranslation += deltaLambda;
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
Vector3 linearImpulseBody1 = -deltaLambda;
|
||||
Vector3 angularImpulseBody1 = deltaLambda.cross(mR1World);
|
||||
Vector3 linearImpulseBody2 = deltaLambda;
|
||||
Vector3 angularImpulseBody2 = -deltaLambda.cross(mR2World);
|
||||
|
||||
// Apply the impulse to the bodies of the joint
|
||||
if (mBody1->getIsMotionEnabled()) {
|
||||
v1 += inverseMassBody1 * linearImpulseBody1;
|
||||
w1 += I1 * angularImpulseBody1;
|
||||
}
|
||||
if (mBody2->getIsMotionEnabled()) {
|
||||
v2 += inverseMassBody2 * linearImpulseBody2;
|
||||
w2 += I2 * angularImpulseBody2;
|
||||
}
|
||||
|
||||
// --------------- Rotation Constraints --------------- //
|
||||
|
||||
// Compute J*v for the 3 rotation constraints
|
||||
const Vector3 JvRotation = w2 - w1;
|
||||
|
||||
// Compute the Lagrange multiplier lambda for the 3 rotation constraints
|
||||
Vector3 deltaLambda2 = mInverseMassMatrixRotation * (-JvRotation - mBiasRotation);
|
||||
mImpulseRotation += deltaLambda2;
|
||||
|
||||
// Compute the impulse P=J^T * lambda for the 3 rotation constraints
|
||||
angularImpulseBody1 = -deltaLambda2;
|
||||
angularImpulseBody2 = deltaLambda2;
|
||||
|
||||
// Apply the impulse to the bodies of the joint
|
||||
if (mBody1->getIsMotionEnabled()) {
|
||||
w1 += I1 * angularImpulseBody1;
|
||||
}
|
||||
if (mBody2->getIsMotionEnabled()) {
|
||||
w2 += I2 * angularImpulseBody2;
|
||||
}
|
||||
}
|
||||
|
||||
// Solve the position constraint
|
||||
void FixedJoint::solvePositionConstraint(const ConstraintSolverData& constraintSolverData) {
|
||||
|
||||
}
|
||||
|
138
src/constraint/FixedJoint.h
Normal file
138
src/constraint/FixedJoint.h
Normal file
|
@ -0,0 +1,138 @@
|
|||
/********************************************************************************
|
||||
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
|
||||
* Copyright (c) 2010-2013 Daniel Chappuis *
|
||||
*********************************************************************************
|
||||
* *
|
||||
* This software is provided 'as-is', without any express or implied warranty. *
|
||||
* In no event will the authors be held liable for any damages arising from the *
|
||||
* use of this software. *
|
||||
* *
|
||||
* Permission is granted to anyone to use this software for any purpose, *
|
||||
* including commercial applications, and to alter it and redistribute it *
|
||||
* freely, subject to the following restrictions: *
|
||||
* *
|
||||
* 1. The origin of this software must not be misrepresented; you must not claim *
|
||||
* that you wrote the original software. If you use this software in a *
|
||||
* product, an acknowledgment in the product documentation would be *
|
||||
* appreciated but is not required. *
|
||||
* *
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be *
|
||||
* misrepresented as being the original software. *
|
||||
* *
|
||||
* 3. This notice may not be removed or altered from any source distribution. *
|
||||
* *
|
||||
********************************************************************************/
|
||||
|
||||
#ifndef REACTPHYSICS3D_FIXED_JOINT_H
|
||||
#define REACTPHYSICS3D_FIXED_JOINT_H
|
||||
|
||||
// Libraries
|
||||
#include "Constraint.h"
|
||||
#include "../mathematics/mathematics.h"
|
||||
|
||||
namespace reactphysics3d {
|
||||
|
||||
// Structure FixedJointInfo
|
||||
/**
|
||||
* This structure is used to gather the information needed to create a fixed
|
||||
* joint. This structure will be used to create the actual fixed joint.
|
||||
*/
|
||||
struct FixedJointInfo : public ConstraintInfo {
|
||||
|
||||
public :
|
||||
|
||||
// -------------------- Attributes -------------------- //
|
||||
|
||||
/// Anchor point (in world-space coordinates)
|
||||
Vector3 anchorPointWorldSpace;
|
||||
|
||||
/// Constructor
|
||||
FixedJointInfo(RigidBody* rigidBody1, RigidBody* rigidBody2,
|
||||
const Vector3& initAnchorPointWorldSpace)
|
||||
: ConstraintInfo(rigidBody1, rigidBody2, FIXEDJOINT),
|
||||
anchorPointWorldSpace(initAnchorPointWorldSpace){}
|
||||
};
|
||||
|
||||
// Class FixedJoint
|
||||
/**
|
||||
* This class represents a fixed joint that is used to forbid any translation or rotation
|
||||
* between two bodies.
|
||||
*/
|
||||
class FixedJoint : public Constraint {
|
||||
|
||||
private :
|
||||
|
||||
// -------------------- Constants -------------------- //
|
||||
|
||||
// Beta value for the bias factor of position correction
|
||||
static const decimal BETA;
|
||||
|
||||
// -------------------- Attributes -------------------- //
|
||||
|
||||
/// Anchor point of body 1 (in local-space coordinates of body 1)
|
||||
Vector3 mLocalAnchorPointBody1;
|
||||
|
||||
/// Anchor point of body 2 (in local-space coordinates of body 2)
|
||||
Vector3 mLocalAnchorPointBody2;
|
||||
|
||||
/// Vector from center of body 2 to anchor point in world-space
|
||||
Vector3 mR1World;
|
||||
|
||||
/// Vector from center of body 2 to anchor point in world-space
|
||||
Vector3 mR2World;
|
||||
|
||||
/// Accumulated impulse for the 3 translation constraints
|
||||
Vector3 mImpulseTranslation;
|
||||
|
||||
/// Accumulate impulse for the 3 rotation constraints
|
||||
Vector3 mImpulseRotation;
|
||||
|
||||
/// Inverse mass matrix K=JM^-1J^-t of the 3 translation constraints (3x3 matrix)
|
||||
Matrix3x3 mInverseMassMatrixTranslation;
|
||||
|
||||
/// Inverse mass matrix K=JM^-1J^-t of the 3 rotation constraints (3x3 matrix)
|
||||
Matrix3x3 mInverseMassMatrixRotation;
|
||||
|
||||
/// Bias vector for the 3 translation constraints
|
||||
Vector3 mBiasTranslation;
|
||||
|
||||
/// Bias vector for the 3 rotation constraints
|
||||
Vector3 mBiasRotation;
|
||||
|
||||
/// Inverse of the initial orientation difference between the two bodies
|
||||
Quaternion mInitOrientationDifferenceInv;
|
||||
|
||||
public :
|
||||
|
||||
// -------------------- Methods -------------------- //
|
||||
|
||||
/// Constructor
|
||||
FixedJoint(const FixedJointInfo& jointInfo);
|
||||
|
||||
/// Destructor
|
||||
virtual ~FixedJoint();
|
||||
|
||||
/// Return the number of bytes used by the joint
|
||||
virtual size_t getSizeInBytes() const;
|
||||
|
||||
/// Initialize before solving the constraint
|
||||
virtual void initBeforeSolve(const ConstraintSolverData& constraintSolverData);
|
||||
|
||||
/// Warm start the constraint (apply the previous impulse at the beginning of the step)
|
||||
virtual void warmstart(const ConstraintSolverData& constraintSolverData);
|
||||
|
||||
/// Solve the velocity constraint
|
||||
virtual void solveVelocityConstraint(const ConstraintSolverData& constraintSolverData);
|
||||
|
||||
/// Solve the position constraint
|
||||
virtual void solvePositionConstraint(const ConstraintSolverData& constraintSolverData);
|
||||
};
|
||||
|
||||
// Return the number of bytes used by the joint
|
||||
inline size_t FixedJoint::getSizeInBytes() const {
|
||||
return sizeof(FixedJoint);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif
|
|
@ -28,8 +28,6 @@
|
|||
#include "../engine/ConstraintSolver.h"
|
||||
#include <cmath>
|
||||
|
||||
// TODO : Solve 2x2 or 3x3 linear systems without inverting the A matrix (direct resolution)
|
||||
|
||||
using namespace reactphysics3d;
|
||||
|
||||
// Static variables definition
|
||||
|
|
|
@ -26,8 +26,6 @@
|
|||
// Libraries
|
||||
#include "SliderJoint.h"
|
||||
|
||||
// TODO : Solve 2x2 or 3x3 linear systems without inverting the A matrix (direct resolution)
|
||||
|
||||
using namespace reactphysics3d;
|
||||
|
||||
// Static variables definition
|
||||
|
|
|
@ -28,6 +28,7 @@
|
|||
#include "constraint/BallAndSocketJoint.h"
|
||||
#include "constraint/SliderJoint.h"
|
||||
#include "constraint/HingeJoint.h"
|
||||
#include "constraint/FixedJoint.h"
|
||||
|
||||
// Namespaces
|
||||
using namespace reactphysics3d;
|
||||
|
@ -423,6 +424,15 @@ Constraint* DynamicsWorld::createJoint(const ConstraintInfo& jointInfo) {
|
|||
break;
|
||||
}
|
||||
|
||||
// Fixed joint
|
||||
case FIXEDJOINT:
|
||||
{
|
||||
void* allocatedMemory = mMemoryAllocator.allocate(sizeof(FixedJoint));
|
||||
const FixedJointInfo& info = dynamic_cast<const FixedJointInfo&>(jointInfo);
|
||||
newJoint = new (allocatedMemory) FixedJoint(info);
|
||||
break;
|
||||
}
|
||||
|
||||
default:
|
||||
{
|
||||
assert(false);
|
||||
|
|
|
@ -50,6 +50,7 @@
|
|||
#include "constraint/BallAndSocketJoint.h"
|
||||
#include "constraint/SliderJoint.h"
|
||||
#include "constraint/HingeJoint.h"
|
||||
#include "constraint/FixedJoint.h"
|
||||
|
||||
/// Alias to the ReactPhysics3D namespace
|
||||
namespace rp3d = reactphysics3d;
|
||||
|
|
Loading…
Reference in New Issue
Block a user