Merge branch 'sat_opti' into sat

This commit is contained in:
Daniel Chappuis 2017-12-28 01:04:45 +01:00
commit 3be2970d30
86 changed files with 1673 additions and 786 deletions

View File

@ -192,8 +192,12 @@ SET (REACTPHYSICS3D_SOURCES
"src/memory/PoolAllocator.cpp" "src/memory/PoolAllocator.cpp"
"src/memory/SingleFrameAllocator.h" "src/memory/SingleFrameAllocator.h"
"src/memory/SingleFrameAllocator.cpp" "src/memory/SingleFrameAllocator.cpp"
"src/memory/DefaultAllocator.h"
"src/memory/MemoryManager.h"
"src/memory/MemoryManager.cpp"
"src/containers/Stack.h" "src/containers/Stack.h"
"src/containers/LinkedList.h" "src/containers/LinkedList.h"
"src/containers/List.h"
) )
# Create the library # Create the library

View File

@ -72,7 +72,7 @@ ProxyShape* CollisionBody::addCollisionShape(CollisionShape* collisionShape,
// Create a new proxy collision shape to attach the collision shape to the body // Create a new proxy collision shape to attach the collision shape to the body
ProxyShape* proxyShape = new (mWorld.mPoolAllocator.allocate( ProxyShape* proxyShape = new (mWorld.mPoolAllocator.allocate(
sizeof(ProxyShape))) ProxyShape(this, collisionShape, sizeof(ProxyShape))) ProxyShape(this, collisionShape,
transform, decimal(1)); transform, decimal(1), mWorld.mPoolAllocator);
#ifdef IS_PROFILING_ACTIVE #ifdef IS_PROFILING_ACTIVE

View File

@ -39,7 +39,7 @@ using namespace reactphysics3d;
* @param id The ID of the body * @param id The ID of the body
*/ */
RigidBody::RigidBody(const Transform& transform, CollisionWorld& world, bodyindex id) RigidBody::RigidBody(const Transform& transform, CollisionWorld& world, bodyindex id)
: CollisionBody(transform, world, id), mInitMass(decimal(1.0)), : CollisionBody(transform, world, id), mArrayIndex(0), mInitMass(decimal(1.0)),
mCenterOfMassLocal(0, 0, 0), mCenterOfMassWorld(transform.getPosition()), mCenterOfMassLocal(0, 0, 0), mCenterOfMassWorld(transform.getPosition()),
mIsGravityEnabled(true), mLinearDamping(decimal(0.0)), mAngularDamping(decimal(0.0)), mIsGravityEnabled(true), mLinearDamping(decimal(0.0)), mAngularDamping(decimal(0.0)),
mJointsList(nullptr) { mJointsList(nullptr) {
@ -226,7 +226,7 @@ ProxyShape* RigidBody::addCollisionShape(CollisionShape* collisionShape,
// Create a new proxy collision shape to attach the collision shape to the body // Create a new proxy collision shape to attach the collision shape to the body
ProxyShape* proxyShape = new (mWorld.mPoolAllocator.allocate( ProxyShape* proxyShape = new (mWorld.mPoolAllocator.allocate(
sizeof(ProxyShape))) ProxyShape(this, collisionShape, sizeof(ProxyShape))) ProxyShape(this, collisionShape,
transform, mass); transform, mass, mWorld.mPoolAllocator);
#ifdef IS_PROFILING_ACTIVE #ifdef IS_PROFILING_ACTIVE

View File

@ -50,6 +50,11 @@ class DynamicsWorld;
*/ */
class RigidBody : public CollisionBody { class RigidBody : public CollisionBody {
private :
/// Index of the body in arrays for contact/constraint solver
uint mArrayIndex;
protected : protected :
// -------------------- Attributes -------------------- // // -------------------- Attributes -------------------- //
@ -102,7 +107,7 @@ class RigidBody : public CollisionBody {
decimal mAngularDamping; decimal mAngularDamping;
/// First element of the linked list of joints involving this body /// First element of the linked list of joints involving this body
JointListElement* mJointsList; JointListElement* mJointsList;
// -------------------- Methods -------------------- // // -------------------- Methods -------------------- //

View File

@ -273,7 +273,7 @@ void CollisionDetection::computeNarrowPhase() {
// Use the narrow-phase collision detection algorithm to check // Use the narrow-phase collision detection algorithm to check
// if there really is a collision. If a collision occurs, the // if there really is a collision. If a collision occurs, the
// notifyContact() callback method will be called. // notifyContact() callback method will be called.
if (narrowPhaseAlgorithm->testCollision(currentNarrowPhaseInfo, true)) { if (narrowPhaseAlgorithm->testCollision(currentNarrowPhaseInfo, true, mSingleFrameAllocator)) {
// Add the contact points as a potential contact manifold into the pair // Add the contact points as a potential contact manifold into the pair
currentNarrowPhaseInfo->addContactPointsAsPotentialContactManifold(); currentNarrowPhaseInfo->addContactPointsAsPotentialContactManifold();
@ -288,7 +288,14 @@ void CollisionDetection::computeNarrowPhase() {
lastCollisionFrameInfo->isValid = true; lastCollisionFrameInfo->isValid = true;
} }
NarrowPhaseInfo* narrowPhaseInfoToDelete = currentNarrowPhaseInfo;
currentNarrowPhaseInfo = currentNarrowPhaseInfo->next; currentNarrowPhaseInfo = currentNarrowPhaseInfo->next;
// Call the destructor
narrowPhaseInfoToDelete->~NarrowPhaseInfo();
// Release the allocated memory for the narrow phase info
mSingleFrameAllocator.release(narrowPhaseInfoToDelete, sizeof(NarrowPhaseInfo));
} }
// Convert the potential contact into actual contacts // Convert the potential contact into actual contacts
@ -593,7 +600,7 @@ bool CollisionDetection::testOverlap(CollisionBody* body1, CollisionBody* body2)
// Use the narrow-phase collision detection algorithm to check // Use the narrow-phase collision detection algorithm to check
// if there really is a collision. If a collision occurs, the // if there really is a collision. If a collision occurs, the
// notifyContact() callback method will be called. // notifyContact() callback method will be called.
isColliding |= narrowPhaseAlgorithm->testCollision(narrowPhaseInfo, false); isColliding |= narrowPhaseAlgorithm->testCollision(narrowPhaseInfo, false, mPoolAllocator);
} }
} }
@ -688,7 +695,7 @@ void CollisionDetection::testOverlap(CollisionBody* body, OverlapCallback* overl
// Use the narrow-phase collision detection algorithm to check // Use the narrow-phase collision detection algorithm to check
// if there really is a collision. If a collision occurs, the // if there really is a collision. If a collision occurs, the
// notifyContact() callback method will be called. // notifyContact() callback method will be called.
isColliding |= narrowPhaseAlgorithm->testCollision(narrowPhaseInfo, false); isColliding |= narrowPhaseAlgorithm->testCollision(narrowPhaseInfo, false, mPoolAllocator);
} }
} }
@ -767,7 +774,7 @@ void CollisionDetection::testCollision(CollisionBody* body1, CollisionBody* body
// Use the narrow-phase collision detection algorithm to check // Use the narrow-phase collision detection algorithm to check
// if there really is a collision. If a collision occurs, the // if there really is a collision. If a collision occurs, the
// notifyContact() callback method will be called. // notifyContact() callback method will be called.
if (narrowPhaseAlgorithm->testCollision(narrowPhaseInfo, true)) { if (narrowPhaseAlgorithm->testCollision(narrowPhaseInfo, true, mPoolAllocator)) {
// Add the contact points as a potential contact manifold into the pair // Add the contact points as a potential contact manifold into the pair
narrowPhaseInfo->addContactPointsAsPotentialContactManifold(); narrowPhaseInfo->addContactPointsAsPotentialContactManifold();
@ -859,7 +866,7 @@ void CollisionDetection::testCollision(CollisionBody* body, CollisionCallback* c
// Use the narrow-phase collision detection algorithm to check // Use the narrow-phase collision detection algorithm to check
// if there really is a collision. If a collision occurs, the // if there really is a collision. If a collision occurs, the
// notifyContact() callback method will be called. // notifyContact() callback method will be called.
if (narrowPhaseAlgorithm->testCollision(narrowPhaseInfo, true)) { if (narrowPhaseAlgorithm->testCollision(narrowPhaseInfo, true, mPoolAllocator)) {
// Add the contact points as a potential contact manifold into the pair // Add the contact points as a potential contact manifold into the pair
narrowPhaseInfo->addContactPointsAsPotentialContactManifold(); narrowPhaseInfo->addContactPointsAsPotentialContactManifold();
@ -943,7 +950,7 @@ void CollisionDetection::testCollision(CollisionCallback* callback) {
// Use the narrow-phase collision detection algorithm to check // Use the narrow-phase collision detection algorithm to check
// if there really is a collision. If a collision occurs, the // if there really is a collision. If a collision occurs, the
// notifyContact() callback method will be called. // notifyContact() callback method will be called.
if (narrowPhaseAlgorithm->testCollision(narrowPhaseInfo, true)) { if (narrowPhaseAlgorithm->testCollision(narrowPhaseInfo, true, mPoolAllocator)) {
// Add the contact points as a potential contact manifold into the pair // Add the contact points as a potential contact manifold into the pair
narrowPhaseInfo->addContactPointsAsPotentialContactManifold(); narrowPhaseInfo->addContactPointsAsPotentialContactManifold();

View File

@ -150,7 +150,6 @@ class CollisionDetection {
/// Process the potential contacts where one collion is a concave shape /// Process the potential contacts where one collion is a concave shape
void processSmoothMeshContacts(OverlappingPair* pair); void processSmoothMeshContacts(OverlappingPair* pair);
public : public :

View File

@ -225,7 +225,6 @@ void ContactManifoldSet::removeManifold(ContactManifold* manifold) {
// Delete the contact manifold // Delete the contact manifold
manifold->~ContactManifold(); manifold->~ContactManifold();
mMemoryAllocator.release(manifold, sizeof(ContactManifold)); mMemoryAllocator.release(manifold, sizeof(ContactManifold));
mNbManifolds--; mNbManifolds--;
} }

View File

@ -96,8 +96,8 @@ void HalfEdgeStructure::init() {
mapEdgeToIndex.insert(std::make_pair(pairV1V2, edgeIndex + 1)); mapEdgeToIndex.insert(std::make_pair(pairV1V2, edgeIndex + 1));
mapEdgeToIndex.insert(std::make_pair(pairV2V1, edgeIndex)); mapEdgeToIndex.insert(std::make_pair(pairV2V1, edgeIndex));
mEdges.push_back(itEdge->second); mEdges.add(itEdge->second);
mEdges.push_back(edge); mEdges.add(edge);
} }
currentFaceEdges.push_back(pairV1V2); currentFaceEdges.push_back(pairV1V2);

View File

@ -50,14 +50,14 @@ class HalfEdgeStructure {
}; };
struct Face { struct Face {
uint edgeIndex; // Index of an half-edge of the face uint edgeIndex; // Index of an half-edge of the face
std::vector<uint> faceVertices; // Index of the vertices of the face List<uint> faceVertices; // Index of the vertices of the face
/// Constructor /// Constructor
Face() {} Face(Allocator& allocator) : faceVertices(allocator) {}
/// Constructor /// Constructor
Face(std::vector<uint> vertices) : faceVertices(vertices) {} Face(List<uint> vertices) : faceVertices(vertices) {}
}; };
struct Vertex { struct Vertex {
@ -70,19 +70,24 @@ class HalfEdgeStructure {
private: private:
/// Reference to a memory allocator
Allocator& mAllocator;
/// All the faces /// All the faces
std::vector<Face> mFaces; List<Face> mFaces;
/// All the vertices /// All the vertices
std::vector<Vertex> mVertices; List<Vertex> mVertices;
/// All the half-edges /// All the half-edges
std::vector<Edge> mEdges; List<Edge> mEdges;
public: public:
/// Constructor /// Constructor
HalfEdgeStructure() = default; HalfEdgeStructure(Allocator& allocator, uint facesCapacity, uint verticesCapacity,
uint edgesCapacity) :mAllocator(allocator), mFaces(allocator, facesCapacity),
mVertices(allocator, verticesCapacity), mEdges(allocator, edgesCapacity) {}
/// Destructor /// Destructor
~HalfEdgeStructure() = default; ~HalfEdgeStructure() = default;
@ -94,7 +99,7 @@ class HalfEdgeStructure {
uint addVertex(uint vertexPointIndex); uint addVertex(uint vertexPointIndex);
/// Add a face /// Add a face
void addFace(std::vector<uint> faceVertices); void addFace(List<uint> faceVertices);
/// Return the number of faces /// Return the number of faces
uint getNbFaces() const; uint getNbFaces() const;
@ -106,60 +111,60 @@ class HalfEdgeStructure {
uint getNbVertices() const; uint getNbVertices() const;
/// Return a given face /// Return a given face
Face getFace(uint index) const; const Face& getFace(uint index) const;
/// Return a given edge /// Return a given edge
Edge getHalfEdge(uint index) const; const Edge& getHalfEdge(uint index) const;
/// Return a given vertex /// Return a given vertex
Vertex getVertex(uint index) const; const Vertex& getVertex(uint index) const;
}; };
// Add a vertex // Add a vertex
inline uint HalfEdgeStructure::addVertex(uint vertexPointIndex) { inline uint HalfEdgeStructure::addVertex(uint vertexPointIndex) {
Vertex vertex(vertexPointIndex); Vertex vertex(vertexPointIndex);
mVertices.push_back(vertex); mVertices.add(vertex);
return mVertices.size() - 1; return mVertices.size() - 1;
} }
// Add a face // Add a face
inline void HalfEdgeStructure::addFace(std::vector<uint> faceVertices) { inline void HalfEdgeStructure::addFace(List<uint> faceVertices) {
// Create a new face // Create a new face
Face face(faceVertices); Face face(faceVertices);
mFaces.push_back(face); mFaces.add(face);
} }
// Return the number of faces // Return the number of faces
inline uint HalfEdgeStructure::getNbFaces() const { inline uint HalfEdgeStructure::getNbFaces() const {
return mFaces.size(); return static_cast<uint>(mFaces.size());
} }
// Return the number of edges // Return the number of edges
inline uint HalfEdgeStructure::getNbHalfEdges() const { inline uint HalfEdgeStructure::getNbHalfEdges() const {
return mEdges.size(); return static_cast<uint>(mEdges.size());
} }
// Return the number of vertices // Return the number of vertices
inline uint HalfEdgeStructure::getNbVertices() const { inline uint HalfEdgeStructure::getNbVertices() const {
return mVertices.size(); return static_cast<uint>(mVertices.size());
} }
// Return a given face // Return a given face
inline HalfEdgeStructure::Face HalfEdgeStructure::getFace(uint index) const { inline const HalfEdgeStructure::Face& HalfEdgeStructure::getFace(uint index) const {
assert(index < mFaces.size()); assert(index < mFaces.size());
return mFaces[index]; return mFaces[index];
} }
// Return a given edge // Return a given edge
inline HalfEdgeStructure::Edge HalfEdgeStructure::getHalfEdge(uint index) const { inline const HalfEdgeStructure::Edge& HalfEdgeStructure::getHalfEdge(uint index) const {
assert(index < mEdges.size()); assert(index < mEdges.size());
return mEdges[index]; return mEdges[index];
} }
// Return a given vertex // Return a given vertex
inline HalfEdgeStructure::Vertex HalfEdgeStructure::getVertex(uint index) const { inline const HalfEdgeStructure::Vertex& HalfEdgeStructure::getVertex(uint index) const {
assert(index < mVertices.size()); assert(index < mVertices.size());
return mVertices[index]; return mVertices[index];
} }

View File

@ -34,7 +34,7 @@ void MiddlePhaseTriangleCallback::testTriangle(const Vector3* trianglePoints, co
// Create a triangle collision shape (the allocated memory for the TriangleShape will be released in the // Create a triangle collision shape (the allocated memory for the TriangleShape will be released in the
// destructor of the corresponding NarrowPhaseInfo. // destructor of the corresponding NarrowPhaseInfo.
TriangleShape* triangleShape = new (mAllocator.allocate(sizeof(TriangleShape))) TriangleShape* triangleShape = new (mAllocator.allocate(sizeof(TriangleShape)))
TriangleShape(trianglePoints, verticesNormals, shapeId); TriangleShape(trianglePoints, verticesNormals, shapeId, mAllocator);
#ifdef IS_PROFILING_ACTIVE #ifdef IS_PROFILING_ACTIVE

View File

@ -52,11 +52,13 @@ NarrowPhaseInfo::~NarrowPhaseInfo() {
// Release the memory of the TriangleShape (this memory was allocated in the // Release the memory of the TriangleShape (this memory was allocated in the
// MiddlePhaseTriangleCallback::testTriangle() method) // MiddlePhaseTriangleCallback::testTriangle() method)
if (collisionShape1->getName() == CollisionShapeName::TRIANGLE) { if (collisionShape1->getName() == CollisionShapeName::TRIANGLE) {
collisionShape1->~CollisionShape();
collisionShapeAllocator.release(collisionShape1, sizeof(TriangleShape)); collisionShapeAllocator.release(collisionShape1, sizeof(TriangleShape));
} }
if (collisionShape2->getName() == CollisionShapeName::TRIANGLE) { if (collisionShape2->getName() == CollisionShapeName::TRIANGLE) {
collisionShapeAllocator.release(collisionShape2, sizeof(TriangleShape)); collisionShape2->~CollisionShape();
} collisionShapeAllocator.release(collisionShape2, sizeof(TriangleShape));
}
} }
// Add a new contact point // Add a new contact point

View File

@ -25,6 +25,7 @@
// Libraries // Libraries
#include "PolyhedronMesh.h" #include "PolyhedronMesh.h"
#include "memory/MemoryManager.h"
using namespace reactphysics3d; using namespace reactphysics3d;
@ -34,7 +35,11 @@ using namespace reactphysics3d;
* Create a polyhedron mesh given an array of polygons. * Create a polyhedron mesh given an array of polygons.
* @param polygonVertexArray Pointer to the array of polygons and their vertices * @param polygonVertexArray Pointer to the array of polygons and their vertices
*/ */
PolyhedronMesh::PolyhedronMesh(PolygonVertexArray* polygonVertexArray) { PolyhedronMesh::PolyhedronMesh(PolygonVertexArray* polygonVertexArray)
: mHalfEdgeStructure(MemoryManager::getDefaultAllocator(),
polygonVertexArray->getNbFaces(),
polygonVertexArray->getNbVertices(),
(polygonVertexArray->getNbFaces() + polygonVertexArray->getNbVertices() - 2) * 2) {
mPolygonVertexArray = polygonVertexArray; mPolygonVertexArray = polygonVertexArray;
@ -70,11 +75,11 @@ void PolyhedronMesh::createHalfEdgeStructure() {
// Get the polygon face // Get the polygon face
PolygonVertexArray::PolygonFace* face = mPolygonVertexArray->getPolygonFace(f); PolygonVertexArray::PolygonFace* face = mPolygonVertexArray->getPolygonFace(f);
std::vector<uint> faceVertices; List<uint> faceVertices(MemoryManager::getDefaultAllocator(), face->nbVertices);
// For each vertex of the face // For each vertex of the face
for (uint v=0; v < face->nbVertices; v++) { for (uint v=0; v < face->nbVertices; v++) {
faceVertices.push_back(mPolygonVertexArray->getVertexIndexInFace(f, v)); faceVertices.add(mPolygonVertexArray->getVertexIndexInFace(f, v));
} }
assert(faceVertices.size() >= 3); assert(faceVertices.size() >= 3);
@ -123,7 +128,7 @@ void PolyhedronMesh::computeFacesNormals() {
// For each face // For each face
for (uint f=0; f < mHalfEdgeStructure.getNbFaces(); f++) { for (uint f=0; f < mHalfEdgeStructure.getNbFaces(); f++) {
HalfEdgeStructure::Face face = mHalfEdgeStructure.getFace(f); const HalfEdgeStructure::Face& face = mHalfEdgeStructure.getFace(f);
assert(face.faceVertices.size() >= 3); assert(face.faceVertices.size() >= 3);

View File

@ -30,6 +30,7 @@
#include "mathematics/mathematics.h" #include "mathematics/mathematics.h"
#include "HalfEdgeStructure.h" #include "HalfEdgeStructure.h"
#include "collision/PolygonVertexArray.h" #include "collision/PolygonVertexArray.h"
#include "memory/DefaultAllocator.h"
#include <vector> #include <vector>
namespace reactphysics3d { namespace reactphysics3d {

View File

@ -35,9 +35,9 @@ using namespace reactphysics3d;
* @param transform Transformation from collision shape local-space to body local-space * @param transform Transformation from collision shape local-space to body local-space
* @param mass Mass of the collision shape (in kilograms) * @param mass Mass of the collision shape (in kilograms)
*/ */
ProxyShape::ProxyShape(CollisionBody* body, CollisionShape* shape, const Transform& transform, decimal mass) ProxyShape::ProxyShape(CollisionBody* body, CollisionShape* shape, const Transform& transform, decimal mass, Allocator& allocator)
:mBody(body), mCollisionShape(shape), mLocalToBodyTransform(transform), mMass(mass), :mBody(body), mCollisionShape(shape), mLocalToBodyTransform(transform), mMass(mass),
mNext(nullptr), mBroadPhaseID(-1), mCollisionCategoryBits(0x0001), mCollideWithMaskBits(0xFFFF) { mNext(nullptr), mBroadPhaseID(-1), mCollisionCategoryBits(0x0001), mCollideWithMaskBits(0xFFFF), mAllocator(allocator) {
} }
@ -76,7 +76,7 @@ bool ProxyShape::raycast(const Ray& ray, RaycastInfo& raycastInfo) {
worldToLocalTransform * ray.point2, worldToLocalTransform * ray.point2,
ray.maxFraction); ray.maxFraction);
bool isHit = mCollisionShape->raycast(rayLocal, raycastInfo, this); bool isHit = mCollisionShape->raycast(rayLocal, raycastInfo, this, mAllocator);
// Convert the raycast info into world-space // Convert the raycast info into world-space
raycastInfo.worldPoint = localToWorldTransform * raycastInfo.worldPoint; raycastInfo.worldPoint = localToWorldTransform * raycastInfo.worldPoint;

View File

@ -82,6 +82,9 @@ class ProxyShape {
/// proxy shape will collide with every collision categories by default. /// proxy shape will collide with every collision categories by default.
unsigned short mCollideWithMaskBits; unsigned short mCollideWithMaskBits;
/// Memory allocator
Allocator& mAllocator;
#ifdef IS_PROFILING_ACTIVE #ifdef IS_PROFILING_ACTIVE
/// Pointer to the profiler /// Pointer to the profiler
@ -100,7 +103,7 @@ class ProxyShape {
/// Constructor /// Constructor
ProxyShape(CollisionBody* body, CollisionShape* shape, ProxyShape(CollisionBody* body, CollisionShape* shape,
const Transform& transform, decimal mass); const Transform& transform, decimal mass, Allocator& allocator);
/// Destructor /// Destructor
virtual ~ProxyShape(); virtual ~ProxyShape();

View File

@ -33,7 +33,8 @@ using namespace reactphysics3d;
// Compute the narrow-phase collision detection between two capsules // Compute the narrow-phase collision detection between two capsules
// This technique is based on the "Robust Contact Creation for Physics Simulations" presentation // This technique is based on the "Robust Contact Creation for Physics Simulations" presentation
// by Dirk Gregorius. // by Dirk Gregorius.
bool CapsuleVsCapsuleAlgorithm::testCollision(NarrowPhaseInfo* narrowPhaseInfo, bool reportContacts) { bool CapsuleVsCapsuleAlgorithm::testCollision(NarrowPhaseInfo* narrowPhaseInfo, bool reportContacts,
Allocator& memoryAllocator) {
assert(narrowPhaseInfo->collisionShape1->getType() == CollisionShapeType::CAPSULE); assert(narrowPhaseInfo->collisionShape1->getType() == CollisionShapeType::CAPSULE);
assert(narrowPhaseInfo->collisionShape2->getType() == CollisionShapeType::CAPSULE); assert(narrowPhaseInfo->collisionShape2->getType() == CollisionShapeType::CAPSULE);

View File

@ -61,7 +61,7 @@ class CapsuleVsCapsuleAlgorithm : public NarrowPhaseAlgorithm {
CapsuleVsCapsuleAlgorithm& operator=(const CapsuleVsCapsuleAlgorithm& algorithm) = delete; CapsuleVsCapsuleAlgorithm& operator=(const CapsuleVsCapsuleAlgorithm& algorithm) = delete;
/// Compute the narrow-phase collision detection between two capsules /// Compute the narrow-phase collision detection between two capsules
virtual bool testCollision(NarrowPhaseInfo* narrowPhaseInfo, bool reportContacts) override; virtual bool testCollision(NarrowPhaseInfo* narrowPhaseInfo, bool reportContacts, Allocator& memoryAllocator) override;
}; };
} }

View File

@ -37,11 +37,12 @@ using namespace reactphysics3d;
// Compute the narrow-phase collision detection between a capsule and a polyhedron // Compute the narrow-phase collision detection between a capsule and a polyhedron
// This technique is based on the "Robust Contact Creation for Physics Simulations" presentation // This technique is based on the "Robust Contact Creation for Physics Simulations" presentation
// by Dirk Gregorius. // by Dirk Gregorius.
bool CapsuleVsConvexPolyhedronAlgorithm::testCollision(NarrowPhaseInfo* narrowPhaseInfo, bool reportContacts) { bool CapsuleVsConvexPolyhedronAlgorithm::testCollision(NarrowPhaseInfo* narrowPhaseInfo, bool reportContacts,
Allocator& memoryAllocator) {
// First, we run the GJK algorithm // First, we run the GJK algorithm
GJKAlgorithm gjkAlgorithm; GJKAlgorithm gjkAlgorithm;
SATAlgorithm satAlgorithm; SATAlgorithm satAlgorithm(memoryAllocator);
#ifdef IS_PROFILING_ACTIVE #ifdef IS_PROFILING_ACTIVE
@ -85,9 +86,6 @@ bool CapsuleVsConvexPolyhedronAlgorithm::testCollision(NarrowPhaseInfo* narrowPh
// For each face of the polyhedron // For each face of the polyhedron
for (uint f = 0; f < polyhedron->getNbFaces(); f++) { for (uint f = 0; f < polyhedron->getNbFaces(); f++) {
// Get the face
HalfEdgeStructure::Face face = polyhedron->getFace(f);
const Transform polyhedronToWorld = isCapsuleShape1 ? narrowPhaseInfo->shape2ToWorldTransform : narrowPhaseInfo->shape1ToWorldTransform; const Transform polyhedronToWorld = isCapsuleShape1 ? narrowPhaseInfo->shape2ToWorldTransform : narrowPhaseInfo->shape1ToWorldTransform;
const Transform capsuleToWorld = isCapsuleShape1 ? narrowPhaseInfo->shape1ToWorldTransform : narrowPhaseInfo->shape2ToWorldTransform; const Transform capsuleToWorld = isCapsuleShape1 ? narrowPhaseInfo->shape1ToWorldTransform : narrowPhaseInfo->shape2ToWorldTransform;

View File

@ -61,7 +61,7 @@ class CapsuleVsConvexPolyhedronAlgorithm : public NarrowPhaseAlgorithm {
CapsuleVsConvexPolyhedronAlgorithm& operator=(const CapsuleVsConvexPolyhedronAlgorithm& algorithm) = delete; CapsuleVsConvexPolyhedronAlgorithm& operator=(const CapsuleVsConvexPolyhedronAlgorithm& algorithm) = delete;
/// Compute the narrow-phase collision detection between a capsule and a polyhedron /// Compute the narrow-phase collision detection between a capsule and a polyhedron
virtual bool testCollision(NarrowPhaseInfo* narrowPhaseInfo, bool reportContacts) override; virtual bool testCollision(NarrowPhaseInfo* narrowPhaseInfo, bool reportContacts, Allocator& memoryAllocator) override;
}; };
} }

View File

@ -34,10 +34,11 @@ using namespace reactphysics3d;
// Compute the narrow-phase collision detection between two convex polyhedra // Compute the narrow-phase collision detection between two convex polyhedra
// This technique is based on the "Robust Contact Creation for Physics Simulations" presentation // This technique is based on the "Robust Contact Creation for Physics Simulations" presentation
// by Dirk Gregorius. // by Dirk Gregorius.
bool ConvexPolyhedronVsConvexPolyhedronAlgorithm::testCollision(NarrowPhaseInfo* narrowPhaseInfo, bool reportContacts) { bool ConvexPolyhedronVsConvexPolyhedronAlgorithm::testCollision(NarrowPhaseInfo* narrowPhaseInfo, bool reportContacts,
Allocator& memoryAllocator) {
// Run the SAT algorithm to find the separating axis and compute contact point // Run the SAT algorithm to find the separating axis and compute contact point
SATAlgorithm satAlgorithm; SATAlgorithm satAlgorithm(memoryAllocator);
#ifdef IS_PROFILING_ACTIVE #ifdef IS_PROFILING_ACTIVE

View File

@ -61,7 +61,7 @@ class ConvexPolyhedronVsConvexPolyhedronAlgorithm : public NarrowPhaseAlgorithm
ConvexPolyhedronVsConvexPolyhedronAlgorithm& operator=(const ConvexPolyhedronVsConvexPolyhedronAlgorithm& algorithm) = delete; ConvexPolyhedronVsConvexPolyhedronAlgorithm& operator=(const ConvexPolyhedronVsConvexPolyhedronAlgorithm& algorithm) = delete;
/// Compute the narrow-phase collision detection between two convex polyhedra /// Compute the narrow-phase collision detection between two convex polyhedra
virtual bool testCollision(NarrowPhaseInfo* narrowPhaseInfo, bool reportContacts) override; virtual bool testCollision(NarrowPhaseInfo* narrowPhaseInfo, bool reportContacts, Allocator& memoryAllocator) override;
}; };
} }

View File

@ -90,8 +90,9 @@ class NarrowPhaseAlgorithm {
/// Deleted assignment operator /// Deleted assignment operator
NarrowPhaseAlgorithm& operator=(const NarrowPhaseAlgorithm& algorithm) = delete; NarrowPhaseAlgorithm& operator=(const NarrowPhaseAlgorithm& algorithm) = delete;
/// Compute a contact info if the two bounding volume collide /// Compute a contact info if the two bounding volumes collide
virtual bool testCollision(NarrowPhaseInfo* narrowPhaseInfo, bool reportContacts)=0; virtual bool testCollision(NarrowPhaseInfo* narrowPhaseInfo, bool reportContacts,
Allocator& memoryAllocator)=0;
#ifdef IS_PROFILING_ACTIVE #ifdef IS_PROFILING_ACTIVE

View File

@ -44,6 +44,11 @@ using namespace reactphysics3d;
// Static variables initialization // Static variables initialization
const decimal SATAlgorithm::SAME_SEPARATING_AXIS_BIAS = decimal(0.001); const decimal SATAlgorithm::SAME_SEPARATING_AXIS_BIAS = decimal(0.001);
// Constructor
SATAlgorithm::SATAlgorithm(Allocator& memoryAllocator) : mMemoryAllocator(memoryAllocator) {
}
// Test collision between a sphere and a convex mesh // Test collision between a sphere and a convex mesh
bool SATAlgorithm::testCollisionSphereVsConvexPolyhedron(NarrowPhaseInfo* narrowPhaseInfo, bool reportContacts) const { bool SATAlgorithm::testCollisionSphereVsConvexPolyhedron(NarrowPhaseInfo* narrowPhaseInfo, bool reportContacts) const {
@ -125,7 +130,7 @@ decimal SATAlgorithm::computePolyhedronFaceVsSpherePenetrationDepth(uint faceInd
PROFILE("SATAlgorithm::computePolyhedronFaceVsSpherePenetrationDepth)", mProfiler); PROFILE("SATAlgorithm::computePolyhedronFaceVsSpherePenetrationDepth)", mProfiler);
// Get the face // Get the face
HalfEdgeStructure::Face face = polyhedron->getFace(faceIndex); const HalfEdgeStructure::Face& face = polyhedron->getFace(faceIndex);
// Get the face normal // Get the face normal
const Vector3 faceNormal = polyhedron->getFaceNormal(faceIndex); const Vector3 faceNormal = polyhedron->getFaceNormal(faceIndex);
@ -200,12 +205,12 @@ bool SATAlgorithm::testCollisionCapsuleVsConvexPolyhedron(NarrowPhaseInfo* narro
for (uint e = 0; e < polyhedron->getNbHalfEdges(); e += 2) { for (uint e = 0; e < polyhedron->getNbHalfEdges(); e += 2) {
// Get an edge from the polyhedron (convert it into the capsule local-space) // Get an edge from the polyhedron (convert it into the capsule local-space)
HalfEdgeStructure::Edge edge = polyhedron->getHalfEdge(e); const HalfEdgeStructure::Edge& edge = polyhedron->getHalfEdge(e);
const Vector3 edgeVertex1 = polyhedron->getVertexPosition(edge.vertexIndex); const Vector3 edgeVertex1 = polyhedron->getVertexPosition(edge.vertexIndex);
const Vector3 edgeVertex2 = polyhedron->getVertexPosition(polyhedron->getHalfEdge(edge.nextEdgeIndex).vertexIndex); const Vector3 edgeVertex2 = polyhedron->getVertexPosition(polyhedron->getHalfEdge(edge.nextEdgeIndex).vertexIndex);
const Vector3 edgeDirectionCapsuleSpace = polyhedronToCapsuleTransform.getOrientation() * (edgeVertex2 - edgeVertex1); const Vector3 edgeDirectionCapsuleSpace = polyhedronToCapsuleTransform.getOrientation() * (edgeVertex2 - edgeVertex1);
HalfEdgeStructure::Edge twinEdge = polyhedron->getHalfEdge(edge.twinEdgeIndex); const HalfEdgeStructure::Edge& twinEdge = polyhedron->getHalfEdge(edge.twinEdgeIndex);
const Vector3 adjacentFace1Normal = polyhedronToCapsuleTransform.getOrientation() * polyhedron->getFaceNormal(edge.faceIndex); const Vector3 adjacentFace1Normal = polyhedronToCapsuleTransform.getOrientation() * polyhedron->getFaceNormal(edge.faceIndex);
const Vector3 adjacentFace2Normal = polyhedronToCapsuleTransform.getOrientation() * polyhedron->getFaceNormal(twinEdge.faceIndex); const Vector3 adjacentFace2Normal = polyhedronToCapsuleTransform.getOrientation() * polyhedron->getFaceNormal(twinEdge.faceIndex);
@ -336,7 +341,7 @@ decimal SATAlgorithm::computePolyhedronFaceVsCapsulePenetrationDepth(uint polyhe
PROFILE("SATAlgorithm::computePolyhedronFaceVsCapsulePenetrationDepth", mProfiler); PROFILE("SATAlgorithm::computePolyhedronFaceVsCapsulePenetrationDepth", mProfiler);
// Get the face // Get the face
HalfEdgeStructure::Face face = polyhedron->getFace(polyhedronFaceIndex); const HalfEdgeStructure::Face& face = polyhedron->getFace(polyhedronFaceIndex);
// Get the face normal // Get the face normal
const Vector3 faceNormal = polyhedron->getFaceNormal(polyhedronFaceIndex); const Vector3 faceNormal = polyhedron->getFaceNormal(polyhedronFaceIndex);
@ -361,7 +366,7 @@ bool SATAlgorithm::computeCapsulePolyhedronFaceContactPoints(uint referenceFaceI
PROFILE("SATAlgorithm::computeCapsulePolyhedronFaceContactPoints", mProfiler); PROFILE("SATAlgorithm::computeCapsulePolyhedronFaceContactPoints", mProfiler);
HalfEdgeStructure::Face face = polyhedron->getFace(referenceFaceIndex); const HalfEdgeStructure::Face& face = polyhedron->getFace(referenceFaceIndex);
// Get the face normal // Get the face normal
Vector3 faceNormal = polyhedron->getFaceNormal(referenceFaceIndex); Vector3 faceNormal = polyhedron->getFaceNormal(referenceFaceIndex);
@ -369,14 +374,14 @@ bool SATAlgorithm::computeCapsulePolyhedronFaceContactPoints(uint referenceFaceI
uint firstEdgeIndex = face.edgeIndex; uint firstEdgeIndex = face.edgeIndex;
uint edgeIndex = firstEdgeIndex; uint edgeIndex = firstEdgeIndex;
std::vector<Vector3> planesPoints; List<Vector3> planesPoints(mMemoryAllocator, 2);
std::vector<Vector3> planesNormals; List<Vector3> planesNormals(mMemoryAllocator, 2);
// For each adjacent edge of the separating face of the polyhedron // For each adjacent edge of the separating face of the polyhedron
do { do {
HalfEdgeStructure::Edge edge = polyhedron->getHalfEdge(edgeIndex); const HalfEdgeStructure::Edge& edge = polyhedron->getHalfEdge(edgeIndex);
HalfEdgeStructure::Edge twinEdge = polyhedron->getHalfEdge(edge.twinEdgeIndex); const HalfEdgeStructure::Edge& twinEdge = polyhedron->getHalfEdge(edge.twinEdgeIndex);
// Compute the edge vertices and edge direction // Compute the edge vertices and edge direction
Vector3 edgeV1 = polyhedron->getVertexPosition(edge.vertexIndex); Vector3 edgeV1 = polyhedron->getVertexPosition(edge.vertexIndex);
@ -388,15 +393,15 @@ bool SATAlgorithm::computeCapsulePolyhedronFaceContactPoints(uint referenceFaceI
Vector3 clipPlaneNormal = faceNormal.cross(edgeDirection); Vector3 clipPlaneNormal = faceNormal.cross(edgeDirection);
// Construct a clipping plane for each adjacent edge of the separating face of the polyhedron // Construct a clipping plane for each adjacent edge of the separating face of the polyhedron
planesPoints.push_back(polyhedron->getVertexPosition(edge.vertexIndex)); planesPoints.add(polyhedron->getVertexPosition(edge.vertexIndex));
planesNormals.push_back(clipPlaneNormal); planesNormals.add(clipPlaneNormal);
edgeIndex = edge.nextEdgeIndex; edgeIndex = edge.nextEdgeIndex;
} while(edgeIndex != firstEdgeIndex); } while(edgeIndex != firstEdgeIndex);
// First we clip the inner segment of the capsule with the four planes of the adjacent faces // First we clip the inner segment of the capsule with the four planes of the adjacent faces
std::vector<Vector3> clipSegment = clipSegmentWithPlanes(capsuleSegAPolyhedronSpace, capsuleSegBPolyhedronSpace, planesPoints, planesNormals); List<Vector3> clipSegment = clipSegmentWithPlanes(capsuleSegAPolyhedronSpace, capsuleSegBPolyhedronSpace, planesPoints, planesNormals, mMemoryAllocator);
// Project the two clipped points into the polyhedron face // Project the two clipped points into the polyhedron face
const Vector3 delta = faceNormal * (penetrationDepth - capsuleRadius); const Vector3 delta = faceNormal * (penetrationDepth - capsuleRadius);
@ -575,8 +580,8 @@ bool SATAlgorithm::testCollisionConvexPolyhedronVsConvexPolyhedron(NarrowPhaseIn
} }
else { // If the previous separating axis (or axis with minimum penetration depth) was the cross product of two edges else { // If the previous separating axis (or axis with minimum penetration depth) was the cross product of two edges
HalfEdgeStructure::Edge edge1 = polyhedron1->getHalfEdge(lastFrameCollisionInfo->satMinEdge1Index); const HalfEdgeStructure::Edge& edge1 = polyhedron1->getHalfEdge(lastFrameCollisionInfo->satMinEdge1Index);
HalfEdgeStructure::Edge edge2 = polyhedron2->getHalfEdge(lastFrameCollisionInfo->satMinEdge2Index); const HalfEdgeStructure::Edge& edge2 = polyhedron2->getHalfEdge(lastFrameCollisionInfo->satMinEdge2Index);
Vector3 separatingAxisPolyhedron2Space; Vector3 separatingAxisPolyhedron2Space;
@ -669,7 +674,7 @@ bool SATAlgorithm::testCollisionConvexPolyhedronVsConvexPolyhedron(NarrowPhaseIn
for (uint i=0; i < polyhedron1->getNbHalfEdges(); i += 2) { for (uint i=0; i < polyhedron1->getNbHalfEdges(); i += 2) {
// Get an edge of polyhedron 1 // Get an edge of polyhedron 1
HalfEdgeStructure::Edge edge1 = polyhedron1->getHalfEdge(i); const HalfEdgeStructure::Edge& edge1 = polyhedron1->getHalfEdge(i);
const Vector3 edge1A = polyhedron1ToPolyhedron2 * polyhedron1->getVertexPosition(edge1.vertexIndex); const Vector3 edge1A = polyhedron1ToPolyhedron2 * polyhedron1->getVertexPosition(edge1.vertexIndex);
const Vector3 edge1B = polyhedron1ToPolyhedron2 * polyhedron1->getVertexPosition(polyhedron1->getHalfEdge(edge1.nextEdgeIndex).vertexIndex); const Vector3 edge1B = polyhedron1ToPolyhedron2 * polyhedron1->getVertexPosition(polyhedron1->getHalfEdge(edge1.nextEdgeIndex).vertexIndex);
@ -678,7 +683,7 @@ bool SATAlgorithm::testCollisionConvexPolyhedronVsConvexPolyhedron(NarrowPhaseIn
for (uint j=0; j < polyhedron2->getNbHalfEdges(); j += 2) { for (uint j=0; j < polyhedron2->getNbHalfEdges(); j += 2) {
// Get an edge of polyhedron 2 // Get an edge of polyhedron 2
HalfEdgeStructure::Edge edge2 = polyhedron2->getHalfEdge(j); const HalfEdgeStructure::Edge& edge2 = polyhedron2->getHalfEdge(j);
const Vector3 edge2A = polyhedron2->getVertexPosition(edge2.vertexIndex); const Vector3 edge2A = polyhedron2->getVertexPosition(edge2.vertexIndex);
const Vector3 edge2B = polyhedron2->getVertexPosition(polyhedron2->getHalfEdge(edge2.nextEdgeIndex).vertexIndex); const Vector3 edge2B = polyhedron2->getVertexPosition(polyhedron2->getHalfEdge(edge2.nextEdgeIndex).vertexIndex);
@ -816,23 +821,23 @@ bool SATAlgorithm::computePolyhedronVsPolyhedronFaceContactPoints(bool isMinPene
-(narrowPhaseInfo->shape2ToWorldTransform.getOrientation() * axisReferenceSpace); -(narrowPhaseInfo->shape2ToWorldTransform.getOrientation() * axisReferenceSpace);
// Get the reference face // Get the reference face
HalfEdgeStructure::Face referenceFace = referencePolyhedron->getFace(minFaceIndex); const HalfEdgeStructure::Face& referenceFace = referencePolyhedron->getFace(minFaceIndex);
// Find the incident face on the other polyhedron (most anti-parallel face) // Find the incident face on the other polyhedron (most anti-parallel face)
uint incidentFaceIndex = findMostAntiParallelFaceOnPolyhedron(incidentPolyhedron, axisIncidentSpace); uint incidentFaceIndex = incidentPolyhedron->findMostAntiParallelFace(axisIncidentSpace);
// Get the incident face // Get the incident face
HalfEdgeStructure::Face incidentFace = incidentPolyhedron->getFace(incidentFaceIndex); const HalfEdgeStructure::Face& incidentFace = incidentPolyhedron->getFace(incidentFaceIndex);
std::vector<Vector3> polygonVertices; // Vertices to clip of the incident face uint nbIncidentFaceVertices = static_cast<uint>(incidentFace.faceVertices.size());
std::vector<Vector3> planesNormals; // Normals of the clipping planes List<Vector3> polygonVertices(mMemoryAllocator, nbIncidentFaceVertices); // Vertices to clip of the incident face
std::vector<Vector3> planesPoints; // Points on the clipping planes List<Vector3> planesNormals(mMemoryAllocator, nbIncidentFaceVertices); // Normals of the clipping planes
List<Vector3> planesPoints(mMemoryAllocator, nbIncidentFaceVertices); // Points on the clipping planes
// Get all the vertices of the incident face (in the reference local-space) // Get all the vertices of the incident face (in the reference local-space)
std::vector<uint>::const_iterator it; for (uint i=0; i < incidentFace.faceVertices.size(); i++) {
for (it = incidentFace.faceVertices.begin(); it != incidentFace.faceVertices.end(); ++it) { const Vector3 faceVertexIncidentSpace = incidentPolyhedron->getVertexPosition(incidentFace.faceVertices[i]);
const Vector3 faceVertexIncidentSpace = incidentPolyhedron->getVertexPosition(*it); polygonVertices.add(incidentToReferenceTransform * faceVertexIncidentSpace);
polygonVertices.push_back(incidentToReferenceTransform * faceVertexIncidentSpace);
} }
// Get the reference face clipping planes // Get the reference face clipping planes
@ -841,10 +846,10 @@ bool SATAlgorithm::computePolyhedronVsPolyhedronFaceContactPoints(bool isMinPene
do { do {
// Get the adjacent edge // Get the adjacent edge
HalfEdgeStructure::Edge edge = referencePolyhedron->getHalfEdge(currentEdgeIndex); const HalfEdgeStructure::Edge& edge = referencePolyhedron->getHalfEdge(currentEdgeIndex);
// Get the twin edge // Get the twin edge
HalfEdgeStructure::Edge twinEdge = referencePolyhedron->getHalfEdge(edge.twinEdgeIndex); const HalfEdgeStructure::Edge& twinEdge = referencePolyhedron->getHalfEdge(edge.twinEdgeIndex);
// Compute the edge vertices and edge direction // Compute the edge vertices and edge direction
Vector3 edgeV1 = referencePolyhedron->getVertexPosition(edge.vertexIndex); Vector3 edgeV1 = referencePolyhedron->getVertexPosition(edge.vertexIndex);
@ -855,8 +860,8 @@ bool SATAlgorithm::computePolyhedronVsPolyhedronFaceContactPoints(bool isMinPene
// The clipping plane is perpendicular to the edge direction and the reference face normal // The clipping plane is perpendicular to the edge direction and the reference face normal
Vector3 clipPlaneNormal = axisReferenceSpace.cross(edgeDirection); Vector3 clipPlaneNormal = axisReferenceSpace.cross(edgeDirection);
planesNormals.push_back(clipPlaneNormal); planesNormals.add(clipPlaneNormal);
planesPoints.push_back(edgeV1); planesPoints.add(edgeV1);
// Go to the next adjacent edge of the reference face // Go to the next adjacent edge of the reference face
currentEdgeIndex = edge.nextEdgeIndex; currentEdgeIndex = edge.nextEdgeIndex;
@ -867,17 +872,16 @@ bool SATAlgorithm::computePolyhedronVsPolyhedronFaceContactPoints(bool isMinPene
assert(planesNormals.size() == planesPoints.size()); assert(planesNormals.size() == planesPoints.size());
// Clip the reference faces with the adjacent planes of the reference face // Clip the reference faces with the adjacent planes of the reference face
std::vector<Vector3> clipPolygonVertices = clipPolygonWithPlanes(polygonVertices, planesPoints, planesNormals); List<Vector3> clipPolygonVertices = clipPolygonWithPlanes(polygonVertices, planesPoints, planesNormals, mMemoryAllocator);
// We only keep the clipped points that are below the reference face // We only keep the clipped points that are below the reference face
const Vector3 referenceFaceVertex = referencePolyhedron->getVertexPosition(referencePolyhedron->getHalfEdge(firstEdgeIndex).vertexIndex); const Vector3 referenceFaceVertex = referencePolyhedron->getVertexPosition(referencePolyhedron->getHalfEdge(firstEdgeIndex).vertexIndex);
std::vector<Vector3>::const_iterator itPoints;
bool contactPointsFound = false; bool contactPointsFound = false;
for (itPoints = clipPolygonVertices.begin(); itPoints != clipPolygonVertices.end(); ++itPoints) { for (uint i=0; i<clipPolygonVertices.size(); i++) {
// Compute the penetration depth of this contact point (can be different from the minPenetration depth which is // Compute the penetration depth of this contact point (can be different from the minPenetration depth which is
// the maximal penetration depth of any contact point for this separating axis // the maximal penetration depth of any contact point for this separating axis
decimal penetrationDepth = (referenceFaceVertex - (*itPoints)).dot(axisReferenceSpace); decimal penetrationDepth = (referenceFaceVertex - clipPolygonVertices[i]).dot(axisReferenceSpace);
// If the clip point is bellow the reference face // If the clip point is bellow the reference face
if (penetrationDepth > decimal(0.0)) { if (penetrationDepth > decimal(0.0)) {
@ -887,10 +891,10 @@ bool SATAlgorithm::computePolyhedronVsPolyhedronFaceContactPoints(bool isMinPene
Vector3 outWorldNormal = normalWorld; Vector3 outWorldNormal = normalWorld;
// Convert the clip incident polyhedron vertex into the incident polyhedron local-space // Convert the clip incident polyhedron vertex into the incident polyhedron local-space
Vector3 contactPointIncidentPolyhedron = referenceToIncidentTransform * (*itPoints); Vector3 contactPointIncidentPolyhedron = referenceToIncidentTransform * clipPolygonVertices[i];
// Project the contact point onto the reference face // Project the contact point onto the reference face
Vector3 contactPointReferencePolyhedron = projectPointOntoPlane(*itPoints, axisReferenceSpace, referenceFaceVertex); Vector3 contactPointReferencePolyhedron = projectPointOntoPlane(clipPolygonVertices[i], axisReferenceSpace, referenceFaceVertex);
// Compute smooth triangle mesh contact if one of the two collision shapes is a triangle // Compute smooth triangle mesh contact if one of the two collision shapes is a triangle
TriangleShape::computeSmoothTriangleMeshContact(narrowPhaseInfo->collisionShape1, narrowPhaseInfo->collisionShape2, TriangleShape::computeSmoothTriangleMeshContact(narrowPhaseInfo->collisionShape1, narrowPhaseInfo->collisionShape2,
@ -909,28 +913,6 @@ bool SATAlgorithm::computePolyhedronVsPolyhedronFaceContactPoints(bool isMinPene
return contactPointsFound; return contactPointsFound;
} }
// Find and return the index of the polyhedron face with the most anti-parallel face normal given a direction vector
// This is used to find the incident face on a polyhedron of a given reference face of another polyhedron
uint SATAlgorithm::findMostAntiParallelFaceOnPolyhedron(const ConvexPolyhedronShape* polyhedron, const Vector3& direction) const {
PROFILE("SATAlgorithm::findMostAntiParallelFaceOnPolyhedron", mProfiler);
decimal minDotProduct = DECIMAL_LARGEST;
uint mostAntiParallelFace = 0;
// For each face of the polyhedron
for (uint i=0; i < polyhedron->getNbFaces(); i++) {
// Get the face normal
decimal dotProduct = polyhedron->getFaceNormal(i).dot(direction);
if (dotProduct < minDotProduct) {
minDotProduct = dotProduct;
mostAntiParallelFace = i;
}
}
return mostAntiParallelFace;
}
// Compute and return the distance between the two edges in the direction of the candidate separating axis // Compute and return the distance between the two edges in the direction of the candidate separating axis
decimal SATAlgorithm::computeDistanceBetweenEdges(const Vector3& edge1A, const Vector3& edge2A, const Vector3& polyhedron2Centroid, decimal SATAlgorithm::computeDistanceBetweenEdges(const Vector3& edge1A, const Vector3& edge2A, const Vector3& polyhedron2Centroid,
@ -968,7 +950,7 @@ decimal SATAlgorithm::testSingleFaceDirectionPolyhedronVsPolyhedron(const Convex
PROFILE("SATAlgorithm::testSingleFaceDirectionPolyhedronVsPolyhedron", mProfiler); PROFILE("SATAlgorithm::testSingleFaceDirectionPolyhedronVsPolyhedron", mProfiler);
HalfEdgeStructure::Face face = polyhedron1->getFace(faceIndex); const HalfEdgeStructure::Face& face = polyhedron1->getFace(faceIndex);
// Get the face normal // Get the face normal
const Vector3 faceNormal = polyhedron1->getFaceNormal(faceIndex); const Vector3 faceNormal = polyhedron1->getFaceNormal(faceIndex);

View File

@ -50,6 +50,9 @@ class SATAlgorithm {
/// make sure the contact manifold does not change too much between frames. /// make sure the contact manifold does not change too much between frames.
static const decimal SAME_SEPARATING_AXIS_BIAS; static const decimal SAME_SEPARATING_AXIS_BIAS;
/// Memory allocator
Allocator& mMemoryAllocator;
#ifdef IS_PROFILING_ACTIVE #ifdef IS_PROFILING_ACTIVE
/// Pointer to the profiler /// Pointer to the profiler
@ -69,9 +72,6 @@ class SATAlgorithm {
const Vector3& c, const Vector3& d, const Vector3& c, const Vector3& d,
const Vector3& bCrossA, const Vector3& dCrossC) const; const Vector3& bCrossA, const Vector3& dCrossC) const;
// Find and return the index of the polyhedron face with the most anti-parallel face normal given a direction vector
uint findMostAntiParallelFaceOnPolyhedron(const ConvexPolyhedronShape* polyhedron, const Vector3& direction) const;
/// Compute and return the distance between the two edges in the direction of the candidate separating axis /// Compute and return the distance between the two edges in the direction of the candidate separating axis
decimal computeDistanceBetweenEdges(const Vector3& edge1A, const Vector3& edge2A, const Vector3& polyhedron2Centroid, decimal computeDistanceBetweenEdges(const Vector3& edge1A, const Vector3& edge2A, const Vector3& polyhedron2Centroid,
const Vector3& edge1Direction, const Vector3& edge2Direction, const Vector3& edge1Direction, const Vector3& edge2Direction,
@ -115,7 +115,7 @@ class SATAlgorithm {
// -------------------- Methods -------------------- // // -------------------- Methods -------------------- //
/// Constructor /// Constructor
SATAlgorithm() = default; SATAlgorithm(Allocator& memoryAllocator);
/// Destructor /// Destructor
~SATAlgorithm() = default; ~SATAlgorithm() = default;

View File

@ -34,7 +34,8 @@ using namespace reactphysics3d;
// Compute the narrow-phase collision detection between a sphere and a capsule // Compute the narrow-phase collision detection between a sphere and a capsule
// This technique is based on the "Robust Contact Creation for Physics Simulations" presentation // This technique is based on the "Robust Contact Creation for Physics Simulations" presentation
// by Dirk Gregorius. // by Dirk Gregorius.
bool SphereVsCapsuleAlgorithm::testCollision(NarrowPhaseInfo* narrowPhaseInfo, bool reportContacts) { bool SphereVsCapsuleAlgorithm::testCollision(NarrowPhaseInfo* narrowPhaseInfo, bool reportContacts,
Allocator& memoryAllocator) {
bool isSphereShape1 = narrowPhaseInfo->collisionShape1->getType() == CollisionShapeType::SPHERE; bool isSphereShape1 = narrowPhaseInfo->collisionShape1->getType() == CollisionShapeType::SPHERE;

View File

@ -61,7 +61,7 @@ class SphereVsCapsuleAlgorithm : public NarrowPhaseAlgorithm {
SphereVsCapsuleAlgorithm& operator=(const SphereVsCapsuleAlgorithm& algorithm) = delete; SphereVsCapsuleAlgorithm& operator=(const SphereVsCapsuleAlgorithm& algorithm) = delete;
/// Compute the narrow-phase collision detection between a sphere and a capsule /// Compute the narrow-phase collision detection between a sphere and a capsule
virtual bool testCollision(NarrowPhaseInfo* narrowPhaseInfo, bool reportContacts) override; virtual bool testCollision(NarrowPhaseInfo* narrowPhaseInfo, bool reportContacts, Allocator& memoryAllocator) override;
}; };
} }

View File

@ -34,7 +34,8 @@ using namespace reactphysics3d;
// Compute the narrow-phase collision detection between a sphere and a convex polyhedron // Compute the narrow-phase collision detection between a sphere and a convex polyhedron
// This technique is based on the "Robust Contact Creation for Physics Simulations" presentation // This technique is based on the "Robust Contact Creation for Physics Simulations" presentation
// by Dirk Gregorius. // by Dirk Gregorius.
bool SphereVsConvexPolyhedronAlgorithm::testCollision(NarrowPhaseInfo* narrowPhaseInfo, bool reportContacts) { bool SphereVsConvexPolyhedronAlgorithm::testCollision(NarrowPhaseInfo* narrowPhaseInfo, bool reportContacts,
Allocator& memoryAllocator) {
assert(narrowPhaseInfo->collisionShape1->getType() == CollisionShapeType::CONVEX_POLYHEDRON || assert(narrowPhaseInfo->collisionShape1->getType() == CollisionShapeType::CONVEX_POLYHEDRON ||
narrowPhaseInfo->collisionShape2->getType() == CollisionShapeType::CONVEX_POLYHEDRON); narrowPhaseInfo->collisionShape2->getType() == CollisionShapeType::CONVEX_POLYHEDRON);
@ -69,7 +70,7 @@ bool SphereVsConvexPolyhedronAlgorithm::testCollision(NarrowPhaseInfo* narrowPha
if (result == GJKAlgorithm::GJKResult::INTERPENETRATE) { if (result == GJKAlgorithm::GJKResult::INTERPENETRATE) {
// Run the SAT algorithm to find the separating axis and compute contact point // Run the SAT algorithm to find the separating axis and compute contact point
SATAlgorithm satAlgorithm; SATAlgorithm satAlgorithm(memoryAllocator);
#ifdef IS_PROFILING_ACTIVE #ifdef IS_PROFILING_ACTIVE

View File

@ -61,7 +61,7 @@ class SphereVsConvexPolyhedronAlgorithm : public NarrowPhaseAlgorithm {
SphereVsConvexPolyhedronAlgorithm& operator=(const SphereVsConvexPolyhedronAlgorithm& algorithm) = delete; SphereVsConvexPolyhedronAlgorithm& operator=(const SphereVsConvexPolyhedronAlgorithm& algorithm) = delete;
/// Compute the narrow-phase collision detection between a sphere and a convex polyhedron /// Compute the narrow-phase collision detection between a sphere and a convex polyhedron
virtual bool testCollision(NarrowPhaseInfo* narrowPhaseInfo, bool reportContacts) override; virtual bool testCollision(NarrowPhaseInfo* narrowPhaseInfo, bool reportContacts, Allocator& memoryAllocator) override;
}; };
} }

View File

@ -30,7 +30,8 @@
// We want to use the ReactPhysics3D namespace // We want to use the ReactPhysics3D namespace
using namespace reactphysics3d; using namespace reactphysics3d;
bool SphereVsSphereAlgorithm::testCollision(NarrowPhaseInfo* narrowPhaseInfo, bool reportContacts) { bool SphereVsSphereAlgorithm::testCollision(NarrowPhaseInfo* narrowPhaseInfo, bool reportContacts,
Allocator& memoryAllocator) {
assert(narrowPhaseInfo->collisionShape1->getType() == CollisionShapeType::SPHERE); assert(narrowPhaseInfo->collisionShape1->getType() == CollisionShapeType::SPHERE);
assert(narrowPhaseInfo->collisionShape2->getType() == CollisionShapeType::SPHERE); assert(narrowPhaseInfo->collisionShape2->getType() == CollisionShapeType::SPHERE);

View File

@ -61,7 +61,7 @@ class SphereVsSphereAlgorithm : public NarrowPhaseAlgorithm {
SphereVsSphereAlgorithm& operator=(const SphereVsSphereAlgorithm& algorithm) = delete; SphereVsSphereAlgorithm& operator=(const SphereVsSphereAlgorithm& algorithm) = delete;
/// Compute a contact info if the two bounding volume collide /// Compute a contact info if the two bounding volume collide
virtual bool testCollision(NarrowPhaseInfo* narrowPhaseInfo, bool reportContacts) override; virtual bool testCollision(NarrowPhaseInfo* narrowPhaseInfo, bool reportContacts, Allocator& memoryAllocator) override;
}; };
} }

View File

@ -27,6 +27,7 @@
#include "BoxShape.h" #include "BoxShape.h"
#include "collision/ProxyShape.h" #include "collision/ProxyShape.h"
#include "configuration.h" #include "configuration.h"
#include "memory/MemoryManager.h"
#include <vector> #include <vector>
#include <cassert> #include <cassert>
@ -37,7 +38,9 @@ using namespace reactphysics3d;
* @param extent The vector with the three extents of the box (in meters) * @param extent The vector with the three extents of the box (in meters)
*/ */
BoxShape::BoxShape(const Vector3& extent) BoxShape::BoxShape(const Vector3& extent)
: ConvexPolyhedronShape(CollisionShapeName::BOX), mExtent(extent) { : ConvexPolyhedronShape(CollisionShapeName::BOX), mExtent(extent),
mHalfEdgeStructure(MemoryManager::getDefaultAllocator(), 6, 8, 24) {
assert(extent.x > decimal(0.0)); assert(extent.x > decimal(0.0));
assert(extent.y > decimal(0.0)); assert(extent.y > decimal(0.0));
assert(extent.z > decimal(0.0)); assert(extent.z > decimal(0.0));
@ -52,19 +55,21 @@ BoxShape::BoxShape(const Vector3& extent)
mHalfEdgeStructure.addVertex(6); mHalfEdgeStructure.addVertex(6);
mHalfEdgeStructure.addVertex(7); mHalfEdgeStructure.addVertex(7);
DefaultAllocator& allocator = MemoryManager::getDefaultAllocator();
// Faces // Faces
std::vector<uint> face0; List<uint> face0(allocator, 4);
face0.push_back(0); face0.push_back(1); face0.push_back(2); face0.push_back(3); face0.add(0); face0.add(1); face0.add(2); face0.add(3);
std::vector<uint> face1; List<uint> face1(allocator, 4);
face1.push_back(1); face1.push_back(5); face1.push_back(6); face1.push_back(2); face1.add(1); face1.add(5); face1.add(6); face1.add(2);
std::vector<uint> face2; List<uint> face2(allocator, 4);
face2.push_back(4); face2.push_back(7); face2.push_back(6); face2.push_back(5); face2.add(4); face2.add(7); face2.add(6); face2.add(5);
std::vector<uint> face3; List<uint> face3(allocator, 4);
face3.push_back(4); face3.push_back(0); face3.push_back(3); face3.push_back(7); face3.add(4); face3.add(0); face3.add(3); face3.add(7);
std::vector<uint> face4; List<uint> face4(allocator, 4);
face4.push_back(4); face4.push_back(5); face4.push_back(1); face4.push_back(0); face4.add(4); face4.add(5); face4.add(1); face4.add(0);
std::vector<uint> face5; List<uint> face5(allocator, 4);
face5.push_back(2); face5.push_back(6); face5.push_back(7); face5.push_back(3); face5.add(2); face5.add(6); face5.add(7); face5.add(3);
mHalfEdgeStructure.addFace(face0); mHalfEdgeStructure.addFace(face0);
mHalfEdgeStructure.addFace(face1); mHalfEdgeStructure.addFace(face1);
@ -84,17 +89,16 @@ BoxShape::BoxShape(const Vector3& extent)
*/ */
void BoxShape::computeLocalInertiaTensor(Matrix3x3& tensor, decimal mass) const { void BoxShape::computeLocalInertiaTensor(Matrix3x3& tensor, decimal mass) const {
decimal factor = (decimal(1.0) / decimal(3.0)) * mass; decimal factor = (decimal(1.0) / decimal(3.0)) * mass;
Vector3 realExtent = mExtent + Vector3(mMargin, mMargin, mMargin); decimal xSquare = mExtent.x * mExtent.x;
decimal xSquare = realExtent.x * realExtent.x; decimal ySquare = mExtent.y * mExtent.y;
decimal ySquare = realExtent.y * realExtent.y; decimal zSquare = mExtent.z * mExtent.z;
decimal zSquare = realExtent.z * realExtent.z;
tensor.setAllValues(factor * (ySquare + zSquare), 0.0, 0.0, tensor.setAllValues(factor * (ySquare + zSquare), 0.0, 0.0,
0.0, factor * (xSquare + zSquare), 0.0, 0.0, factor * (xSquare + zSquare), 0.0,
0.0, 0.0, factor * (xSquare + ySquare)); 0.0, 0.0, factor * (xSquare + ySquare));
} }
// Raycast method with feedback information // Raycast method with feedback information
bool BoxShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const { bool BoxShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape, Allocator& allocator) const {
Vector3 rayDirection = ray.point2 - ray.point1; Vector3 rayDirection = ray.point2 - ray.point1;
decimal tMin = DECIMAL_SMALLEST; decimal tMin = DECIMAL_SMALLEST;

View File

@ -31,7 +31,7 @@
#include "ConvexPolyhedronShape.h" #include "ConvexPolyhedronShape.h"
#include "body/CollisionBody.h" #include "body/CollisionBody.h"
#include "mathematics/mathematics.h" #include "mathematics/mathematics.h"
#include "memory/DefaultAllocator.h"
/// ReactPhysics3D namespace /// ReactPhysics3D namespace
namespace reactphysics3d { namespace reactphysics3d {
@ -64,7 +64,7 @@ class BoxShape : public ConvexPolyhedronShape {
virtual bool testPointInside(const Vector3& localPoint, ProxyShape* proxyShape) const override; virtual bool testPointInside(const Vector3& localPoint, ProxyShape* proxyShape) const override;
/// Raycast method with feedback information /// Raycast method with feedback information
virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const override; virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape, Allocator& allocator) const override;
/// Return the number of bytes used by the collision shape /// Return the number of bytes used by the collision shape
virtual size_t getSizeInBytes() const override; virtual size_t getSizeInBytes() const override;
@ -101,7 +101,7 @@ class BoxShape : public ConvexPolyhedronShape {
virtual uint getNbFaces() const override; virtual uint getNbFaces() const override;
/// Return a given face of the polyhedron /// Return a given face of the polyhedron
virtual HalfEdgeStructure::Face getFace(uint faceIndex) const override; virtual const HalfEdgeStructure::Face& getFace(uint faceIndex) const override;
/// Return the number of vertices of the polyhedron /// Return the number of vertices of the polyhedron
virtual uint getNbVertices() const override; virtual uint getNbVertices() const override;
@ -113,7 +113,7 @@ class BoxShape : public ConvexPolyhedronShape {
virtual uint getNbHalfEdges() const override; virtual uint getNbHalfEdges() const override;
/// Return a given half-edge of the polyhedron /// Return a given half-edge of the polyhedron
virtual HalfEdgeStructure::Edge getHalfEdge(uint edgeIndex) const override; virtual const HalfEdgeStructure::Edge& getHalfEdge(uint edgeIndex) const override;
/// Return the position of a given vertex /// Return the position of a given vertex
virtual Vector3 getVertexPosition(uint vertexIndex) const override; virtual Vector3 getVertexPosition(uint vertexIndex) const override;
@ -130,7 +130,7 @@ class BoxShape : public ConvexPolyhedronShape {
* @return The vector with the three extents of the box shape (in meters) * @return The vector with the three extents of the box shape (in meters)
*/ */
inline Vector3 BoxShape::getExtent() const { inline Vector3 BoxShape::getExtent() const {
return mExtent + Vector3(mMargin, mMargin, mMargin); return mExtent;
} }
// Set the scaling vector of the collision shape // Set the scaling vector of the collision shape
@ -150,7 +150,7 @@ inline void BoxShape::setLocalScaling(const Vector3& scaling) {
inline void BoxShape::getLocalBounds(Vector3& min, Vector3& max) const { inline void BoxShape::getLocalBounds(Vector3& min, Vector3& max) const {
// Maximum bounds // Maximum bounds
max = mExtent + Vector3(mMargin, mMargin, mMargin); max = mExtent;
// Minimum bounds // Minimum bounds
min = -max; min = -max;
@ -161,7 +161,7 @@ inline size_t BoxShape::getSizeInBytes() const {
return sizeof(BoxShape); return sizeof(BoxShape);
} }
// Return a local support point in a given direction without the objec margin // Return a local support point in a given direction without the object margin
inline Vector3 BoxShape::getLocalSupportPointWithoutMargin(const Vector3& direction) const { inline Vector3 BoxShape::getLocalSupportPointWithoutMargin(const Vector3& direction) const {
return Vector3(direction.x < decimal(0.0) ? -mExtent.x : mExtent.x, return Vector3(direction.x < decimal(0.0) ? -mExtent.x : mExtent.x,
@ -182,7 +182,7 @@ inline uint BoxShape::getNbFaces() const {
} }
// Return a given face of the polyhedron // Return a given face of the polyhedron
inline HalfEdgeStructure::Face BoxShape::getFace(uint faceIndex) const { inline const HalfEdgeStructure::Face& BoxShape::getFace(uint faceIndex) const {
assert(faceIndex < mHalfEdgeStructure.getNbFaces()); assert(faceIndex < mHalfEdgeStructure.getNbFaces());
return mHalfEdgeStructure.getFace(faceIndex); return mHalfEdgeStructure.getFace(faceIndex);
} }
@ -243,7 +243,7 @@ inline uint BoxShape::getNbHalfEdges() const {
} }
// Return a given half-edge of the polyhedron // Return a given half-edge of the polyhedron
inline HalfEdgeStructure::Edge BoxShape::getHalfEdge(uint edgeIndex) const { inline const HalfEdgeStructure::Edge& BoxShape::getHalfEdge(uint edgeIndex) const {
assert(edgeIndex < getNbHalfEdges()); assert(edgeIndex < getNbHalfEdges());
return mHalfEdgeStructure.getHalfEdge(edgeIndex); return mHalfEdgeStructure.getHalfEdge(edgeIndex);
} }

View File

@ -85,7 +85,7 @@ bool CapsuleShape::testPointInside(const Vector3& localPoint, ProxyShape* proxyS
} }
// Raycast method with feedback information // Raycast method with feedback information
bool CapsuleShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const { bool CapsuleShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape, Allocator& allocator) const {
const Vector3 n = ray.point2 - ray.point1; const Vector3 n = ray.point2 - ray.point1;

View File

@ -62,7 +62,7 @@ class CapsuleShape : public ConvexShape {
virtual bool testPointInside(const Vector3& localPoint, ProxyShape* proxyShape) const override; virtual bool testPointInside(const Vector3& localPoint, ProxyShape* proxyShape) const override;
/// Raycast method with feedback information /// Raycast method with feedback information
virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const override; virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape, Allocator& allocator) const override;
/// Raycasting method between a ray one of the two spheres end cap of the capsule /// Raycasting method between a ray one of the two spheres end cap of the capsule
bool raycastWithSphereEndCap(const Vector3& point1, const Vector3& point2, bool raycastWithSphereEndCap(const Vector3& point1, const Vector3& point2,

View File

@ -87,7 +87,7 @@ class CollisionShape {
virtual bool testPointInside(const Vector3& worldPoint, ProxyShape* proxyShape) const=0; virtual bool testPointInside(const Vector3& worldPoint, ProxyShape* proxyShape) const=0;
/// Raycast method with feedback information /// Raycast method with feedback information
virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const=0; virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape, Allocator& allocator) const=0;
/// Return the number of bytes used by the collision shape /// Return the number of bytes used by the collision shape
virtual size_t getSizeInBytes() const = 0; virtual size_t getSizeInBytes() const = 0;

View File

@ -111,12 +111,12 @@ void ConcaveMeshShape::testAllTriangles(TriangleCallback& callback, const AABB&
// Raycast method with feedback information // Raycast method with feedback information
/// Note that only the first triangle hit by the ray in the mesh will be returned, even if /// Note that only the first triangle hit by the ray in the mesh will be returned, even if
/// the ray hits many triangles. /// the ray hits many triangles.
bool ConcaveMeshShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const { bool ConcaveMeshShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape, Allocator& allocator) const {
PROFILE("ConcaveMeshShape::raycast()", mProfiler); PROFILE("ConcaveMeshShape::raycast()", mProfiler);
// Create the callback object that will compute ray casting against triangles // Create the callback object that will compute ray casting against triangles
ConcaveMeshRaycastCallback raycastCallback(mDynamicAABBTree, *this, proxyShape, raycastInfo, ray); ConcaveMeshRaycastCallback raycastCallback(mDynamicAABBTree, *this, proxyShape, raycastInfo, ray, allocator);
#ifdef IS_PROFILING_ACTIVE #ifdef IS_PROFILING_ACTIVE
@ -180,7 +180,7 @@ void ConcaveMeshRaycastCallback::raycastTriangles() {
mConcaveMeshShape.getTriangleVerticesNormals(data[0], data[1], verticesNormals); mConcaveMeshShape.getTriangleVerticesNormals(data[0], data[1], verticesNormals);
// Create a triangle collision shape // Create a triangle collision shape
TriangleShape triangleShape(trianglePoints, verticesNormals, mConcaveMeshShape.computeTriangleShapeId(data[0], data[1])); TriangleShape triangleShape(trianglePoints, verticesNormals, mConcaveMeshShape.computeTriangleShapeId(data[0], data[1]), mAllocator);
triangleShape.setRaycastTestType(mConcaveMeshShape.getRaycastTestType()); triangleShape.setRaycastTestType(mConcaveMeshShape.getRaycastTestType());
#ifdef IS_PROFILING_ACTIVE #ifdef IS_PROFILING_ACTIVE
@ -192,7 +192,7 @@ void ConcaveMeshRaycastCallback::raycastTriangles() {
// Ray casting test against the collision shape // Ray casting test against the collision shape
RaycastInfo raycastInfo; RaycastInfo raycastInfo;
bool isTriangleHit = triangleShape.raycast(mRay, raycastInfo, mProxyShape); bool isTriangleHit = triangleShape.raycast(mRay, raycastInfo, mProxyShape, mAllocator);
// If the ray hit the collision shape // If the ray hit the collision shape
if (isTriangleHit && raycastInfo.hitFraction <= smallestHitFraction) { if (isTriangleHit && raycastInfo.hitFraction <= smallestHitFraction) {

View File

@ -77,6 +77,7 @@ class ConcaveMeshRaycastCallback : public DynamicAABBTreeRaycastCallback {
RaycastInfo& mRaycastInfo; RaycastInfo& mRaycastInfo;
const Ray& mRay; const Ray& mRay;
bool mIsHit; bool mIsHit;
Allocator& mAllocator;
#ifdef IS_PROFILING_ACTIVE #ifdef IS_PROFILING_ACTIVE
@ -89,9 +90,9 @@ class ConcaveMeshRaycastCallback : public DynamicAABBTreeRaycastCallback {
// Constructor // Constructor
ConcaveMeshRaycastCallback(const DynamicAABBTree& dynamicAABBTree, const ConcaveMeshShape& concaveMeshShape, ConcaveMeshRaycastCallback(const DynamicAABBTree& dynamicAABBTree, const ConcaveMeshShape& concaveMeshShape,
ProxyShape* proxyShape, RaycastInfo& raycastInfo, const Ray& ray) ProxyShape* proxyShape, RaycastInfo& raycastInfo, const Ray& ray, Allocator& allocator)
: mDynamicAABBTree(dynamicAABBTree), mConcaveMeshShape(concaveMeshShape), mProxyShape(proxyShape), : mDynamicAABBTree(dynamicAABBTree), mConcaveMeshShape(concaveMeshShape), mProxyShape(proxyShape),
mRaycastInfo(raycastInfo), mRay(ray), mIsHit(false) { mRaycastInfo(raycastInfo), mRay(ray), mIsHit(false), mAllocator(allocator) {
} }
@ -141,7 +142,7 @@ class ConcaveMeshShape : public ConcaveShape {
// -------------------- Methods -------------------- // // -------------------- Methods -------------------- //
/// Raycast method with feedback information /// Raycast method with feedback information
virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const override; virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape, Allocator& allocator) const override;
/// Return the number of bytes used by the collision shape /// Return the number of bytes used by the collision shape
virtual size_t getSizeInBytes() const override; virtual size_t getSizeInBytes() const override;

View File

@ -112,7 +112,7 @@ void ConvexMeshShape::recalculateBounds() {
} }
// Raycast method with feedback information // Raycast method with feedback information
bool ConvexMeshShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const { bool ConvexMeshShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape, Allocator& allocator) const {
return proxyShape->mBody->mWorld.mCollisionDetection.mNarrowPhaseGJKAlgorithm.raycast( return proxyShape->mBody->mWorld.mCollisionDetection.mNarrowPhaseGJKAlgorithm.raycast(
ray, proxyShape, raycastInfo); ray, proxyShape, raycastInfo);
} }

View File

@ -77,7 +77,7 @@ class ConvexMeshShape : public ConvexPolyhedronShape {
virtual bool testPointInside(const Vector3& localPoint, ProxyShape* proxyShape) const override; virtual bool testPointInside(const Vector3& localPoint, ProxyShape* proxyShape) const override;
/// Raycast method with feedback information /// Raycast method with feedback information
virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const override; virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape, Allocator& allocator) const override;
/// Return the number of bytes used by the collision shape /// Return the number of bytes used by the collision shape
virtual size_t getSizeInBytes() const override; virtual size_t getSizeInBytes() const override;
@ -111,7 +111,7 @@ class ConvexMeshShape : public ConvexPolyhedronShape {
virtual uint getNbFaces() const override; virtual uint getNbFaces() const override;
/// Return a given face of the polyhedron /// Return a given face of the polyhedron
virtual HalfEdgeStructure::Face getFace(uint faceIndex) const override; virtual const HalfEdgeStructure::Face& getFace(uint faceIndex) const override;
/// Return the number of vertices of the polyhedron /// Return the number of vertices of the polyhedron
virtual uint getNbVertices() const override; virtual uint getNbVertices() const override;
@ -123,7 +123,7 @@ class ConvexMeshShape : public ConvexPolyhedronShape {
virtual uint getNbHalfEdges() const override; virtual uint getNbHalfEdges() const override;
/// Return a given half-edge of the polyhedron /// Return a given half-edge of the polyhedron
virtual HalfEdgeStructure::Edge getHalfEdge(uint edgeIndex) const override; virtual const HalfEdgeStructure::Edge& getHalfEdge(uint edgeIndex) const override;
/// Return the position of a given vertex /// Return the position of a given vertex
virtual Vector3 getVertexPosition(uint vertexIndex) const override; virtual Vector3 getVertexPosition(uint vertexIndex) const override;
@ -191,7 +191,7 @@ inline uint ConvexMeshShape::getNbFaces() const {
} }
// Return a given face of the polyhedron // Return a given face of the polyhedron
inline HalfEdgeStructure::Face ConvexMeshShape::getFace(uint faceIndex) const { inline const HalfEdgeStructure::Face& ConvexMeshShape::getFace(uint faceIndex) const {
assert(faceIndex < getNbFaces()); assert(faceIndex < getNbFaces());
return mPolyhedronMesh->getHalfEdgeStructure().getFace(faceIndex); return mPolyhedronMesh->getHalfEdgeStructure().getFace(faceIndex);
} }
@ -213,7 +213,7 @@ inline uint ConvexMeshShape::getNbHalfEdges() const {
} }
// Return a given half-edge of the polyhedron // Return a given half-edge of the polyhedron
inline HalfEdgeStructure::Edge ConvexMeshShape::getHalfEdge(uint edgeIndex) const { inline const HalfEdgeStructure::Edge& ConvexMeshShape::getHalfEdge(uint edgeIndex) const {
assert(edgeIndex < getNbHalfEdges()); assert(edgeIndex < getNbHalfEdges());
return mPolyhedronMesh->getHalfEdgeStructure().getHalfEdge(edgeIndex); return mPolyhedronMesh->getHalfEdgeStructure().getHalfEdge(edgeIndex);
} }

View File

@ -35,3 +35,25 @@ ConvexPolyhedronShape::ConvexPolyhedronShape(CollisionShapeName name)
: ConvexShape(name, CollisionShapeType::CONVEX_POLYHEDRON) { : ConvexShape(name, CollisionShapeType::CONVEX_POLYHEDRON) {
} }
// Find and return the index of the polyhedron face with the most anti-parallel face
// normal given a direction vector. This is used to find the incident face on
// a polyhedron of a given reference face of another polyhedron
uint ConvexPolyhedronShape::findMostAntiParallelFace(const Vector3& direction) const {
decimal minDotProduct = DECIMAL_LARGEST;
uint mostAntiParallelFace = 0;
// For each face of the polyhedron
for (uint i=0; i < getNbFaces(); i++) {
// Get the face normal
decimal dotProduct = getFaceNormal(i).dot(direction);
if (dotProduct < minDotProduct) {
minDotProduct = dotProduct;
mostAntiParallelFace = i;
}
}
return mostAntiParallelFace;
}

View File

@ -62,7 +62,7 @@ class ConvexPolyhedronShape : public ConvexShape {
virtual uint getNbFaces() const=0; virtual uint getNbFaces() const=0;
/// Return a given face of the polyhedron /// Return a given face of the polyhedron
virtual HalfEdgeStructure::Face getFace(uint faceIndex) const=0; virtual const HalfEdgeStructure::Face& getFace(uint faceIndex) const=0;
/// Return the number of vertices of the polyhedron /// Return the number of vertices of the polyhedron
virtual uint getNbVertices() const=0; virtual uint getNbVertices() const=0;
@ -80,13 +80,17 @@ class ConvexPolyhedronShape : public ConvexShape {
virtual uint getNbHalfEdges() const=0; virtual uint getNbHalfEdges() const=0;
/// Return a given half-edge of the polyhedron /// Return a given half-edge of the polyhedron
virtual HalfEdgeStructure::Edge getHalfEdge(uint edgeIndex) const=0; virtual const HalfEdgeStructure::Edge& getHalfEdge(uint edgeIndex) const=0;
/// Return true if the collision shape is a polyhedron /// Return true if the collision shape is a polyhedron
virtual bool isPolyhedron() const override; virtual bool isPolyhedron() const override;
/// Return the centroid of the polyhedron /// Return the centroid of the polyhedron
virtual Vector3 getCentroid() const=0; virtual Vector3 getCentroid() const=0;
/// Find and return the index of the polyhedron face with the most anti-parallel face
/// normal given a direction vector
uint findMostAntiParallelFace(const Vector3& direction) const;
}; };
// Return true if the collision shape is a polyhedron // Return true if the collision shape is a polyhedron
@ -94,6 +98,7 @@ inline bool ConvexPolyhedronShape::isPolyhedron() const {
return true; return true;
} }
} }
#endif #endif

View File

@ -212,14 +212,14 @@ void HeightFieldShape::computeMinMaxGridCoordinates(int* minCoords, int* maxCoor
// Raycast method with feedback information // Raycast method with feedback information
/// Note that only the first triangle hit by the ray in the mesh will be returned, even if /// Note that only the first triangle hit by the ray in the mesh will be returned, even if
/// the ray hits many triangles. /// the ray hits many triangles.
bool HeightFieldShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const { bool HeightFieldShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape, Allocator& allocator) const {
// TODO : Implement raycasting without using an AABB for the ray // TODO : Implement raycasting without using an AABB for the ray
// but using a dynamic AABB tree or octree instead // but using a dynamic AABB tree or octree instead
PROFILE("HeightFieldShape::raycast()", mProfiler); PROFILE("HeightFieldShape::raycast()", mProfiler);
TriangleOverlapCallback triangleCallback(ray, proxyShape, raycastInfo, *this); TriangleOverlapCallback triangleCallback(ray, proxyShape, raycastInfo, *this, allocator);
#ifdef IS_PROFILING_ACTIVE #ifdef IS_PROFILING_ACTIVE
@ -266,7 +266,7 @@ Vector3 HeightFieldShape::getVertexAt(int x, int y) const {
void TriangleOverlapCallback::testTriangle(const Vector3* trianglePoints, const Vector3* verticesNormals, uint shapeId) { void TriangleOverlapCallback::testTriangle(const Vector3* trianglePoints, const Vector3* verticesNormals, uint shapeId) {
// Create a triangle collision shape // Create a triangle collision shape
TriangleShape triangleShape(trianglePoints, verticesNormals, shapeId); TriangleShape triangleShape(trianglePoints, verticesNormals, shapeId, mAllocator);
triangleShape.setRaycastTestType(mHeightFieldShape.getRaycastTestType()); triangleShape.setRaycastTestType(mHeightFieldShape.getRaycastTestType());
#ifdef IS_PROFILING_ACTIVE #ifdef IS_PROFILING_ACTIVE
@ -278,7 +278,7 @@ void TriangleOverlapCallback::testTriangle(const Vector3* trianglePoints, const
// Ray casting test against the collision shape // Ray casting test against the collision shape
RaycastInfo raycastInfo; RaycastInfo raycastInfo;
bool isTriangleHit = triangleShape.raycast(mRay, raycastInfo, mProxyShape); bool isTriangleHit = triangleShape.raycast(mRay, raycastInfo, mProxyShape, mAllocator);
// If the ray hit the collision shape // If the ray hit the collision shape
if (isTriangleHit && raycastInfo.hitFraction <= mSmallestHitFraction) { if (isTriangleHit && raycastInfo.hitFraction <= mSmallestHitFraction) {

View File

@ -49,6 +49,7 @@ class TriangleOverlapCallback : public TriangleCallback {
bool mIsHit; bool mIsHit;
decimal mSmallestHitFraction; decimal mSmallestHitFraction;
const HeightFieldShape& mHeightFieldShape; const HeightFieldShape& mHeightFieldShape;
Allocator& mAllocator;
#ifdef IS_PROFILING_ACTIVE #ifdef IS_PROFILING_ACTIVE
@ -61,9 +62,9 @@ class TriangleOverlapCallback : public TriangleCallback {
// Constructor // Constructor
TriangleOverlapCallback(const Ray& ray, ProxyShape* proxyShape, RaycastInfo& raycastInfo, TriangleOverlapCallback(const Ray& ray, ProxyShape* proxyShape, RaycastInfo& raycastInfo,
const HeightFieldShape& heightFieldShape) const HeightFieldShape& heightFieldShape, Allocator& allocator)
: mRay(ray), mProxyShape(proxyShape), mRaycastInfo(raycastInfo), : mRay(ray), mProxyShape(proxyShape), mRaycastInfo(raycastInfo),
mHeightFieldShape (heightFieldShape) { mHeightFieldShape (heightFieldShape), mAllocator(allocator) {
mIsHit = false; mIsHit = false;
mSmallestHitFraction = mRay.maxFraction; mSmallestHitFraction = mRay.maxFraction;
} }
@ -143,7 +144,7 @@ class HeightFieldShape : public ConcaveShape {
// -------------------- Methods -------------------- // // -------------------- Methods -------------------- //
/// Raycast method with feedback information /// Raycast method with feedback information
virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const override; virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape, Allocator& allocator) const override;
/// Return the number of bytes used by the collision shape /// Return the number of bytes used by the collision shape
virtual size_t getSizeInBytes() const override; virtual size_t getSizeInBytes() const override;

View File

@ -41,7 +41,7 @@ SphereShape::SphereShape(decimal radius)
} }
// Raycast method with feedback information // Raycast method with feedback information
bool SphereShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const { bool SphereShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape, Allocator& allocator) const {
const Vector3 m = ray.point1; const Vector3 m = ray.point1;
decimal c = m.dot(m) - mMargin * mMargin; decimal c = m.dot(m) - mMargin * mMargin;

View File

@ -55,7 +55,7 @@ class SphereShape : public ConvexShape {
virtual bool testPointInside(const Vector3& localPoint, ProxyShape* proxyShape) const override; virtual bool testPointInside(const Vector3& localPoint, ProxyShape* proxyShape) const override;
/// Raycast method with feedback information /// Raycast method with feedback information
virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const override; virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape, Allocator& allocator) const override;
/// Return the number of bytes used by the collision shape /// Return the number of bytes used by the collision shape
virtual size_t getSizeInBytes() const override; virtual size_t getSizeInBytes() const override;

View File

@ -33,6 +33,7 @@
using namespace reactphysics3d; using namespace reactphysics3d;
// Constructor // Constructor
/** /**
* Do not use this constructor. It is supposed to be used internally only. * Do not use this constructor. It is supposed to be used internally only.
@ -43,8 +44,9 @@ using namespace reactphysics3d;
* @param verticesNormals The three vertices normals for smooth mesh collision * @param verticesNormals The three vertices normals for smooth mesh collision
* @param margin The collision margin (in meters) around the collision shape * @param margin The collision margin (in meters) around the collision shape
*/ */
TriangleShape::TriangleShape(const Vector3* vertices, const Vector3* verticesNormals, uint shapeId) TriangleShape::TriangleShape(const Vector3* vertices, const Vector3* verticesNormals, uint shapeId,
: ConvexPolyhedronShape(CollisionShapeName::TRIANGLE) { Allocator& allocator)
: ConvexPolyhedronShape(CollisionShapeName::TRIANGLE), mFaces{HalfEdgeStructure::Face(allocator), HalfEdgeStructure::Face(allocator)} {
mPoints[0] = vertices[0]; mPoints[0] = vertices[0];
mPoints[1] = vertices[1]; mPoints[1] = vertices[1];
@ -58,6 +60,58 @@ TriangleShape::TriangleShape(const Vector3* vertices, const Vector3* verticesNor
mVerticesNormals[1] = verticesNormals[1]; mVerticesNormals[1] = verticesNormals[1];
mVerticesNormals[2] = verticesNormals[2]; mVerticesNormals[2] = verticesNormals[2];
// Faces
for (uint i=0; i<2; i++) {
mFaces[i].faceVertices.reserve(3);
mFaces[i].faceVertices.add(0);
mFaces[i].faceVertices.add(1);
mFaces[i].faceVertices.add(2);
mFaces[i].edgeIndex = i;
}
// Edges
for (uint i=0; i<6; i++) {
switch(i) {
case 0:
mEdges[0].vertexIndex = 0;
mEdges[0].twinEdgeIndex = 1;
mEdges[0].faceIndex = 0;
mEdges[0].nextEdgeIndex = 2;
break;
case 1:
mEdges[1].vertexIndex = 1;
mEdges[1].twinEdgeIndex = 0;
mEdges[1].faceIndex = 1;
mEdges[1].nextEdgeIndex = 5;
break;
case 2:
mEdges[2].vertexIndex = 1;
mEdges[2].twinEdgeIndex = 3;
mEdges[2].faceIndex = 0;
mEdges[2].nextEdgeIndex = 4;
break;
case 3:
mEdges[3].vertexIndex = 2;
mEdges[3].twinEdgeIndex = 2;
mEdges[3].faceIndex = 1;
mEdges[3].nextEdgeIndex = 1;
break;
case 4:
mEdges[4].vertexIndex = 2;
mEdges[4].twinEdgeIndex = 5;
mEdges[4].faceIndex = 0;
mEdges[4].nextEdgeIndex = 0;
break;
case 5:
mEdges[5].vertexIndex = 0;
mEdges[5].twinEdgeIndex = 4;
mEdges[5].faceIndex = 1;
mEdges[5].nextEdgeIndex = 3;
break;
}
}
mRaycastTestType = TriangleRaycastSide::FRONT; mRaycastTestType = TriangleRaycastSide::FRONT;
mId = shapeId; mId = shapeId;
@ -157,7 +211,7 @@ Vector3 TriangleShape::computeSmoothLocalContactNormalForTriangle(const Vector3&
// Raycast method with feedback information // Raycast method with feedback information
/// This method use the line vs triangle raycasting technique described in /// This method use the line vs triangle raycasting technique described in
/// Real-time Collision Detection by Christer Ericson. /// Real-time Collision Detection by Christer Ericson.
bool TriangleShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const { bool TriangleShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape, Allocator& allocator) const {
PROFILE("TriangleShape::raycast()", mProfiler); PROFILE("TriangleShape::raycast()", mProfiler);
@ -227,51 +281,3 @@ bool TriangleShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape
return true; return true;
} }
// Return a given half-edge of the polyhedron
HalfEdgeStructure::Edge TriangleShape::getHalfEdge(uint edgeIndex) const {
assert(edgeIndex < getNbHalfEdges());
HalfEdgeStructure::Edge edge;
switch(edgeIndex) {
case 0:
edge.vertexIndex = 0;
edge.twinEdgeIndex = 1;
edge.faceIndex = 0;
edge.nextEdgeIndex = 2;
break;
case 1:
edge.vertexIndex = 1;
edge.twinEdgeIndex = 0;
edge.faceIndex = 1;
edge.nextEdgeIndex = 5;
break;
case 2:
edge.vertexIndex = 1;
edge.twinEdgeIndex = 3;
edge.faceIndex = 0;
edge.nextEdgeIndex = 4;
break;
case 3:
edge.vertexIndex = 2;
edge.twinEdgeIndex = 2;
edge.faceIndex = 1;
edge.nextEdgeIndex = 1;
break;
case 4:
edge.vertexIndex = 2;
edge.twinEdgeIndex = 5;
edge.faceIndex = 0;
edge.nextEdgeIndex = 0;
break;
case 5:
edge.vertexIndex = 0;
edge.twinEdgeIndex = 4;
edge.faceIndex = 1;
edge.nextEdgeIndex = 3;
break;
}
return edge;
}

View File

@ -60,6 +60,7 @@ class TriangleShape : public ConvexPolyhedronShape {
// -------------------- Attribute -------------------- // // -------------------- Attribute -------------------- //
/// Three points of the triangle /// Three points of the triangle
Vector3 mPoints[3]; Vector3 mPoints[3];
@ -72,6 +73,12 @@ class TriangleShape : public ConvexPolyhedronShape {
/// Raycast test type for the triangle (front, back, front-back) /// Raycast test type for the triangle (front, back, front-back)
TriangleRaycastSide mRaycastTestType; TriangleRaycastSide mRaycastTestType;
/// Faces information for the two faces of the triangle
HalfEdgeStructure::Face mFaces[2];
/// Edges information for the six edges of the triangle
HalfEdgeStructure::Edge mEdges[6];
// -------------------- Methods -------------------- // // -------------------- Methods -------------------- //
/// Return a local support point in a given direction without the object margin /// Return a local support point in a given direction without the object margin
@ -84,7 +91,8 @@ class TriangleShape : public ConvexPolyhedronShape {
virtual bool testPointInside(const Vector3& localPoint, ProxyShape* proxyShape) const override; virtual bool testPointInside(const Vector3& localPoint, ProxyShape* proxyShape) const override;
/// Raycast method with feedback information /// Raycast method with feedback information
virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const override; virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape,
Allocator& allocator) const override;
/// Return the number of bytes used by the collision shape /// Return the number of bytes used by the collision shape
virtual size_t getSizeInBytes() const override; virtual size_t getSizeInBytes() const override;
@ -104,7 +112,8 @@ class TriangleShape : public ConvexPolyhedronShape {
// -------------------- Methods -------------------- // // -------------------- Methods -------------------- //
/// Constructor /// Constructor
TriangleShape(const Vector3* vertices, const Vector3* verticesNormals, uint shapeId); TriangleShape(const Vector3* vertices, const Vector3* verticesNormals,
uint shapeId, Allocator& allocator);
/// Destructor /// Destructor
virtual ~TriangleShape() override = default; virtual ~TriangleShape() override = default;
@ -137,7 +146,7 @@ class TriangleShape : public ConvexPolyhedronShape {
virtual uint getNbFaces() const override; virtual uint getNbFaces() const override;
/// Return a given face of the polyhedron /// Return a given face of the polyhedron
virtual HalfEdgeStructure::Face getFace(uint faceIndex) const override; virtual const HalfEdgeStructure::Face& getFace(uint faceIndex) const override;
/// Return the number of vertices of the polyhedron /// Return the number of vertices of the polyhedron
virtual uint getNbVertices() const override; virtual uint getNbVertices() const override;
@ -155,7 +164,7 @@ class TriangleShape : public ConvexPolyhedronShape {
virtual uint getNbHalfEdges() const override; virtual uint getNbHalfEdges() const override;
/// Return a given half-edge of the polyhedron /// Return a given half-edge of the polyhedron
virtual HalfEdgeStructure::Edge getHalfEdge(uint edgeIndex) const override; virtual const HalfEdgeStructure::Edge& getHalfEdge(uint edgeIndex) const override;
/// Return the centroid of the polyhedron /// Return the centroid of the polyhedron
virtual Vector3 getCentroid() const override; virtual Vector3 getCentroid() const override;
@ -252,26 +261,9 @@ inline uint TriangleShape::getNbFaces() const {
} }
// Return a given face of the polyhedron // Return a given face of the polyhedron
inline HalfEdgeStructure::Face TriangleShape::getFace(uint faceIndex) const { inline const HalfEdgeStructure::Face& TriangleShape::getFace(uint faceIndex) const {
assert(faceIndex < 2); assert(faceIndex < 2);
return mFaces[faceIndex];
HalfEdgeStructure::Face face;
if (faceIndex == 0) {
face.faceVertices.push_back(0);
face.faceVertices.push_back(1);
face.faceVertices.push_back(2);
face.edgeIndex = 0;
}
else {
face.faceVertices.push_back(0);
face.faceVertices.push_back(2);
face.faceVertices.push_back(1);
face.edgeIndex = 1;
}
return face;
} }
// Return the number of vertices of the polyhedron // Return the number of vertices of the polyhedron
@ -292,6 +284,12 @@ inline HalfEdgeStructure::Vertex TriangleShape::getVertex(uint vertexIndex) cons
return vertex; return vertex;
} }
// Return a given half-edge of the polyhedron
inline const HalfEdgeStructure::Edge& TriangleShape::getHalfEdge(uint edgeIndex) const {
assert(edgeIndex < getNbHalfEdges());
return mEdges[edgeIndex];
}
// Return the position of a given vertex // Return the position of a given vertex
inline Vector3 TriangleShape::getVertexPosition(uint vertexIndex) const { inline Vector3 TriangleShape::getVertexPosition(uint vertexIndex) const {
assert(vertexIndex < 3); assert(vertexIndex < 3);

View File

@ -45,8 +45,8 @@ BallAndSocketJoint::BallAndSocketJoint(const BallAndSocketJointInfo& jointInfo)
void BallAndSocketJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverData) { void BallAndSocketJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverData) {
// Initialize the bodies index in the velocity array // Initialize the bodies index in the velocity array
mIndexBody1 = constraintSolverData.mapBodyToConstrainedVelocityIndex.find(mBody1)->second; mIndexBody1 = mBody1->mArrayIndex;
mIndexBody2 = constraintSolverData.mapBodyToConstrainedVelocityIndex.find(mBody2)->second; mIndexBody2 = mBody2->mArrayIndex;
// Get the bodies center of mass and orientations // Get the bodies center of mass and orientations
const Vector3& x1 = mBody1->mCenterOfMassWorld; const Vector3& x1 = mBody1->mCenterOfMassWorld;

View File

@ -122,10 +122,10 @@ class ContactPoint {
Vector3 getNormal() const; Vector3 getNormal() const;
/// Return the contact point on the first proxy shape in the local-space of the proxy shape /// Return the contact point on the first proxy shape in the local-space of the proxy shape
Vector3 getLocalPointOnShape1() const; const Vector3& getLocalPointOnShape1() const;
/// Return the contact point on the second proxy shape in the local-space of the proxy shape /// Return the contact point on the second proxy shape in the local-space of the proxy shape
Vector3 getLocalPointOnShape2() const; const Vector3& getLocalPointOnShape2() const;
/// Return the cached penetration impulse /// Return the cached penetration impulse
decimal getPenetrationImpulse() const; decimal getPenetrationImpulse() const;
@ -157,12 +157,12 @@ inline Vector3 ContactPoint::getNormal() const {
} }
// Return the contact point on the first proxy shape in the local-space of the proxy shape // Return the contact point on the first proxy shape in the local-space of the proxy shape
inline Vector3 ContactPoint::getLocalPointOnShape1() const { inline const Vector3& ContactPoint::getLocalPointOnShape1() const {
return mLocalPointOnShape1; return mLocalPointOnShape1;
} }
// Return the contact point on the second proxy shape in the local-space of the proxy shape // Return the contact point on the second proxy shape in the local-space of the proxy shape
inline Vector3 ContactPoint::getLocalPointOnShape2() const { inline const Vector3& ContactPoint::getLocalPointOnShape2() const {
return mLocalPointOnShape2; return mLocalPointOnShape2;
} }

View File

@ -53,8 +53,8 @@ FixedJoint::FixedJoint(const FixedJointInfo& jointInfo)
void FixedJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverData) { void FixedJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverData) {
// Initialize the bodies index in the velocity array // Initialize the bodies index in the velocity array
mIndexBody1 = constraintSolverData.mapBodyToConstrainedVelocityIndex.find(mBody1)->second; mIndexBody1 = mBody1->mArrayIndex;
mIndexBody2 = constraintSolverData.mapBodyToConstrainedVelocityIndex.find(mBody2)->second; mIndexBody2 = mBody2->mArrayIndex;
// Get the bodies positions and orientations // Get the bodies positions and orientations
const Vector3& x1 = mBody1->mCenterOfMassWorld; const Vector3& x1 = mBody1->mCenterOfMassWorld;

View File

@ -68,8 +68,8 @@ HingeJoint::HingeJoint(const HingeJointInfo& jointInfo)
void HingeJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverData) { void HingeJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverData) {
// Initialize the bodies index in the velocity array // Initialize the bodies index in the velocity array
mIndexBody1 = constraintSolverData.mapBodyToConstrainedVelocityIndex.find(mBody1)->second; mIndexBody1 = mBody1->mArrayIndex;
mIndexBody2 = constraintSolverData.mapBodyToConstrainedVelocityIndex.find(mBody2)->second; mIndexBody2 = mBody2->mArrayIndex;
// Get the bodies positions and orientations // Get the bodies positions and orientations
const Vector3& x1 = mBody1->mCenterOfMassWorld; const Vector3& x1 = mBody1->mCenterOfMassWorld;

View File

@ -67,8 +67,8 @@ SliderJoint::SliderJoint(const SliderJointInfo& jointInfo)
void SliderJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverData) { void SliderJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverData) {
// Initialize the bodies index in the veloc ity array // Initialize the bodies index in the veloc ity array
mIndexBody1 = constraintSolverData.mapBodyToConstrainedVelocityIndex.find(mBody1)->second; mIndexBody1 = mBody1->mArrayIndex;
mIndexBody2 = constraintSolverData.mapBodyToConstrainedVelocityIndex.find(mBody2)->second; mIndexBody2 = mBody2->mArrayIndex;
// Get the bodies positions and orientations // Get the bodies positions and orientations
const Vector3& x1 = mBody1->mCenterOfMassWorld; const Vector3& x1 = mBody1->mCenterOfMassWorld;

220
src/containers/List.h Normal file
View File

@ -0,0 +1,220 @@
/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2016 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef REACTPHYSICS3D_LIST_H
#define REACTPHYSICS3D_LIST_H
// Libraries
#include "configuration.h"
#include "memory/Allocator.h"
#include <cstring>
namespace reactphysics3d {
// Class List
/**
* This class represents a simple generic list with custom memory allocator.
*/
template<typename T>
class List {
private:
// -------------------- Attributes -------------------- //
/// Buffer for the list elements
void* mBuffer;
/// Number of elements in the list
size_t mSize;
/// Number of allocated elements in the list
size_t mCapacity;
/// Memory allocator
Allocator& mAllocator;
// -------------------- Methods -------------------- //
public:
// -------------------- Methods -------------------- //
/// Constructor
List(Allocator& allocator, size_t capacity = 0)
: mBuffer(nullptr), mSize(0), mCapacity(0), mAllocator(allocator) {
if (capacity > 0) {
// Allocate memory
reserve(capacity);
}
}
/// Copy constructor
List(const List<T>& list) : mBuffer(nullptr), mSize(0), mCapacity(0), mAllocator(list.mAllocator) {
// All all the elements of the list to the current one
addRange(list);
}
/// Destructor
~List() {
// If elements have been allocated
if (mCapacity > 0) {
// Clear the list
clear();
// Release the memory allocated on the heap
mAllocator.release(mBuffer, mCapacity * sizeof(T));
}
}
/// Allocate memory for a given number of elements
void reserve(size_t capacity) {
if (capacity <= mCapacity) return;
// Allocate memory for the new array
void* newMemory = mAllocator.allocate(capacity * sizeof(T));
if (mBuffer != nullptr) {
// Copy the elements to the new allocated memory location
std::memcpy(newMemory, mBuffer, mSize * sizeof(T));
// Release the previously allocated memory
mAllocator.release(mBuffer, mCapacity * sizeof(T));
}
mBuffer = newMemory;
assert(mBuffer != nullptr);
mCapacity = capacity;
}
/// Add an element into the list
void add(const T& element) {
// If we need to allocate more memory
if (mSize == mCapacity) {
reserve(mCapacity == 0 ? 1 : mCapacity * 2);
}
// Use the copy-constructor to construct the element
new (static_cast<char*>(mBuffer) + mSize * sizeof(T)) T(element);
mSize++;
}
/// Remove an element from the list at a given index
void remove(uint index) {
assert(index >= 0 && index < mSize);
// Call the destructor
(static_cast<T*>(mBuffer)[index]).~T();
mSize--;
if (index != mSize) {
// Move the elements to fill in the empty slot
char* dest = static_cast<char*>(mBuffer) + index * sizeof(T);
char* src = dest + sizeof(T);
std::memcpy(static_cast<void*>(dest), static_cast<void*>(src), (mSize - index) * sizeof(T));
}
}
/// Append another list to the current one
void addRange(const List<T>& list) {
// If we need to allocate more memory
if (mSize + list.size() > mCapacity) {
// Allocate memory
reserve(mSize + list.size());
}
// Add the elements of the list to the current one
for(uint i=0; i<list.size(); i++) {
new (static_cast<char*>(mBuffer) + mSize * sizeof(T)) T(list[i]);
mSize++;
}
}
/// Clear the list
void clear() {
// Call the destructor of each element
for (uint i=0; i < mSize; i++) {
(static_cast<T*>(mBuffer)[i]).~T();
}
mSize = 0;
}
/// Return the number of elments in the list
size_t size() const {
return mSize;
}
/// Return the capacity of the list
size_t capacity() const {
return mCapacity;
}
/// Overloaded index operator
T& operator[](const uint index) {
assert(index >= 0 && index < mSize);
return (static_cast<T*>(mBuffer)[index]);
}
/// Overloaded const index operator
const T& operator[](const uint index) const {
assert(index >= 0 && index < mSize);
return (static_cast<T*>(mBuffer)[index]);
}
/// Overloaded assignment operator
List<T>& operator=(const List<T>& list) {
// Clear all the elements
clear();
// Add all the elements of the list to the current one
addRange(list);
return *this;
}
};
}
#endif

View File

@ -187,4 +187,3 @@ AABB CollisionWorld::getWorldAABB(const ProxyShape* proxyShape) const {
return mCollisionDetection.getWorldAABB(proxyShape); return mCollisionDetection.getWorldAABB(proxyShape);
} }

View File

@ -39,6 +39,7 @@
#include "collision/CollisionDetection.h" #include "collision/CollisionDetection.h"
#include "constraint/Joint.h" #include "constraint/Joint.h"
#include "constraint/ContactPoint.h" #include "constraint/ContactPoint.h"
#include "memory/DefaultAllocator.h"
#include "memory/PoolAllocator.h" #include "memory/PoolAllocator.h"
#include "EventListener.h" #include "EventListener.h"

View File

@ -30,9 +30,7 @@
using namespace reactphysics3d; using namespace reactphysics3d;
// Constructor // Constructor
ConstraintSolver::ConstraintSolver(const std::map<RigidBody*, uint>& mapBodyToVelocityIndex) ConstraintSolver::ConstraintSolver() : mIsWarmStartingActive(true) {
: mMapBodyToConstrainedVelocityIndex(mapBodyToVelocityIndex),
mIsWarmStartingActive(true), mConstraintSolverData(mapBodyToVelocityIndex) {
#ifdef IS_PROFILING_ACTIVE #ifdef IS_PROFILING_ACTIVE

View File

@ -60,18 +60,12 @@ struct ConstraintSolverData {
/// Reference to the bodies orientations /// Reference to the bodies orientations
Quaternion* orientations; Quaternion* orientations;
/// Reference to the map that associates rigid body to their index
/// in the constrained velocities array
const std::map<RigidBody*, uint>& mapBodyToConstrainedVelocityIndex;
/// True if warm starting of the solver is active /// True if warm starting of the solver is active
bool isWarmStartingActive; bool isWarmStartingActive;
/// Constructor /// Constructor
ConstraintSolverData(const std::map<RigidBody*, uint>& refMapBodyToConstrainedVelocityIndex) ConstraintSolverData() :linearVelocities(nullptr), angularVelocities(nullptr),
:linearVelocities(nullptr), angularVelocities(nullptr), positions(nullptr), orientations(nullptr) {
positions(nullptr), orientations(nullptr),
mapBodyToConstrainedVelocityIndex(refMapBodyToConstrainedVelocityIndex){
} }
@ -152,10 +146,6 @@ class ConstraintSolver {
// -------------------- Attributes -------------------- // // -------------------- Attributes -------------------- //
/// Reference to the map that associates rigid body to their index in
/// the constrained velocities array
const std::map<RigidBody*, uint>& mMapBodyToConstrainedVelocityIndex;
/// Current time step /// Current time step
decimal mTimeStep; decimal mTimeStep;
@ -176,7 +166,7 @@ class ConstraintSolver {
// -------------------- Methods -------------------- // // -------------------- Methods -------------------- //
/// Constructor /// Constructor
ConstraintSolver(const std::map<RigidBody*, uint>& mapBodyToVelocityIndex); ConstraintSolver();
/// Destructor /// Destructor
~ConstraintSolver() = default; ~ConstraintSolver() = default;

View File

@ -39,12 +39,10 @@ const decimal ContactSolver::BETA_SPLIT_IMPULSE = decimal(0.2);
const decimal ContactSolver::SLOP = decimal(0.01); const decimal ContactSolver::SLOP = decimal(0.01);
// Constructor // Constructor
ContactSolver::ContactSolver(const std::map<RigidBody*, uint>& mapBodyToVelocityIndex, ContactSolver::ContactSolver(SingleFrameAllocator& allocator)
SingleFrameAllocator& allocator)
:mSplitLinearVelocities(nullptr), mSplitAngularVelocities(nullptr), :mSplitLinearVelocities(nullptr), mSplitAngularVelocities(nullptr),
mContactConstraints(nullptr), mSingleFrameAllocator(allocator), mContactConstraints(nullptr), mSingleFrameAllocator(allocator),
mLinearVelocities(nullptr), mAngularVelocities(nullptr), mLinearVelocities(nullptr), mAngularVelocities(nullptr),
mMapBodyToConstrainedVelocityIndex(mapBodyToVelocityIndex),
mIsSplitImpulseActive(true) { mIsSplitImpulseActive(true) {
} }
@ -131,8 +129,8 @@ void ContactSolver::initializeForIsland(Island* island) {
// Initialize the internal contact manifold structure using the external // Initialize the internal contact manifold structure using the external
// contact manifold // contact manifold
new (mContactConstraints + mNbContactManifolds) ContactManifoldSolver(); new (mContactConstraints + mNbContactManifolds) ContactManifoldSolver();
mContactConstraints[mNbContactManifolds].indexBody1 = mMapBodyToConstrainedVelocityIndex.find(body1)->second; mContactConstraints[mNbContactManifolds].indexBody1 = body1->mArrayIndex;
mContactConstraints[mNbContactManifolds].indexBody2 = mMapBodyToConstrainedVelocityIndex.find(body2)->second; mContactConstraints[mNbContactManifolds].indexBody2 = body2->mArrayIndex;
mContactConstraints[mNbContactManifolds].inverseInertiaTensorBody1 = body1->getInertiaTensorInverseWorld(); mContactConstraints[mNbContactManifolds].inverseInertiaTensorBody1 = body1->getInertiaTensorInverseWorld();
mContactConstraints[mNbContactManifolds].inverseInertiaTensorBody2 = body2->getInertiaTensorInverseWorld(); mContactConstraints[mNbContactManifolds].inverseInertiaTensorBody2 = body2->getInertiaTensorInverseWorld();
mContactConstraints[mNbContactManifolds].massInverseBody1 = body1->mMassInverse; mContactConstraints[mNbContactManifolds].massInverseBody1 = body1->mMassInverse;
@ -163,22 +161,48 @@ void ContactSolver::initializeForIsland(Island* island) {
new (mContactPoints + mNbContactPoints) ContactPointSolver(); new (mContactPoints + mNbContactPoints) ContactPointSolver();
mContactPoints[mNbContactPoints].externalContact = externalContact; mContactPoints[mNbContactPoints].externalContact = externalContact;
mContactPoints[mNbContactPoints].normal = externalContact->getNormal(); mContactPoints[mNbContactPoints].normal = externalContact->getNormal();
mContactPoints[mNbContactPoints].r1 = p1 - x1; mContactPoints[mNbContactPoints].r1.x = p1.x - x1.x;
mContactPoints[mNbContactPoints].r2 = p2 - x2; mContactPoints[mNbContactPoints].r1.y = p1.y - x1.y;
mContactPoints[mNbContactPoints].r1.z = p1.z - x1.z;
mContactPoints[mNbContactPoints].r2.x = p2.x - x2.x;
mContactPoints[mNbContactPoints].r2.y = p2.y - x2.y;
mContactPoints[mNbContactPoints].r2.z = p2.z - x2.z;
mContactPoints[mNbContactPoints].penetrationDepth = externalContact->getPenetrationDepth(); mContactPoints[mNbContactPoints].penetrationDepth = externalContact->getPenetrationDepth();
mContactPoints[mNbContactPoints].isRestingContact = externalContact->getIsRestingContact(); mContactPoints[mNbContactPoints].isRestingContact = externalContact->getIsRestingContact();
externalContact->setIsRestingContact(true); externalContact->setIsRestingContact(true);
mContactPoints[mNbContactPoints].penetrationImpulse = externalContact->getPenetrationImpulse(); mContactPoints[mNbContactPoints].penetrationImpulse = externalContact->getPenetrationImpulse();
mContactPoints[mNbContactPoints].penetrationSplitImpulse = 0.0; mContactPoints[mNbContactPoints].penetrationSplitImpulse = 0.0;
mContactConstraints[mNbContactManifolds].frictionPointBody1 += p1; mContactConstraints[mNbContactManifolds].frictionPointBody1.x += p1.x;
mContactConstraints[mNbContactManifolds].frictionPointBody2 += p2; mContactConstraints[mNbContactManifolds].frictionPointBody1.y += p1.y;
mContactConstraints[mNbContactManifolds].frictionPointBody1.z += p1.z;
mContactConstraints[mNbContactManifolds].frictionPointBody2.x += p2.x;
mContactConstraints[mNbContactManifolds].frictionPointBody2.y += p2.y;
mContactConstraints[mNbContactManifolds].frictionPointBody2.z += p2.z;
// Compute the velocity difference // Compute the velocity difference
Vector3 deltaV = v2 + w2.cross(mContactPoints[mNbContactPoints].r2) - v1 - w1.cross(mContactPoints[mNbContactPoints].r1); //deltaV = v2 + w2.cross(mContactPoints[mNbContactPoints].r2) - v1 - w1.cross(mContactPoints[mNbContactPoints].r1);
Vector3 deltaV(v2.x + w2.y * mContactPoints[mNbContactPoints].r2.z - w2.z * mContactPoints[mNbContactPoints].r2.y
- v1.x - w1.y * mContactPoints[mNbContactPoints].r1.z - w1.z * mContactPoints[mNbContactPoints].r1.y,
v2.y + w2.z * mContactPoints[mNbContactPoints].r2.x - w2.x * mContactPoints[mNbContactPoints].r2.z
- v1.y - w1.z * mContactPoints[mNbContactPoints].r1.x - w1.x * mContactPoints[mNbContactPoints].r1.z,
v2.z + w2.x * mContactPoints[mNbContactPoints].r2.y - w2.y * mContactPoints[mNbContactPoints].r2.x
- v1.z - w1.x * mContactPoints[mNbContactPoints].r1.y - w1.y * mContactPoints[mNbContactPoints].r1.x);
Vector3 r1CrossN = mContactPoints[mNbContactPoints].r1.cross(mContactPoints[mNbContactPoints].normal); // r1CrossN = mContactPoints[mNbContactPoints].r1.cross(mContactPoints[mNbContactPoints].normal);
Vector3 r2CrossN = mContactPoints[mNbContactPoints].r2.cross(mContactPoints[mNbContactPoints].normal); Vector3 r1CrossN(mContactPoints[mNbContactPoints].r1.y * mContactPoints[mNbContactPoints].normal.z -
mContactPoints[mNbContactPoints].r1.z * mContactPoints[mNbContactPoints].normal.y,
mContactPoints[mNbContactPoints].r1.z * mContactPoints[mNbContactPoints].normal.x -
mContactPoints[mNbContactPoints].r1.x * mContactPoints[mNbContactPoints].normal.z,
mContactPoints[mNbContactPoints].r1.x * mContactPoints[mNbContactPoints].normal.y -
mContactPoints[mNbContactPoints].r1.y * mContactPoints[mNbContactPoints].normal.x);
// r2CrossN = mContactPoints[mNbContactPoints].r2.cross(mContactPoints[mNbContactPoints].normal);
Vector3 r2CrossN(mContactPoints[mNbContactPoints].r2.y * mContactPoints[mNbContactPoints].normal.z -
mContactPoints[mNbContactPoints].r2.z * mContactPoints[mNbContactPoints].normal.y,
mContactPoints[mNbContactPoints].r2.z * mContactPoints[mNbContactPoints].normal.x -
mContactPoints[mNbContactPoints].r2.x * mContactPoints[mNbContactPoints].normal.z,
mContactPoints[mNbContactPoints].r2.x * mContactPoints[mNbContactPoints].normal.y -
mContactPoints[mNbContactPoints].r2.y * mContactPoints[mNbContactPoints].normal.x);
mContactPoints[mNbContactPoints].i1TimesR1CrossN = mContactConstraints[mNbContactManifolds].inverseInertiaTensorBody1 * r1CrossN; mContactPoints[mNbContactPoints].i1TimesR1CrossN = mContactConstraints[mNbContactManifolds].inverseInertiaTensorBody1 * r1CrossN;
mContactPoints[mNbContactPoints].i2TimesR2CrossN = mContactConstraints[mNbContactManifolds].inverseInertiaTensorBody2 * r2CrossN; mContactPoints[mNbContactPoints].i2TimesR2CrossN = mContactConstraints[mNbContactManifolds].inverseInertiaTensorBody2 * r2CrossN;
@ -194,13 +218,18 @@ void ContactSolver::initializeForIsland(Island* island) {
// at the beginning of the contact. Note that if it is a resting contact (normal // at the beginning of the contact. Note that if it is a resting contact (normal
// velocity bellow a given threshold), we do not add a restitution velocity bias // velocity bellow a given threshold), we do not add a restitution velocity bias
mContactPoints[mNbContactPoints].restitutionBias = 0.0; mContactPoints[mNbContactPoints].restitutionBias = 0.0;
decimal deltaVDotN = deltaV.dot(mContactPoints[mNbContactPoints].normal); // deltaVDotN = deltaV.dot(mContactPoints[mNbContactPoints].normal);
decimal deltaVDotN = deltaV.x * mContactPoints[mNbContactPoints].normal.x +
deltaV.y * mContactPoints[mNbContactPoints].normal.y +
deltaV.z * mContactPoints[mNbContactPoints].normal.z;
const decimal restitutionFactor = computeMixedRestitutionFactor(body1, body2); const decimal restitutionFactor = computeMixedRestitutionFactor(body1, body2);
if (deltaVDotN < -RESTITUTION_VELOCITY_THRESHOLD) { if (deltaVDotN < -RESTITUTION_VELOCITY_THRESHOLD) {
mContactPoints[mNbContactPoints].restitutionBias = restitutionFactor * deltaVDotN; mContactPoints[mNbContactPoints].restitutionBias = restitutionFactor * deltaVDotN;
} }
mContactConstraints[mNbContactManifolds].normal += mContactPoints[mNbContactPoints].normal; mContactConstraints[mNbContactManifolds].normal.x += mContactPoints[mNbContactPoints].normal.x;
mContactConstraints[mNbContactManifolds].normal.y += mContactPoints[mNbContactPoints].normal.y;
mContactConstraints[mNbContactManifolds].normal.z += mContactPoints[mNbContactPoints].normal.z;
mNbContactPoints++; mNbContactPoints++;
@ -209,8 +238,12 @@ void ContactSolver::initializeForIsland(Island* island) {
mContactConstraints[mNbContactManifolds].frictionPointBody1 /=static_cast<decimal>(mContactConstraints[mNbContactManifolds].nbContacts); mContactConstraints[mNbContactManifolds].frictionPointBody1 /=static_cast<decimal>(mContactConstraints[mNbContactManifolds].nbContacts);
mContactConstraints[mNbContactManifolds].frictionPointBody2 /=static_cast<decimal>(mContactConstraints[mNbContactManifolds].nbContacts); mContactConstraints[mNbContactManifolds].frictionPointBody2 /=static_cast<decimal>(mContactConstraints[mNbContactManifolds].nbContacts);
mContactConstraints[mNbContactManifolds].r1Friction = mContactConstraints[mNbContactManifolds].frictionPointBody1 - x1; mContactConstraints[mNbContactManifolds].r1Friction.x = mContactConstraints[mNbContactManifolds].frictionPointBody1.x - x1.x;
mContactConstraints[mNbContactManifolds].r2Friction = mContactConstraints[mNbContactManifolds].frictionPointBody2 - x2; mContactConstraints[mNbContactManifolds].r1Friction.y = mContactConstraints[mNbContactManifolds].frictionPointBody1.y - x1.y;
mContactConstraints[mNbContactManifolds].r1Friction.z = mContactConstraints[mNbContactManifolds].frictionPointBody1.z - x1.z;
mContactConstraints[mNbContactManifolds].r2Friction.x = mContactConstraints[mNbContactManifolds].frictionPointBody2.x - x2.x;
mContactConstraints[mNbContactManifolds].r2Friction.y = mContactConstraints[mNbContactManifolds].frictionPointBody2.y - x2.y;
mContactConstraints[mNbContactManifolds].r2Friction.z = mContactConstraints[mNbContactManifolds].frictionPointBody2.z - x2.z;
mContactConstraints[mNbContactManifolds].oldFrictionVector1 = externalManifold->getFrictionVector1(); mContactConstraints[mNbContactManifolds].oldFrictionVector1 = externalManifold->getFrictionVector1();
mContactConstraints[mNbContactManifolds].oldFrictionVector2 = externalManifold->getFrictionVector2(); mContactConstraints[mNbContactManifolds].oldFrictionVector2 = externalManifold->getFrictionVector2();
@ -230,8 +263,20 @@ void ContactSolver::initializeForIsland(Island* island) {
mContactConstraints[mNbContactManifolds].normal.normalize(); mContactConstraints[mNbContactManifolds].normal.normalize();
Vector3 deltaVFrictionPoint = v2 + w2.cross(mContactConstraints[mNbContactManifolds].r2Friction) - // deltaVFrictionPoint = v2 + w2.cross(mContactConstraints[mNbContactManifolds].r2Friction) -
v1 - w1.cross(mContactConstraints[mNbContactManifolds].r1Friction); // v1 - w1.cross(mContactConstraints[mNbContactManifolds].r1Friction);
Vector3 deltaVFrictionPoint(v2.x + w2.y * mContactConstraints[mNbContactManifolds].r2Friction.z -
w2.z * mContactConstraints[mNbContactManifolds].r2Friction.y -
v1.x - w1.y * mContactConstraints[mNbContactManifolds].r1Friction.z -
w1.z * mContactConstraints[mNbContactManifolds].r1Friction.y,
v2.y + w2.z * mContactConstraints[mNbContactManifolds].r2Friction.x -
w2.x * mContactConstraints[mNbContactManifolds].r2Friction.z -
v1.y - w1.z * mContactConstraints[mNbContactManifolds].r1Friction.x -
w1.x * mContactConstraints[mNbContactManifolds].r1Friction.z,
v2.z + w2.x * mContactConstraints[mNbContactManifolds].r2Friction.y -
w2.y * mContactConstraints[mNbContactManifolds].r2Friction.x -
v1.z - w1.x * mContactConstraints[mNbContactManifolds].r1Friction.y -
w1.y * mContactConstraints[mNbContactManifolds].r1Friction.x);
// Compute the friction vectors // Compute the friction vectors
computeFrictionVectors(deltaVFrictionPoint, mContactConstraints[mNbContactManifolds]); computeFrictionVectors(deltaVFrictionPoint, mContactConstraints[mNbContactManifolds]);
@ -289,13 +334,25 @@ void ContactSolver::warmStart() {
// --------- Penetration --------- // // --------- Penetration --------- //
// Update the velocities of the body 1 by applying the impulse P // Update the velocities of the body 1 by applying the impulse P
Vector3 impulsePenetration = mContactPoints[contactPointIndex].normal * mContactPoints[contactPointIndex].penetrationImpulse; Vector3 impulsePenetration(mContactPoints[contactPointIndex].normal.x * mContactPoints[contactPointIndex].penetrationImpulse,
mLinearVelocities[mContactConstraints[c].indexBody1] -= mContactConstraints[c].massInverseBody1 * impulsePenetration; mContactPoints[contactPointIndex].normal.y * mContactPoints[contactPointIndex].penetrationImpulse,
mAngularVelocities[mContactConstraints[c].indexBody1] -= mContactPoints[contactPointIndex].i1TimesR1CrossN * mContactPoints[contactPointIndex].penetrationImpulse; mContactPoints[contactPointIndex].normal.z * mContactPoints[contactPointIndex].penetrationImpulse);
mLinearVelocities[mContactConstraints[c].indexBody1].x -= mContactConstraints[c].massInverseBody1 * impulsePenetration.x;
mLinearVelocities[mContactConstraints[c].indexBody1].y -= mContactConstraints[c].massInverseBody1 * impulsePenetration.y;
mLinearVelocities[mContactConstraints[c].indexBody1].z -= mContactConstraints[c].massInverseBody1 * impulsePenetration.z;
mAngularVelocities[mContactConstraints[c].indexBody1].x -= mContactPoints[contactPointIndex].i1TimesR1CrossN.x * mContactPoints[contactPointIndex].penetrationImpulse;
mAngularVelocities[mContactConstraints[c].indexBody1].y -= mContactPoints[contactPointIndex].i1TimesR1CrossN.y * mContactPoints[contactPointIndex].penetrationImpulse;
mAngularVelocities[mContactConstraints[c].indexBody1].z -= mContactPoints[contactPointIndex].i1TimesR1CrossN.z * mContactPoints[contactPointIndex].penetrationImpulse;
// Update the velocities of the body 2 by applying the impulse P // Update the velocities of the body 2 by applying the impulse P
mLinearVelocities[mContactConstraints[c].indexBody2] += mContactConstraints[c].massInverseBody2 * impulsePenetration; mLinearVelocities[mContactConstraints[c].indexBody2].x += mContactConstraints[c].massInverseBody2 * impulsePenetration.x;
mAngularVelocities[mContactConstraints[c].indexBody2] += mContactPoints[contactPointIndex].i2TimesR2CrossN * mContactPoints[contactPointIndex].penetrationImpulse; mLinearVelocities[mContactConstraints[c].indexBody2].y += mContactConstraints[c].massInverseBody2 * impulsePenetration.y;
mLinearVelocities[mContactConstraints[c].indexBody2].z += mContactConstraints[c].massInverseBody2 * impulsePenetration.z;
mAngularVelocities[mContactConstraints[c].indexBody2].x += mContactPoints[contactPointIndex].i2TimesR2CrossN.x * mContactPoints[contactPointIndex].penetrationImpulse;
mAngularVelocities[mContactConstraints[c].indexBody2].y += mContactPoints[contactPointIndex].i2TimesR2CrossN.y * mContactPoints[contactPointIndex].penetrationImpulse;
mAngularVelocities[mContactConstraints[c].indexBody2].z += mContactPoints[contactPointIndex].i2TimesR2CrossN.z * mContactPoints[contactPointIndex].penetrationImpulse;
} }
else { // If it is a new contact point else { // If it is a new contact point
@ -312,20 +369,27 @@ void ContactSolver::warmStart() {
// Project the old friction impulses (with old friction vectors) into the new friction // Project the old friction impulses (with old friction vectors) into the new friction
// vectors to get the new friction impulses // vectors to get the new friction impulses
Vector3 oldFrictionImpulse = mContactConstraints[c].friction1Impulse * mContactConstraints[c].oldFrictionVector1 + Vector3 oldFrictionImpulse(mContactConstraints[c].friction1Impulse * mContactConstraints[c].oldFrictionVector1.x +
mContactConstraints[c].friction2Impulse * mContactConstraints[c].oldFrictionVector2; mContactConstraints[c].friction2Impulse * mContactConstraints[c].oldFrictionVector2.x,
mContactConstraints[c].friction1Impulse * mContactConstraints[c].oldFrictionVector1.y +
mContactConstraints[c].friction2Impulse * mContactConstraints[c].oldFrictionVector2.y,
mContactConstraints[c].friction1Impulse * mContactConstraints[c].oldFrictionVector1.z +
mContactConstraints[c].friction2Impulse * mContactConstraints[c].oldFrictionVector2.z);
mContactConstraints[c].friction1Impulse = oldFrictionImpulse.dot(mContactConstraints[c].frictionVector1); mContactConstraints[c].friction1Impulse = oldFrictionImpulse.dot(mContactConstraints[c].frictionVector1);
mContactConstraints[c].friction2Impulse = oldFrictionImpulse.dot(mContactConstraints[c].frictionVector2); mContactConstraints[c].friction2Impulse = oldFrictionImpulse.dot(mContactConstraints[c].frictionVector2);
// ------ First friction constraint at the center of the contact manifold ------ // // ------ First friction constraint at the center of the contact manifold ------ //
// Compute the impulse P = J^T * lambda // Compute the impulse P = J^T * lambda
Vector3 angularImpulseBody1 = -mContactConstraints[c].r1CrossT1 * Vector3 angularImpulseBody1(-mContactConstraints[c].r1CrossT1.x * mContactConstraints[c].friction1Impulse,
mContactConstraints[c].friction1Impulse; -mContactConstraints[c].r1CrossT1.y * mContactConstraints[c].friction1Impulse,
Vector3 linearImpulseBody2 = mContactConstraints[c].frictionVector1 * -mContactConstraints[c].r1CrossT1.z * mContactConstraints[c].friction1Impulse);
mContactConstraints[c].friction1Impulse; Vector3 linearImpulseBody2(mContactConstraints[c].frictionVector1.x * mContactConstraints[c].friction1Impulse,
Vector3 angularImpulseBody2 = mContactConstraints[c].r2CrossT1 * mContactConstraints[c].frictionVector1.y * mContactConstraints[c].friction1Impulse,
mContactConstraints[c].friction1Impulse; mContactConstraints[c].frictionVector1.z * mContactConstraints[c].friction1Impulse);
Vector3 angularImpulseBody2(mContactConstraints[c].r2CrossT1.x * mContactConstraints[c].friction1Impulse,
mContactConstraints[c].r2CrossT1.y * mContactConstraints[c].friction1Impulse,
mContactConstraints[c].r2CrossT1.z * mContactConstraints[c].friction1Impulse);
// Update the velocities of the body 1 by applying the impulse P // Update the velocities of the body 1 by applying the impulse P
mLinearVelocities[mContactConstraints[c].indexBody1] -= mContactConstraints[c].massInverseBody1 * linearImpulseBody2; mLinearVelocities[mContactConstraints[c].indexBody1] -= mContactConstraints[c].massInverseBody1 * linearImpulseBody2;
@ -338,23 +402,40 @@ void ContactSolver::warmStart() {
// ------ Second friction constraint at the center of the contact manifold ----- // // ------ Second friction constraint at the center of the contact manifold ----- //
// Compute the impulse P = J^T * lambda // Compute the impulse P = J^T * lambda
angularImpulseBody1 = -mContactConstraints[c].r1CrossT2 * mContactConstraints[c].friction2Impulse; angularImpulseBody1.x = -mContactConstraints[c].r1CrossT2.x * mContactConstraints[c].friction2Impulse;
linearImpulseBody2 = mContactConstraints[c].frictionVector2 * mContactConstraints[c].friction2Impulse; angularImpulseBody1.y = -mContactConstraints[c].r1CrossT2.y * mContactConstraints[c].friction2Impulse;
angularImpulseBody2 = mContactConstraints[c].r2CrossT2 * mContactConstraints[c].friction2Impulse; angularImpulseBody1.z = -mContactConstraints[c].r1CrossT2.z * mContactConstraints[c].friction2Impulse;
linearImpulseBody2.x = mContactConstraints[c].frictionVector2.x * mContactConstraints[c].friction2Impulse;
linearImpulseBody2.y = mContactConstraints[c].frictionVector2.y * mContactConstraints[c].friction2Impulse;
linearImpulseBody2.z = mContactConstraints[c].frictionVector2.z * mContactConstraints[c].friction2Impulse;
angularImpulseBody2.x = mContactConstraints[c].r2CrossT2.x * mContactConstraints[c].friction2Impulse;
angularImpulseBody2.y = mContactConstraints[c].r2CrossT2.y * mContactConstraints[c].friction2Impulse;
angularImpulseBody2.z = mContactConstraints[c].r2CrossT2.z * mContactConstraints[c].friction2Impulse;
// Update the velocities of the body 1 by applying the impulse P // Update the velocities of the body 1 by applying the impulse P
mLinearVelocities[mContactConstraints[c].indexBody1] -= mContactConstraints[c].massInverseBody1 * linearImpulseBody2; mLinearVelocities[mContactConstraints[c].indexBody1].x -= mContactConstraints[c].massInverseBody1 * linearImpulseBody2.x;
mLinearVelocities[mContactConstraints[c].indexBody1].y -= mContactConstraints[c].massInverseBody1 * linearImpulseBody2.y;
mLinearVelocities[mContactConstraints[c].indexBody1].z -= mContactConstraints[c].massInverseBody1 * linearImpulseBody2.z;
mAngularVelocities[mContactConstraints[c].indexBody1] += mContactConstraints[c].inverseInertiaTensorBody1 * angularImpulseBody1; mAngularVelocities[mContactConstraints[c].indexBody1] += mContactConstraints[c].inverseInertiaTensorBody1 * angularImpulseBody1;
// Update the velocities of the body 2 by applying the impulse P // Update the velocities of the body 2 by applying the impulse P
mLinearVelocities[mContactConstraints[c].indexBody2] += mContactConstraints[c].massInverseBody2 * linearImpulseBody2; mLinearVelocities[mContactConstraints[c].indexBody2].x += mContactConstraints[c].massInverseBody2 * linearImpulseBody2.x;
mLinearVelocities[mContactConstraints[c].indexBody2].y += mContactConstraints[c].massInverseBody2 * linearImpulseBody2.y;
mLinearVelocities[mContactConstraints[c].indexBody2].z += mContactConstraints[c].massInverseBody2 * linearImpulseBody2.z;
mAngularVelocities[mContactConstraints[c].indexBody2] += mContactConstraints[c].inverseInertiaTensorBody2 * angularImpulseBody2; mAngularVelocities[mContactConstraints[c].indexBody2] += mContactConstraints[c].inverseInertiaTensorBody2 * angularImpulseBody2;
// ------ Twist friction constraint at the center of the contact manifold ------ // // ------ Twist friction constraint at the center of the contact manifold ------ //
// Compute the impulse P = J^T * lambda // Compute the impulse P = J^T * lambda
angularImpulseBody1 = -mContactConstraints[c].normal * mContactConstraints[c].frictionTwistImpulse; angularImpulseBody1.x = -mContactConstraints[c].normal.x * mContactConstraints[c].frictionTwistImpulse;
angularImpulseBody2 = mContactConstraints[c].normal * mContactConstraints[c].frictionTwistImpulse; angularImpulseBody1.y = -mContactConstraints[c].normal.y * mContactConstraints[c].frictionTwistImpulse;
angularImpulseBody1.z = -mContactConstraints[c].normal.z * mContactConstraints[c].frictionTwistImpulse;
angularImpulseBody2.x = mContactConstraints[c].normal.x * mContactConstraints[c].frictionTwistImpulse;
angularImpulseBody2.y = mContactConstraints[c].normal.y * mContactConstraints[c].frictionTwistImpulse;
angularImpulseBody2.z = mContactConstraints[c].normal.z * mContactConstraints[c].frictionTwistImpulse;
// Update the velocities of the body 1 by applying the impulse P // Update the velocities of the body 1 by applying the impulse P
mAngularVelocities[mContactConstraints[c].indexBody1] += mContactConstraints[c].inverseInertiaTensorBody1 * angularImpulseBody1; mAngularVelocities[mContactConstraints[c].indexBody1] += mContactConstraints[c].inverseInertiaTensorBody1 * angularImpulseBody1;
@ -409,8 +490,15 @@ void ContactSolver::solve() {
// --------- Penetration --------- // // --------- Penetration --------- //
// Compute J*v // Compute J*v
Vector3 deltaV = v2 + w2.cross(mContactPoints[contactPointIndex].r2) - v1 - w1.cross(mContactPoints[contactPointIndex].r1); //Vector3 deltaV = v2 + w2.cross(mContactPoints[contactPointIndex].r2) - v1 - w1.cross(mContactPoints[contactPointIndex].r1);
decimal deltaVDotN = deltaV.dot(mContactPoints[contactPointIndex].normal); Vector3 deltaV(v2.x + w2.y * mContactPoints[contactPointIndex].r2.z - w2.z * mContactPoints[contactPointIndex].r2.y - v1.x -
w1.y * mContactPoints[contactPointIndex].r1.z + w1.z * mContactPoints[contactPointIndex].r1.y,
v2.y + w2.z * mContactPoints[contactPointIndex].r2.x - w2.x * mContactPoints[contactPointIndex].r2.z - v1.y -
w1.z * mContactPoints[contactPointIndex].r1.x + w1.x * mContactPoints[contactPointIndex].r1.z,
v2.z + w2.x * mContactPoints[contactPointIndex].r2.y - w2.y * mContactPoints[contactPointIndex].r2.x - v1.z -
w1.x * mContactPoints[contactPointIndex].r1.y + w1.y * mContactPoints[contactPointIndex].r1.x);
decimal deltaVDotN = deltaV.x * mContactPoints[contactPointIndex].normal.x + deltaV.y * mContactPoints[contactPointIndex].normal.y +
deltaV.z * mContactPoints[contactPointIndex].normal.z;
decimal Jv = deltaVDotN; decimal Jv = deltaVDotN;
// Compute the bias "b" of the constraint // Compute the bias "b" of the constraint
@ -433,15 +521,27 @@ void ContactSolver::solve() {
deltaLambda, decimal(0.0)); deltaLambda, decimal(0.0));
deltaLambda = mContactPoints[contactPointIndex].penetrationImpulse - lambdaTemp; deltaLambda = mContactPoints[contactPointIndex].penetrationImpulse - lambdaTemp;
Vector3 linearImpulse = mContactPoints[contactPointIndex].normal * deltaLambda; Vector3 linearImpulse(mContactPoints[contactPointIndex].normal.x * deltaLambda,
mContactPoints[contactPointIndex].normal.y * deltaLambda,
mContactPoints[contactPointIndex].normal.z * deltaLambda);
// Update the velocities of the body 1 by applying the impulse P // Update the velocities of the body 1 by applying the impulse P
mLinearVelocities[mContactConstraints[c].indexBody1] -= mContactConstraints[c].massInverseBody1 * linearImpulse; mLinearVelocities[mContactConstraints[c].indexBody1].x -= mContactConstraints[c].massInverseBody1 * linearImpulse.x;
mAngularVelocities[mContactConstraints[c].indexBody1] -= mContactPoints[contactPointIndex].i1TimesR1CrossN * deltaLambda; mLinearVelocities[mContactConstraints[c].indexBody1].y -= mContactConstraints[c].massInverseBody1 * linearImpulse.y;
mLinearVelocities[mContactConstraints[c].indexBody1].z -= mContactConstraints[c].massInverseBody1 * linearImpulse.z;
mAngularVelocities[mContactConstraints[c].indexBody1].x -= mContactPoints[contactPointIndex].i1TimesR1CrossN.x * deltaLambda;
mAngularVelocities[mContactConstraints[c].indexBody1].y -= mContactPoints[contactPointIndex].i1TimesR1CrossN.y * deltaLambda;
mAngularVelocities[mContactConstraints[c].indexBody1].z -= mContactPoints[contactPointIndex].i1TimesR1CrossN.z * deltaLambda;
// Update the velocities of the body 2 by applying the impulse P // Update the velocities of the body 2 by applying the impulse P
mLinearVelocities[mContactConstraints[c].indexBody2] += mContactConstraints[c].massInverseBody2 * linearImpulse; mLinearVelocities[mContactConstraints[c].indexBody2].x += mContactConstraints[c].massInverseBody2 * linearImpulse.x;
mAngularVelocities[mContactConstraints[c].indexBody2] += mContactPoints[contactPointIndex].i2TimesR2CrossN * deltaLambda; mLinearVelocities[mContactConstraints[c].indexBody2].y += mContactConstraints[c].massInverseBody2 * linearImpulse.y;
mLinearVelocities[mContactConstraints[c].indexBody2].z += mContactConstraints[c].massInverseBody2 * linearImpulse.z;
mAngularVelocities[mContactConstraints[c].indexBody2].x += mContactPoints[contactPointIndex].i2TimesR2CrossN.x * deltaLambda;
mAngularVelocities[mContactConstraints[c].indexBody2].y += mContactPoints[contactPointIndex].i2TimesR2CrossN.y * deltaLambda;
mAngularVelocities[mContactConstraints[c].indexBody2].z += mContactPoints[contactPointIndex].i2TimesR2CrossN.z * deltaLambda;
sumPenetrationImpulse += mContactPoints[contactPointIndex].penetrationImpulse; sumPenetrationImpulse += mContactPoints[contactPointIndex].penetrationImpulse;
@ -453,9 +553,17 @@ void ContactSolver::solve() {
const Vector3& w1Split = mSplitAngularVelocities[mContactConstraints[c].indexBody1]; const Vector3& w1Split = mSplitAngularVelocities[mContactConstraints[c].indexBody1];
const Vector3& v2Split = mSplitLinearVelocities[mContactConstraints[c].indexBody2]; const Vector3& v2Split = mSplitLinearVelocities[mContactConstraints[c].indexBody2];
const Vector3& w2Split = mSplitAngularVelocities[mContactConstraints[c].indexBody2]; const Vector3& w2Split = mSplitAngularVelocities[mContactConstraints[c].indexBody2];
Vector3 deltaVSplit = v2Split + w2Split.cross(mContactPoints[contactPointIndex].r2) -
v1Split - w1Split.cross(mContactPoints[contactPointIndex].r1); //Vector3 deltaVSplit = v2Split + w2Split.cross(mContactPoints[contactPointIndex].r2) - v1Split - w1Split.cross(mContactPoints[contactPointIndex].r1);
decimal JvSplit = deltaVSplit.dot(mContactPoints[contactPointIndex].normal); Vector3 deltaVSplit(v2Split.x + w2Split.y * mContactPoints[contactPointIndex].r2.z - w2Split.z * mContactPoints[contactPointIndex].r2.y - v1Split.x -
w1Split.y * mContactPoints[contactPointIndex].r1.z + w1Split.z * mContactPoints[contactPointIndex].r1.y,
v2Split.y + w2Split.z * mContactPoints[contactPointIndex].r2.x - w2Split.x * mContactPoints[contactPointIndex].r2.z - v1Split.y -
w1Split.z * mContactPoints[contactPointIndex].r1.x + w1Split.x * mContactPoints[contactPointIndex].r1.z,
v2Split.z + w2Split.x * mContactPoints[contactPointIndex].r2.y - w2Split.y * mContactPoints[contactPointIndex].r2.x - v1Split.z -
w1Split.x * mContactPoints[contactPointIndex].r1.y + w1Split.y * mContactPoints[contactPointIndex].r1.x);
decimal JvSplit = deltaVSplit.x * mContactPoints[contactPointIndex].normal.x +
deltaVSplit.y * mContactPoints[contactPointIndex].normal.y +
deltaVSplit.z * mContactPoints[contactPointIndex].normal.z;
decimal deltaLambdaSplit = - (JvSplit + biasPenetrationDepth) * decimal deltaLambdaSplit = - (JvSplit + biasPenetrationDepth) *
mContactPoints[contactPointIndex].inversePenetrationMass; mContactPoints[contactPointIndex].inversePenetrationMass;
decimal lambdaTempSplit = mContactPoints[contactPointIndex].penetrationSplitImpulse; decimal lambdaTempSplit = mContactPoints[contactPointIndex].penetrationSplitImpulse;
@ -464,15 +572,27 @@ void ContactSolver::solve() {
deltaLambdaSplit, decimal(0.0)); deltaLambdaSplit, decimal(0.0));
deltaLambdaSplit = mContactPoints[contactPointIndex].penetrationSplitImpulse - lambdaTempSplit; deltaLambdaSplit = mContactPoints[contactPointIndex].penetrationSplitImpulse - lambdaTempSplit;
Vector3 linearImpulse = mContactPoints[contactPointIndex].normal * deltaLambdaSplit; Vector3 linearImpulse(mContactPoints[contactPointIndex].normal.x * deltaLambdaSplit,
mContactPoints[contactPointIndex].normal.y * deltaLambdaSplit,
mContactPoints[contactPointIndex].normal.z * deltaLambdaSplit);
// Update the velocities of the body 1 by applying the impulse P // Update the velocities of the body 1 by applying the impulse P
mSplitLinearVelocities[mContactConstraints[c].indexBody1] -= mContactConstraints[c].massInverseBody1 * linearImpulse; mSplitLinearVelocities[mContactConstraints[c].indexBody1].x -= mContactConstraints[c].massInverseBody1 * linearImpulse.x;
mSplitAngularVelocities[mContactConstraints[c].indexBody1] -= mContactPoints[contactPointIndex].i1TimesR1CrossN * deltaLambdaSplit; mSplitLinearVelocities[mContactConstraints[c].indexBody1].y -= mContactConstraints[c].massInverseBody1 * linearImpulse.y;
mSplitLinearVelocities[mContactConstraints[c].indexBody1].z -= mContactConstraints[c].massInverseBody1 * linearImpulse.z;
mSplitAngularVelocities[mContactConstraints[c].indexBody1].x -= mContactPoints[contactPointIndex].i1TimesR1CrossN.x * deltaLambdaSplit;
mSplitAngularVelocities[mContactConstraints[c].indexBody1].y -= mContactPoints[contactPointIndex].i1TimesR1CrossN.y * deltaLambdaSplit;
mSplitAngularVelocities[mContactConstraints[c].indexBody1].z -= mContactPoints[contactPointIndex].i1TimesR1CrossN.z * deltaLambdaSplit;
// Update the velocities of the body 1 by applying the impulse P // Update the velocities of the body 1 by applying the impulse P
mSplitLinearVelocities[mContactConstraints[c].indexBody2] += mContactConstraints[c].massInverseBody2 * linearImpulse; mSplitLinearVelocities[mContactConstraints[c].indexBody2].x += mContactConstraints[c].massInverseBody2 * linearImpulse.x;
mSplitAngularVelocities[mContactConstraints[c].indexBody2] += mContactPoints[contactPointIndex].i2TimesR2CrossN * deltaLambdaSplit; mSplitLinearVelocities[mContactConstraints[c].indexBody2].y += mContactConstraints[c].massInverseBody2 * linearImpulse.y;
mSplitLinearVelocities[mContactConstraints[c].indexBody2].z += mContactConstraints[c].massInverseBody2 * linearImpulse.z;
mSplitAngularVelocities[mContactConstraints[c].indexBody2].x += mContactPoints[contactPointIndex].i2TimesR2CrossN.x * deltaLambdaSplit;
mSplitAngularVelocities[mContactConstraints[c].indexBody2].y += mContactPoints[contactPointIndex].i2TimesR2CrossN.y * deltaLambdaSplit;
mSplitAngularVelocities[mContactConstraints[c].indexBody2].z += mContactPoints[contactPointIndex].i2TimesR2CrossN.z * deltaLambdaSplit;
} }
contactPointIndex++; contactPointIndex++;
@ -481,9 +601,16 @@ void ContactSolver::solve() {
// ------ First friction constraint at the center of the contact manifol ------ // // ------ First friction constraint at the center of the contact manifol ------ //
// Compute J*v // Compute J*v
Vector3 deltaV = v2 + w2.cross(mContactConstraints[c].r2Friction) // deltaV = v2 + w2.cross(mContactConstraints[c].r2Friction) - v1 - w1.cross(mContactConstraints[c].r1Friction);
- v1 - w1.cross(mContactConstraints[c].r1Friction); Vector3 deltaV(v2.x + w2.y * mContactConstraints[c].r2Friction.z - w2.z * mContactConstraints[c].r2Friction.y - v1.x -
decimal Jv = deltaV.dot(mContactConstraints[c].frictionVector1); w1.y * mContactConstraints[c].r1Friction.z + w1.z * mContactConstraints[c].r1Friction.y,
v2.y + w2.z * mContactConstraints[c].r2Friction.x - w2.x * mContactConstraints[c].r2Friction.z - v1.y -
w1.z * mContactConstraints[c].r1Friction.x + w1.x * mContactConstraints[c].r1Friction.z,
v2.z + w2.x * mContactConstraints[c].r2Friction.y - w2.y * mContactConstraints[c].r2Friction.x - v1.z -
w1.x * mContactConstraints[c].r1Friction.y + w1.y * mContactConstraints[c].r1Friction.x);
decimal Jv = deltaV.x * mContactConstraints[c].frictionVector1.x +
deltaV.y * mContactConstraints[c].frictionVector1.y +
deltaV.z * mContactConstraints[c].frictionVector1.z;
// Compute the Lagrange multiplier lambda // Compute the Lagrange multiplier lambda
decimal deltaLambda = -Jv * mContactConstraints[c].inverseFriction1Mass; decimal deltaLambda = -Jv * mContactConstraints[c].inverseFriction1Mass;
@ -495,23 +622,42 @@ void ContactSolver::solve() {
deltaLambda = mContactConstraints[c].friction1Impulse - lambdaTemp; deltaLambda = mContactConstraints[c].friction1Impulse - lambdaTemp;
// Compute the impulse P=J^T * lambda // Compute the impulse P=J^T * lambda
Vector3 angularImpulseBody1 = -mContactConstraints[c].r1CrossT1 * deltaLambda; Vector3 angularImpulseBody1(-mContactConstraints[c].r1CrossT1.x * deltaLambda,
Vector3 linearImpulseBody2 = mContactConstraints[c].frictionVector1 * deltaLambda; -mContactConstraints[c].r1CrossT1.y * deltaLambda,
Vector3 angularImpulseBody2 = mContactConstraints[c].r2CrossT1 * deltaLambda; -mContactConstraints[c].r1CrossT1.z * deltaLambda);
Vector3 linearImpulseBody2(mContactConstraints[c].frictionVector1.x * deltaLambda,
mContactConstraints[c].frictionVector1.y * deltaLambda,
mContactConstraints[c].frictionVector1.z * deltaLambda);
Vector3 angularImpulseBody2(mContactConstraints[c].r2CrossT1.x * deltaLambda,
mContactConstraints[c].r2CrossT1.y * deltaLambda,
mContactConstraints[c].r2CrossT1.z * deltaLambda);
// Update the velocities of the body 1 by applying the impulse P // Update the velocities of the body 1 by applying the impulse P
mLinearVelocities[mContactConstraints[c].indexBody1] -= mContactConstraints[c].massInverseBody1 * linearImpulseBody2; mLinearVelocities[mContactConstraints[c].indexBody1].x -= mContactConstraints[c].massInverseBody1 * linearImpulseBody2.x;
mLinearVelocities[mContactConstraints[c].indexBody1].y -= mContactConstraints[c].massInverseBody1 * linearImpulseBody2.y;
mLinearVelocities[mContactConstraints[c].indexBody1].z -= mContactConstraints[c].massInverseBody1 * linearImpulseBody2.z;
mAngularVelocities[mContactConstraints[c].indexBody1] += mContactConstraints[c].inverseInertiaTensorBody1 * angularImpulseBody1; mAngularVelocities[mContactConstraints[c].indexBody1] += mContactConstraints[c].inverseInertiaTensorBody1 * angularImpulseBody1;
// Update the velocities of the body 2 by applying the impulse P // Update the velocities of the body 2 by applying the impulse P
mLinearVelocities[mContactConstraints[c].indexBody2] += mContactConstraints[c].massInverseBody2 * linearImpulseBody2; mLinearVelocities[mContactConstraints[c].indexBody2].x += mContactConstraints[c].massInverseBody2 * linearImpulseBody2.x;
mLinearVelocities[mContactConstraints[c].indexBody2].y += mContactConstraints[c].massInverseBody2 * linearImpulseBody2.y;
mLinearVelocities[mContactConstraints[c].indexBody2].z += mContactConstraints[c].massInverseBody2 * linearImpulseBody2.z;
mAngularVelocities[mContactConstraints[c].indexBody2] += mContactConstraints[c].inverseInertiaTensorBody2 * angularImpulseBody2; mAngularVelocities[mContactConstraints[c].indexBody2] += mContactConstraints[c].inverseInertiaTensorBody2 * angularImpulseBody2;
// ------ Second friction constraint at the center of the contact manifol ----- // // ------ Second friction constraint at the center of the contact manifol ----- //
// Compute J*v // Compute J*v
deltaV = v2 + w2.cross(mContactConstraints[c].r2Friction) - v1 - w1.cross(mContactConstraints[c].r1Friction); //deltaV = v2 + w2.cross(mContactConstraints[c].r2Friction) - v1 - w1.cross(mContactConstraints[c].r1Friction);
Jv = deltaV.dot(mContactConstraints[c].frictionVector2); deltaV.x = v2.x + w2.y * mContactConstraints[c].r2Friction.z - v2.z * mContactConstraints[c].r2Friction.y - v1.x -
w1.y * mContactConstraints[c].r1Friction.z + w1.z * mContactConstraints[c].r1Friction.y;
deltaV.y = v2.y + w2.z * mContactConstraints[c].r2Friction.x - v2.x * mContactConstraints[c].r2Friction.z - v1.y -
w1.z * mContactConstraints[c].r1Friction.x + w1.x * mContactConstraints[c].r1Friction.z;
deltaV.z = v2.z + w2.x * mContactConstraints[c].r2Friction.y - v2.y * mContactConstraints[c].r2Friction.x - v1.z -
w1.x * mContactConstraints[c].r1Friction.y + w1.y * mContactConstraints[c].r1Friction.x;
Jv = deltaV.x * mContactConstraints[c].frictionVector2.x + deltaV.y * mContactConstraints[c].frictionVector2.y +
deltaV.z * mContactConstraints[c].frictionVector2.z;
// Compute the Lagrange multiplier lambda // Compute the Lagrange multiplier lambda
deltaLambda = -Jv * mContactConstraints[c].inverseFriction2Mass; deltaLambda = -Jv * mContactConstraints[c].inverseFriction2Mass;
@ -523,23 +669,36 @@ void ContactSolver::solve() {
deltaLambda = mContactConstraints[c].friction2Impulse - lambdaTemp; deltaLambda = mContactConstraints[c].friction2Impulse - lambdaTemp;
// Compute the impulse P=J^T * lambda // Compute the impulse P=J^T * lambda
angularImpulseBody1 = -mContactConstraints[c].r1CrossT2 * deltaLambda; angularImpulseBody1.x = -mContactConstraints[c].r1CrossT2.x * deltaLambda;
linearImpulseBody2 = mContactConstraints[c].frictionVector2 * deltaLambda; angularImpulseBody1.y = -mContactConstraints[c].r1CrossT2.y * deltaLambda;
angularImpulseBody2 = mContactConstraints[c].r2CrossT2 * deltaLambda; angularImpulseBody1.z = -mContactConstraints[c].r1CrossT2.z * deltaLambda;
linearImpulseBody2.x = mContactConstraints[c].frictionVector2.x * deltaLambda;
linearImpulseBody2.y = mContactConstraints[c].frictionVector2.y * deltaLambda;
linearImpulseBody2.z = mContactConstraints[c].frictionVector2.z * deltaLambda;
angularImpulseBody2.x = mContactConstraints[c].r2CrossT2.x * deltaLambda;
angularImpulseBody2.y = mContactConstraints[c].r2CrossT2.y * deltaLambda;
angularImpulseBody2.z = mContactConstraints[c].r2CrossT2.z * deltaLambda;
// Update the velocities of the body 1 by applying the impulse P // Update the velocities of the body 1 by applying the impulse P
mLinearVelocities[mContactConstraints[c].indexBody1] -= mContactConstraints[c].massInverseBody1 * linearImpulseBody2; mLinearVelocities[mContactConstraints[c].indexBody1].x -= mContactConstraints[c].massInverseBody1 * linearImpulseBody2.x;
mLinearVelocities[mContactConstraints[c].indexBody1].y -= mContactConstraints[c].massInverseBody1 * linearImpulseBody2.y;
mLinearVelocities[mContactConstraints[c].indexBody1].z -= mContactConstraints[c].massInverseBody1 * linearImpulseBody2.z;
mAngularVelocities[mContactConstraints[c].indexBody1] += mContactConstraints[c].inverseInertiaTensorBody1 * angularImpulseBody1; mAngularVelocities[mContactConstraints[c].indexBody1] += mContactConstraints[c].inverseInertiaTensorBody1 * angularImpulseBody1;
// Update the velocities of the body 2 by applying the impulse P // Update the velocities of the body 2 by applying the impulse P
mLinearVelocities[mContactConstraints[c].indexBody2] += mContactConstraints[c].massInverseBody2 * linearImpulseBody2; mLinearVelocities[mContactConstraints[c].indexBody2].x += mContactConstraints[c].massInverseBody2 * linearImpulseBody2.x;
mLinearVelocities[mContactConstraints[c].indexBody2].y += mContactConstraints[c].massInverseBody2 * linearImpulseBody2.y;
mLinearVelocities[mContactConstraints[c].indexBody2].z += mContactConstraints[c].massInverseBody2 * linearImpulseBody2.z;
mAngularVelocities[mContactConstraints[c].indexBody2] += mContactConstraints[c].inverseInertiaTensorBody2 * angularImpulseBody2; mAngularVelocities[mContactConstraints[c].indexBody2] += mContactConstraints[c].inverseInertiaTensorBody2 * angularImpulseBody2;
// ------ Twist friction constraint at the center of the contact manifol ------ // // ------ Twist friction constraint at the center of the contact manifol ------ //
// Compute J*v // Compute J*v
deltaV = w2 - w1; deltaV = w2 - w1;
Jv = deltaV.dot(mContactConstraints[c].normal); Jv = deltaV.x * mContactConstraints[c].normal.x + deltaV.y * mContactConstraints[c].normal.y +
deltaV.z * mContactConstraints[c].normal.z;
deltaLambda = -Jv * (mContactConstraints[c].inverseTwistFrictionMass); deltaLambda = -Jv * (mContactConstraints[c].inverseTwistFrictionMass);
frictionLimit = mContactConstraints[c].frictionCoefficient * sumPenetrationImpulse; frictionLimit = mContactConstraints[c].frictionCoefficient * sumPenetrationImpulse;
@ -550,7 +709,9 @@ void ContactSolver::solve() {
deltaLambda = mContactConstraints[c].frictionTwistImpulse - lambdaTemp; deltaLambda = mContactConstraints[c].frictionTwistImpulse - lambdaTemp;
// Compute the impulse P=J^T * lambda // Compute the impulse P=J^T * lambda
angularImpulseBody2 = mContactConstraints[c].normal * deltaLambda; angularImpulseBody2.x = mContactConstraints[c].normal.x * deltaLambda;
angularImpulseBody2.y = mContactConstraints[c].normal.y * deltaLambda;
angularImpulseBody2.z = mContactConstraints[c].normal.z * deltaLambda;
// Update the velocities of the body 1 by applying the impulse P // Update the velocities of the body 1 by applying the impulse P
mAngularVelocities[mContactConstraints[c].indexBody1] -= mContactConstraints[c].inverseInertiaTensorBody1 * angularImpulseBody2; mAngularVelocities[mContactConstraints[c].indexBody1] -= mContactConstraints[c].inverseInertiaTensorBody1 * angularImpulseBody2;
@ -619,8 +780,11 @@ void ContactSolver::computeFrictionVectors(const Vector3& deltaVelocity,
assert(contact.normal.length() > decimal(0.0)); assert(contact.normal.length() > decimal(0.0));
// Compute the velocity difference vector in the tangential plane // Compute the velocity difference vector in the tangential plane
Vector3 normalVelocity = deltaVelocity.dot(contact.normal) * contact.normal; Vector3 normalVelocity(deltaVelocity.x * contact.normal.x * contact.normal.x,
Vector3 tangentVelocity = deltaVelocity - normalVelocity; deltaVelocity.y * contact.normal.y * contact.normal.y,
deltaVelocity.z * contact.normal.z * contact.normal.z);
Vector3 tangentVelocity(deltaVelocity.x - normalVelocity.x, deltaVelocity.y - normalVelocity.y,
deltaVelocity.z - normalVelocity.z);
// If the velocty difference in the tangential plane is not zero // If the velocty difference in the tangential plane is not zero
decimal lengthTangenVelocity = tangentVelocity.length(); decimal lengthTangenVelocity = tangentVelocity.length();

View File

@ -302,9 +302,6 @@ class ContactSolver {
/// Array of angular velocities /// Array of angular velocities
Vector3* mAngularVelocities; Vector3* mAngularVelocities;
/// Reference to the map of rigid body to their index in the constrained velocities array
const std::map<RigidBody*, uint>& mMapBodyToConstrainedVelocityIndex;
/// True if the split impulse position correction is active /// True if the split impulse position correction is active
bool mIsSplitImpulseActive; bool mIsSplitImpulseActive;
@ -342,8 +339,7 @@ class ContactSolver {
// -------------------- Methods -------------------- // // -------------------- Methods -------------------- //
/// Constructor /// Constructor
ContactSolver(const std::map<RigidBody*, uint>& mapBodyToVelocityIndex, ContactSolver(SingleFrameAllocator& allocator);
SingleFrameAllocator& allocator);
/// Destructor /// Destructor
~ContactSolver() = default; ~ContactSolver() = default;

View File

@ -41,8 +41,7 @@ using namespace std;
*/ */
DynamicsWorld::DynamicsWorld(const Vector3 &gravity) DynamicsWorld::DynamicsWorld(const Vector3 &gravity)
: CollisionWorld(), : CollisionWorld(),
mContactSolver(mMapBodyToConstrainedVelocityIndex, mSingleFrameAllocator), mContactSolver(mSingleFrameAllocator),
mConstraintSolver(mMapBodyToConstrainedVelocityIndex),
mNbVelocitySolverIterations(DEFAULT_VELOCITY_SOLVER_NB_ITERATIONS), mNbVelocitySolverIterations(DEFAULT_VELOCITY_SOLVER_NB_ITERATIONS),
mNbPositionSolverIterations(DEFAULT_POSITION_SOLVER_NB_ITERATIONS), mNbPositionSolverIterations(DEFAULT_POSITION_SOLVER_NB_ITERATIONS),
mIsSleepingEnabled(SLEEPING_ENABLED), mGravity(gravity), mTimeStep(decimal(1.0f / 60.0f)), mIsSleepingEnabled(SLEEPING_ENABLED), mGravity(gravity), mTimeStep(decimal(1.0f / 60.0f)),
@ -167,7 +166,7 @@ void DynamicsWorld::integrateRigidBodiesPositions() {
for (uint b=0; b < mIslands[i]->getNbBodies(); b++) { for (uint b=0; b < mIslands[i]->getNbBodies(); b++) {
// Get the constrained velocity // Get the constrained velocity
uint indexArray = mMapBodyToConstrainedVelocityIndex.find(bodies[b])->second; uint indexArray = bodies[b]->mArrayIndex;
Vector3 newLinVelocity = mConstrainedLinearVelocities[indexArray]; Vector3 newLinVelocity = mConstrainedLinearVelocities[indexArray];
Vector3 newAngVelocity = mConstrainedAngularVelocities[indexArray]; Vector3 newAngVelocity = mConstrainedAngularVelocities[indexArray];
@ -205,7 +204,7 @@ void DynamicsWorld::updateBodiesState() {
for (uint b=0; b < mIslands[islandIndex]->getNbBodies(); b++) { for (uint b=0; b < mIslands[islandIndex]->getNbBodies(); b++) {
uint index = mMapBodyToConstrainedVelocityIndex.find(bodies[b])->second; uint index = bodies[b]->mArrayIndex;
// Update the linear and angular velocity of the body // Update the linear and angular velocity of the body
bodies[b]->mLinearVelocity = mConstrainedLinearVelocities[index]; bodies[b]->mLinearVelocity = mConstrainedLinearVelocities[index];
@ -250,21 +249,14 @@ void DynamicsWorld::initVelocityArrays() {
assert(mConstrainedPositions != nullptr); assert(mConstrainedPositions != nullptr);
assert(mConstrainedOrientations != nullptr); assert(mConstrainedOrientations != nullptr);
// Reset the velocities arrays // Initialize the map of body indexes in the velocity arrays
for (uint i=0; i<nbBodies; i++) { uint i = 0;
for (std::set<RigidBody*>::iterator it = mRigidBodies.begin(); it != mRigidBodies.end(); ++it) {
mSplitLinearVelocities[i].setToZero(); mSplitLinearVelocities[i].setToZero();
mSplitAngularVelocities[i].setToZero(); mSplitAngularVelocities[i].setToZero();
}
// Initialize the map of body indexes in the velocity arrays (*it)->mArrayIndex = i++;
mMapBodyToConstrainedVelocityIndex.clear();
std::set<RigidBody*>::const_iterator it;
uint indexBody = 0;
for (it = mRigidBodies.begin(); it != mRigidBodies.end(); ++it) {
// Add the body into the map
mMapBodyToConstrainedVelocityIndex.insert(std::make_pair(*it, indexBody));
indexBody++;
} }
} }
@ -289,7 +281,7 @@ void DynamicsWorld::integrateRigidBodiesVelocities() {
for (uint b=0; b < mIslands[i]->getNbBodies(); b++) { for (uint b=0; b < mIslands[i]->getNbBodies(); b++) {
// Insert the body into the map of constrained velocities // Insert the body into the map of constrained velocities
uint indexBody = mMapBodyToConstrainedVelocityIndex.find(bodies[b])->second; uint indexBody = bodies[b]->mArrayIndex;
assert(mSplitLinearVelocities[indexBody] == Vector3(0, 0, 0)); assert(mSplitLinearVelocities[indexBody] == Vector3(0, 0, 0));
assert(mSplitAngularVelocities[indexBody] == Vector3(0, 0, 0)); assert(mSplitAngularVelocities[indexBody] == Vector3(0, 0, 0));
@ -358,20 +350,6 @@ void DynamicsWorld::solveContactsAndConstraints() {
// Check if there are contacts and constraints to solve // Check if there are contacts and constraints to solve
bool isConstraintsToSolve = mIslands[islandIndex]->getNbJoints() > 0; bool isConstraintsToSolve = mIslands[islandIndex]->getNbJoints() > 0;
//bool isContactsToSolve = mIslands[islandIndex]->getNbContactManifolds() > 0;
//if (!isConstraintsToSolve && !isContactsToSolve) continue;
// If there are contacts in the current island
// if (isContactsToSolve) {
// // Initialize the solver
// mContactSolver.initializeForIsland(mTimeStep, mIslands[islandIndex]);
// // Warm start the contact solver
// if (mContactSolver.IsWarmStartingActive()) {
// mContactSolver.warmStart();
// }
// }
// If there are constraints // If there are constraints
if (isConstraintsToSolve) { if (isConstraintsToSolve) {
@ -393,15 +371,6 @@ void DynamicsWorld::solveContactsAndConstraints() {
} }
mContactSolver.solve(); mContactSolver.solve();
// Solve the contacts
// if (isContactsToSolve) {
// mContactSolver.resetTotalPenetrationImpulse();
// mContactSolver.solvePenetrationConstraints();
// mContactSolver.solveFrictionConstraints();
// }
} }
mContactSolver.storeImpulses(); mContactSolver.storeImpulses();

View File

@ -100,9 +100,6 @@ class DynamicsWorld : public CollisionWorld {
/// Array of constrained rigid bodies orientation (for position error correction) /// Array of constrained rigid bodies orientation (for position error correction)
Quaternion* mConstrainedOrientations; Quaternion* mConstrainedOrientations;
/// Map body to their index in the constrained velocities array
std::map<RigidBody*, uint> mMapBodyToConstrainedVelocityIndex;
/// Number of islands in the world /// Number of islands in the world
uint mNbIslands; uint mNbIslands;

View File

@ -116,20 +116,16 @@ void OverlappingPair::addPotentialContactPoints(NarrowPhaseInfo* narrowPhaseInfo
// Clear all the potential contact manifolds // Clear all the potential contact manifolds
void OverlappingPair::clearPotentialContactManifolds() { void OverlappingPair::clearPotentialContactManifolds() {
// Do we need to release memory ContactManifoldInfo* element = mPotentialContactManifolds;
if (mTempMemoryAllocator.isReleaseNeeded()) { while(element != nullptr) {
ContactManifoldInfo* element = mPotentialContactManifolds; // Remove the proxy collision shape
while(element != nullptr) { ContactManifoldInfo* elementToRemove = element;
element = element->getNext();
// Remove the proxy collision shape // Delete the element
ContactManifoldInfo* elementToRemove = element; elementToRemove->~ContactManifoldInfo();
element = element->getNext(); mTempMemoryAllocator.release(elementToRemove, sizeof(ContactManifoldInfo));
// Delete the element
elementToRemove->~ContactManifoldInfo();
mTempMemoryAllocator.release(elementToRemove, sizeof(ContactManifoldInfo));
}
} }
mPotentialContactManifolds = nullptr; mPotentialContactManifolds = nullptr;

View File

@ -28,31 +28,6 @@
using namespace reactphysics3d; using namespace reactphysics3d;
// Constructor of the class Matrix2x2
Matrix2x2::Matrix2x2() {
// Initialize all values in the matrix to zero
setAllValues(0.0, 0.0, 0.0, 0.0);
}
// Constructor
Matrix2x2::Matrix2x2(decimal value) {
setAllValues(value, value, value, value);
}
// Constructor with arguments
Matrix2x2::Matrix2x2(decimal a1, decimal a2, decimal b1, decimal b2) {
// Initialize the matrix with the values
setAllValues(a1, a2, b1, b2);
}
// Copy-constructor
Matrix2x2::Matrix2x2(const Matrix2x2& matrix) {
setAllValues(matrix.mRows[0][0], matrix.mRows[0][1],
matrix.mRows[1][0], matrix.mRows[1][1]);
}
// Assignment operator // Assignment operator
Matrix2x2& Matrix2x2::operator=(const Matrix2x2& matrix) { Matrix2x2& Matrix2x2::operator=(const Matrix2x2& matrix) {

View File

@ -147,6 +147,31 @@ class Matrix2x2 {
Vector2& operator[](int row); Vector2& operator[](int row);
}; };
// Constructor of the class Matrix2x2
inline Matrix2x2::Matrix2x2() {
// Initialize all values in the matrix to zero
setAllValues(0.0, 0.0, 0.0, 0.0);
}
// Constructor
inline Matrix2x2::Matrix2x2(decimal value) {
setAllValues(value, value, value, value);
}
// Constructor with arguments
inline Matrix2x2::Matrix2x2(decimal a1, decimal a2, decimal b1, decimal b2) {
// Initialize the matrix with the values
setAllValues(a1, a2, b1, b2);
}
// Copy-constructor
inline Matrix2x2::Matrix2x2(const Matrix2x2& matrix) {
setAllValues(matrix.mRows[0][0], matrix.mRows[0][1],
matrix.mRows[1][0], matrix.mRows[1][1]);
}
// Method to set all the values in the matrix // Method to set all the values in the matrix
inline void Matrix2x2::setAllValues(decimal a1, decimal a2, inline void Matrix2x2::setAllValues(decimal a1, decimal a2,
decimal b1, decimal b2) { decimal b1, decimal b2) {

View File

@ -30,32 +30,6 @@
// Namespaces // Namespaces
using namespace reactphysics3d; using namespace reactphysics3d;
// Constructor of the class Matrix3x3
Matrix3x3::Matrix3x3() {
// Initialize all values in the matrix to zero
setAllValues(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0);
}
// Constructor
Matrix3x3::Matrix3x3(decimal value) {
setAllValues(value, value, value, value, value, value, value, value, value);
}
// Constructor with arguments
Matrix3x3::Matrix3x3(decimal a1, decimal a2, decimal a3,
decimal b1, decimal b2, decimal b3,
decimal c1, decimal c2, decimal c3) {
// Initialize the matrix with the values
setAllValues(a1, a2, a3, b1, b2, b3, c1, c2, c3);
}
// Copy-constructor
Matrix3x3::Matrix3x3(const Matrix3x3& matrix) {
setAllValues(matrix.mRows[0][0], matrix.mRows[0][1], matrix.mRows[0][2],
matrix.mRows[1][0], matrix.mRows[1][1], matrix.mRows[1][2],
matrix.mRows[2][0], matrix.mRows[2][1], matrix.mRows[2][2]);
}
// Assignment operator // Assignment operator
Matrix3x3& Matrix3x3::operator=(const Matrix3x3& matrix) { Matrix3x3& Matrix3x3::operator=(const Matrix3x3& matrix) {

View File

@ -155,6 +155,32 @@ class Matrix3x3 {
Vector3& operator[](int row); Vector3& operator[](int row);
}; };
// Constructor of the class Matrix3x3
inline Matrix3x3::Matrix3x3() {
// Initialize all values in the matrix to zero
setAllValues(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0);
}
// Constructor
inline Matrix3x3::Matrix3x3(decimal value) {
setAllValues(value, value, value, value, value, value, value, value, value);
}
// Constructor with arguments
inline Matrix3x3::Matrix3x3(decimal a1, decimal a2, decimal a3,
decimal b1, decimal b2, decimal b3,
decimal c1, decimal c2, decimal c3) {
// Initialize the matrix with the values
setAllValues(a1, a2, a3, b1, b2, b3, c1, c2, c3);
}
// Copy-constructor
inline Matrix3x3::Matrix3x3(const Matrix3x3& matrix) {
setAllValues(matrix.mRows[0][0], matrix.mRows[0][1], matrix.mRows[0][2],
matrix.mRows[1][0], matrix.mRows[1][1], matrix.mRows[1][2],
matrix.mRows[2][0], matrix.mRows[2][1], matrix.mRows[2][2]);
}
// Method to set all the values in the matrix // Method to set all the values in the matrix
inline void Matrix3x3::setAllValues(decimal a1, decimal a2, decimal a3, inline void Matrix3x3::setAllValues(decimal a1, decimal a2, decimal a3,
decimal b1, decimal b2, decimal b3, decimal b1, decimal b2, decimal b3,

View File

@ -31,27 +31,6 @@
// Namespace // Namespace
using namespace reactphysics3d; using namespace reactphysics3d;
// Constructor of the class
Quaternion::Quaternion() : x(0.0), y(0.0), z(0.0), w(0.0) {
}
// Constructor with arguments
Quaternion::Quaternion(decimal newX, decimal newY, decimal newZ, decimal newW)
:x(newX), y(newY), z(newZ), w(newW) {
}
// Constructor with the component w and the vector v=(x y z)
Quaternion::Quaternion(decimal newW, const Vector3& v) : x(v.x), y(v.y), z(v.z), w(newW) {
}
// Constructor with the component w and the vector v=(x y z)
Quaternion::Quaternion(const Vector3& v, decimal newW) : x(v.x), y(v.y), z(v.z), w(newW) {
}
// Return a quaternion constructed from Euler angles (in radians) // Return a quaternion constructed from Euler angles (in radians)
Quaternion Quaternion::fromEulerAngles(decimal angleX, decimal angleY, decimal angleZ) { Quaternion Quaternion::fromEulerAngles(decimal angleX, decimal angleY, decimal angleZ) {

View File

@ -169,7 +169,28 @@ struct Quaternion {
void initWithEulerAngles(decimal angleX, decimal angleY, decimal angleZ); void initWithEulerAngles(decimal angleX, decimal angleY, decimal angleZ);
}; };
/// Set all the values // Constructor of the class
inline Quaternion::Quaternion() : x(0.0), y(0.0), z(0.0), w(0.0) {
}
// Constructor with arguments
inline Quaternion::Quaternion(decimal newX, decimal newY, decimal newZ, decimal newW)
:x(newX), y(newY), z(newZ), w(newW) {
}
// Constructor with the component w and the vector v=(x y z)
inline Quaternion::Quaternion(decimal newW, const Vector3& v) : x(v.x), y(v.y), z(v.z), w(newW) {
}
// Constructor with the component w and the vector v=(x y z)
inline Quaternion::Quaternion(const Vector3& v, decimal newW) : x(v.x), y(v.y), z(v.z), w(newW) {
}
// Set all the values
inline void Quaternion::setAllValues(decimal newX, decimal newY, decimal newZ, decimal newW) { inline void Quaternion::setAllValues(decimal newX, decimal newY, decimal newZ, decimal newW) {
x = newX; x = newX;
y = newY; y = newY;
@ -177,7 +198,7 @@ inline void Quaternion::setAllValues(decimal newX, decimal newY, decimal newZ, d
w = newW; w = newW;
} }
/// Set the quaternion to zero // Set the quaternion to zero
inline void Quaternion::setToZero() { inline void Quaternion::setToZero() {
x = 0; x = 0;
y = 0; y = 0;
@ -306,16 +327,35 @@ inline Quaternion Quaternion::operator*(decimal nb) const {
// Overloaded operator for the multiplication of two quaternions // Overloaded operator for the multiplication of two quaternions
inline Quaternion Quaternion::operator*(const Quaternion& quaternion) const { inline Quaternion Quaternion::operator*(const Quaternion& quaternion) const {
/* The followin code is equivalent to this
return Quaternion(w * quaternion.w - getVectorV().dot(quaternion.getVectorV()), return Quaternion(w * quaternion.w - getVectorV().dot(quaternion.getVectorV()),
w * quaternion.getVectorV() + quaternion.w * getVectorV() + w * quaternion.getVectorV() + quaternion.w * getVectorV() +
getVectorV().cross(quaternion.getVectorV())); getVectorV().cross(quaternion.getVectorV()));
*/
return Quaternion(w * quaternion.x + quaternion.w * x + y * quaternion.z - z * quaternion.y,
w * quaternion.y + quaternion.w * y + z * quaternion.x - x * quaternion.z,
w * quaternion.z + quaternion.w * z + x * quaternion.y - y * quaternion.x,
w * quaternion.w - x * quaternion.x - y * quaternion.y - z * quaternion.z);
} }
// Overloaded operator for the multiplication with a vector. // Overloaded operator for the multiplication with a vector.
/// This methods rotates a point given the rotation of a quaternion. /// This methods rotates a point given the rotation of a quaternion.
inline Vector3 Quaternion::operator*(const Vector3& point) const { inline Vector3 Quaternion::operator*(const Vector3& point) const {
Quaternion p(point.x, point.y, point.z, 0.0);
return (((*this) * p) * getConjugate()).getVectorV(); /* The following code is equivalent to this
* Quaternion p(point.x, point.y, point.z, 0.0);
* return (((*this) * p) * getConjugate()).getVectorV();
*/
const decimal prodX = w * point.x + y * point.z - z * point.y;
const decimal prodY = w * point.y + z * point.x - x * point.z;
const decimal prodZ = w * point.z + x * point.y - y * point.x;
const decimal prodW = -x * point.x - y * point.y - z * point.z;
return Vector3(w * prodX - prodY * z + prodZ * y - prodW * x,
w * prodY - prodZ * x + prodX * z - prodW * y,
w * prodZ - prodX * y + prodY * x - prodW * z);
} }
// Overloaded operator for the assignment // Overloaded operator for the assignment

View File

@ -29,25 +29,3 @@
// Namespaces // Namespaces
using namespace reactphysics3d; using namespace reactphysics3d;
// Constructor
Transform::Transform() : mPosition(Vector3(0.0, 0.0, 0.0)), mOrientation(Quaternion::identity()) {
}
// Constructor
Transform::Transform(const Vector3& position, const Matrix3x3& orientation)
: mPosition(position), mOrientation(Quaternion(orientation)) {
}
// Constructor
Transform::Transform(const Vector3& position, const Quaternion& orientation)
: mPosition(position), mOrientation(orientation) {
}
// Copy-constructor
Transform::Transform(const Transform& transform)
: mPosition(transform.mPosition), mOrientation(transform.mOrientation) {
}

View File

@ -118,6 +118,29 @@ class Transform {
Transform& operator=(const Transform& transform); Transform& operator=(const Transform& transform);
}; };
// Constructor
inline Transform::Transform() : mPosition(Vector3(0.0, 0.0, 0.0)), mOrientation(Quaternion::identity()) {
}
// Constructor
inline Transform::Transform(const Vector3& position, const Matrix3x3& orientation)
: mPosition(position), mOrientation(Quaternion(orientation)) {
}
// Constructor
inline Transform::Transform(const Vector3& position, const Quaternion& orientation)
: mPosition(position), mOrientation(orientation) {
}
// Copy-constructor
inline Transform::Transform(const Transform& transform)
: mPosition(transform.mPosition), mOrientation(transform.mOrientation) {
}
// Return the position of the transform // Return the position of the transform
inline const Vector3& Transform::getPosition() const { inline const Vector3& Transform::getPosition() const {
return mPosition; return mPosition;
@ -194,13 +217,36 @@ inline Transform Transform::identity() {
// Return the transformed vector // Return the transformed vector
inline Vector3 Transform::operator*(const Vector3& vector) const { inline Vector3 Transform::operator*(const Vector3& vector) const {
return (mOrientation.getMatrix() * vector) + mPosition; return (mOrientation * vector) + mPosition;
} }
// Operator of multiplication of a transform with another one // Operator of multiplication of a transform with another one
inline Transform Transform::operator*(const Transform& transform2) const { inline Transform Transform::operator*(const Transform& transform2) const {
return Transform(mPosition + mOrientation * transform2.mPosition,
mOrientation * transform2.mOrientation); // The following code is equivalent to this
//return Transform(mPosition + mOrientation * transform2.mPosition,
// mOrientation * transform2.mOrientation);
const decimal prodX = mOrientation.w * transform2.mPosition.x + mOrientation.y * transform2.mPosition.z
- mOrientation.z * transform2.mPosition.y;
const decimal prodY = mOrientation.w * transform2.mPosition.y + mOrientation.z * transform2.mPosition.x
- mOrientation.x * transform2.mPosition.z;
const decimal prodZ = mOrientation.w * transform2.mPosition.z + mOrientation.x * transform2.mPosition.y
- mOrientation.y * transform2.mPosition.x;
const decimal prodW = -mOrientation.x * transform2.mPosition.x - mOrientation.y * transform2.mPosition.y
- mOrientation.z * transform2.mPosition.z;
return Transform(Vector3(mPosition.x + mOrientation.w * prodX - prodY * mOrientation.z + prodZ * mOrientation.y - prodW * mOrientation.x,
mPosition.y + mOrientation.w * prodY - prodZ * mOrientation.x + prodX * mOrientation.z - prodW * mOrientation.y,
mPosition.z + mOrientation.w * prodZ - prodX * mOrientation.y + prodY * mOrientation.x - prodW * mOrientation.z),
Quaternion(mOrientation.w * transform2.mOrientation.x + transform2.mOrientation.w * mOrientation.x
+ mOrientation.y * transform2.mOrientation.z - mOrientation.z * transform2.mOrientation.y,
mOrientation.w * transform2.mOrientation.y + transform2.mOrientation.w * mOrientation.y
+ mOrientation.z * transform2.mOrientation.x - mOrientation.x * transform2.mOrientation.z,
mOrientation.w * transform2.mOrientation.z + transform2.mOrientation.w * mOrientation.z
+ mOrientation.x * transform2.mOrientation.y - mOrientation.y * transform2.mOrientation.x,
mOrientation.w * transform2.mOrientation.w - mOrientation.x * transform2.mOrientation.x
- mOrientation.y * transform2.mOrientation.y - mOrientation.z * transform2.mOrientation.z));
} }
// Return true if the two transforms are equal // Return true if the two transforms are equal

View File

@ -30,21 +30,6 @@
// Namespaces // Namespaces
using namespace reactphysics3d; using namespace reactphysics3d;
// Constructor
Vector2::Vector2() : x(0.0), y(0.0) {
}
// Constructor with arguments
Vector2::Vector2(decimal newX, decimal newY) : x(newX), y(newY) {
}
// Copy-constructor
Vector2::Vector2(const Vector2& vector) : x(vector.x), y(vector.y) {
}
// Return the corresponding unit vector // Return the corresponding unit vector
Vector2 Vector2::getUnit() const { Vector2 Vector2::getUnit() const {
decimal lengthVector = length(); decimal lengthVector = length();

View File

@ -156,6 +156,22 @@ struct Vector2 {
friend Vector2 operator/(const Vector2& vector1, const Vector2& vector2); friend Vector2 operator/(const Vector2& vector1, const Vector2& vector2);
}; };
// Constructor
inline Vector2::Vector2() : x(0.0), y(0.0) {
}
// Constructor with arguments
inline Vector2::Vector2(decimal newX, decimal newY) : x(newX), y(newY) {
}
// Copy-constructor
inline Vector2::Vector2(const Vector2& vector) : x(vector.x), y(vector.y) {
}
// Set the vector to zero // Set the vector to zero
inline void Vector2::setToZero() { inline void Vector2::setToZero() {
x = 0; x = 0;

View File

@ -31,21 +31,6 @@
// Namespaces // Namespaces
using namespace reactphysics3d; using namespace reactphysics3d;
// Constructor of the class Vector3D
Vector3::Vector3() : x(0.0), y(0.0), z(0.0) {
}
// Constructor with arguments
Vector3::Vector3(decimal newX, decimal newY, decimal newZ) : x(newX), y(newY), z(newZ) {
}
// Copy-constructor
Vector3::Vector3(const Vector3& vector) : x(vector.x), y(vector.y), z(vector.z) {
}
// Return the corresponding unit vector // Return the corresponding unit vector
Vector3 Vector3::getUnit() const { Vector3 Vector3::getUnit() const {
decimal lengthVector = length(); decimal lengthVector = length();

View File

@ -168,6 +168,21 @@ struct Vector3 {
friend Vector3 operator/(const Vector3& vector1, const Vector3& vector2); friend Vector3 operator/(const Vector3& vector1, const Vector3& vector2);
}; };
// Constructor of the class Vector3D
inline Vector3::Vector3() : x(0.0), y(0.0), z(0.0) {
}
// Constructor with arguments
inline Vector3::Vector3(decimal newX, decimal newY, decimal newZ) : x(newX), y(newY), z(newZ) {
}
// Copy-constructor
inline Vector3::Vector3(const Vector3& vector) : x(vector.x), y(vector.y), z(vector.z) {
}
// Set the vector to zero // Set the vector to zero
inline void Vector3::setToZero() { inline void Vector3::setToZero() {
x = 0; x = 0;

View File

@ -198,10 +198,7 @@ decimal reactphysics3d::computePlaneSegmentIntersection(const Vector3& segA, con
const decimal parallelEpsilon = decimal(0.0001); const decimal parallelEpsilon = decimal(0.0001);
decimal t = decimal(-1); decimal t = decimal(-1);
// Segment AB decimal nDotAB = planeNormal.dot(segB - segA);
const Vector3 ab = segB - segA;
decimal nDotAB = planeNormal.dot(ab);
// If the segment is not parallel to the plane // If the segment is not parallel to the plane
if (std::abs(nDotAB) > parallelEpsilon) { if (std::abs(nDotAB) > parallelEpsilon) {
@ -225,27 +222,34 @@ decimal reactphysics3d::computePointToLineDistance(const Vector3& linePointA, co
// Clip a segment against multiple planes and return the clipped segment vertices // Clip a segment against multiple planes and return the clipped segment vertices
// This method implements the SutherlandHodgman clipping algorithm // This method implements the SutherlandHodgman clipping algorithm
std::vector<Vector3> reactphysics3d::clipSegmentWithPlanes(const Vector3& segA, const Vector3& segB, List<Vector3> reactphysics3d::clipSegmentWithPlanes(const Vector3& segA, const Vector3& segB,
const std::vector<Vector3>& planesPoints, const List<Vector3>& planesPoints,
const std::vector<Vector3>& planesNormals) { const List<Vector3>& planesNormals,
Allocator& allocator) {
assert(planesPoints.size() == planesNormals.size()); assert(planesPoints.size() == planesNormals.size());
std::vector<Vector3> inputVertices = {segA, segB}; List<Vector3> list1(allocator, 2);
std::vector<Vector3> outputVertices; List<Vector3> list2(allocator, 2);
List<Vector3>* inputVertices = &list1;
List<Vector3>* outputVertices = &list2;
inputVertices->add(segA);
inputVertices->add(segB);
// For each clipping plane // For each clipping plane
for (uint p=0; p<planesPoints.size(); p++) { for (uint p=0; p<planesPoints.size(); p++) {
// If there is no more vertices, stop // If there is no more vertices, stop
if (inputVertices.empty()) return inputVertices; if (inputVertices->size() == 0) return *inputVertices;
assert(inputVertices.size() == 2); assert(inputVertices->size() == 2);
outputVertices.clear(); outputVertices->clear();
Vector3& v1 = inputVertices[0]; Vector3& v1 = (*inputVertices)[0];
Vector3& v2 = inputVertices[1]; Vector3& v2 = (*inputVertices)[1];
decimal v1DotN = (v1 - planesPoints[p]).dot(planesNormals[p]); decimal v1DotN = (v1 - planesPoints[p]).dot(planesNormals[p]);
decimal v2DotN = (v2 - planesPoints[p]).dot(planesNormals[p]); decimal v2DotN = (v2 - planesPoints[p]).dot(planesNormals[p]);
@ -260,63 +264,69 @@ std::vector<Vector3> reactphysics3d::clipSegmentWithPlanes(const Vector3& segA,
decimal t = computePlaneSegmentIntersection(v1, v2, planesNormals[p].dot(planesPoints[p]), planesNormals[p]); decimal t = computePlaneSegmentIntersection(v1, v2, planesNormals[p].dot(planesPoints[p]), planesNormals[p]);
if (t >= decimal(0) && t <= decimal(1.0)) { if (t >= decimal(0) && t <= decimal(1.0)) {
outputVertices.push_back(v1 + t * (v2 - v1)); outputVertices->add(v1 + t * (v2 - v1));
} }
else { else {
outputVertices.push_back(v2); outputVertices->add(v2);
} }
} }
else { else {
outputVertices.push_back(v1); outputVertices->add(v1);
} }
// Add the second vertex // Add the second vertex
outputVertices.push_back(v2); outputVertices->add(v2);
} }
else { // If the second vertex is behind the clipping plane else { // If the second vertex is behind the clipping plane
// If the first vertex is in front of the clippling plane // If the first vertex is in front of the clippling plane
if (v1DotN >= decimal(0.0)) { if (v1DotN >= decimal(0.0)) {
outputVertices.push_back(v1); outputVertices->add(v1);
// The first point we keep is the intersection between the segment v1, v2 and the clipping plane // The first point we keep is the intersection between the segment v1, v2 and the clipping plane
decimal t = computePlaneSegmentIntersection(v1, v2, -planesNormals[p].dot(planesPoints[p]), -planesNormals[p]); decimal t = computePlaneSegmentIntersection(v1, v2, -planesNormals[p].dot(planesPoints[p]), -planesNormals[p]);
if (t >= decimal(0.0) && t <= decimal(1.0)) { if (t >= decimal(0.0) && t <= decimal(1.0)) {
outputVertices.push_back(v1 + t * (v2 - v1)); outputVertices->add(v1 + t * (v2 - v1));
} }
} }
} }
inputVertices = outputVertices; inputVertices = outputVertices;
outputVertices = p % 2 == 0 ? &list1 : &list2;
} }
return outputVertices; return *outputVertices;
} }
// Clip a polygon against multiple planes and return the clipped polygon vertices // Clip a polygon against multiple planes and return the clipped polygon vertices
// This method implements the SutherlandHodgman clipping algorithm // This method implements the SutherlandHodgman clipping algorithm
std::vector<Vector3> reactphysics3d::clipPolygonWithPlanes(const std::vector<Vector3>& polygonVertices, const std::vector<Vector3>& planesPoints, List<Vector3> reactphysics3d::clipPolygonWithPlanes(const List<Vector3>& polygonVertices, const List<Vector3>& planesPoints,
const std::vector<Vector3>& planesNormals) { const List<Vector3>& planesNormals, Allocator& allocator) {
assert(planesPoints.size() == planesNormals.size()); assert(planesPoints.size() == planesNormals.size());
std::vector<Vector3> inputVertices(polygonVertices); uint nbMaxElements = polygonVertices.size() + planesPoints.size();
std::vector<Vector3> outputVertices; List<Vector3> list1(allocator, nbMaxElements);
List<Vector3> list2(allocator, nbMaxElements);
const List<Vector3>* inputVertices = &polygonVertices;
List<Vector3>* outputVertices = &list2;
// For each clipping plane // For each clipping plane
for (uint p=0; p<planesPoints.size(); p++) { for (uint p=0; p<planesPoints.size(); p++) {
outputVertices.clear(); outputVertices->clear();
uint vStart = inputVertices.size() - 1; uint nbInputVertices = inputVertices->size();
uint vStart = nbInputVertices - 1;
// For each edge of the polygon // For each edge of the polygon
for (uint vEnd = 0; vEnd<inputVertices.size(); vEnd++) { for (uint vEnd = 0; vEnd<nbInputVertices; vEnd++) {
Vector3& v1 = inputVertices[vStart]; const Vector3& v1 = (*inputVertices)[vStart];
Vector3& v2 = inputVertices[vEnd]; const Vector3& v2 = (*inputVertices)[vEnd];
decimal v1DotN = (v1 - planesPoints[p]).dot(planesNormals[p]); decimal v1DotN = (v1 - planesPoints[p]).dot(planesNormals[p]);
decimal v2DotN = (v2 - planesPoints[p]).dot(planesNormals[p]); decimal v2DotN = (v2 - planesPoints[p]).dot(planesNormals[p]);
@ -331,15 +341,15 @@ std::vector<Vector3> reactphysics3d::clipPolygonWithPlanes(const std::vector<Vec
decimal t = computePlaneSegmentIntersection(v1, v2, planesNormals[p].dot(planesPoints[p]), planesNormals[p]); decimal t = computePlaneSegmentIntersection(v1, v2, planesNormals[p].dot(planesPoints[p]), planesNormals[p]);
if (t >= decimal(0) && t <= decimal(1.0)) { if (t >= decimal(0) && t <= decimal(1.0)) {
outputVertices.push_back(v1 + t * (v2 - v1)); outputVertices->add(v1 + t * (v2 - v1));
} }
else { else {
outputVertices.push_back(v2); outputVertices->add(v2);
} }
} }
// Add the second vertex // Add the second vertex
outputVertices.push_back(v2); outputVertices->add(v2);
} }
else { // If the second vertex is behind the clipping plane else { // If the second vertex is behind the clipping plane
@ -350,10 +360,10 @@ std::vector<Vector3> reactphysics3d::clipPolygonWithPlanes(const std::vector<Vec
decimal t = computePlaneSegmentIntersection(v1, v2, -planesNormals[p].dot(planesPoints[p]), -planesNormals[p]); decimal t = computePlaneSegmentIntersection(v1, v2, -planesNormals[p].dot(planesPoints[p]), -planesNormals[p]);
if (t >= decimal(0.0) && t <= decimal(1.0)) { if (t >= decimal(0.0) && t <= decimal(1.0)) {
outputVertices.push_back(v1 + t * (v2 - v1)); outputVertices->add(v1 + t * (v2 - v1));
} }
else { else {
outputVertices.push_back(v1); outputVertices->add(v1);
} }
} }
} }
@ -362,9 +372,10 @@ std::vector<Vector3> reactphysics3d::clipPolygonWithPlanes(const std::vector<Vec
} }
inputVertices = outputVertices; inputVertices = outputVertices;
outputVertices = p % 2 == 0 ? &list1 : &list2;
} }
return outputVertices; return *outputVertices;
} }
// Project a point onto a plane that is given by a point and its unit length normal // Project a point onto a plane that is given by a point and its unit length normal

View File

@ -33,6 +33,7 @@
#include <cassert> #include <cassert>
#include <cmath> #include <cmath>
#include <vector> #include <vector>
#include "containers/List.h"
/// ReactPhysics3D namespace /// ReactPhysics3D namespace
namespace reactphysics3d { namespace reactphysics3d {
@ -111,13 +112,14 @@ decimal computePlaneSegmentIntersection(const Vector3& segA, const Vector3& segB
decimal computePointToLineDistance(const Vector3& linePointA, const Vector3& linePointB, const Vector3& point); decimal computePointToLineDistance(const Vector3& linePointA, const Vector3& linePointB, const Vector3& point);
/// Clip a segment against multiple planes and return the clipped segment vertices /// Clip a segment against multiple planes and return the clipped segment vertices
std::vector<Vector3> clipSegmentWithPlanes(const Vector3& segA, const Vector3& segB, List<Vector3> clipSegmentWithPlanes(const Vector3& segA, const Vector3& segB,
const std::vector<Vector3>& planesPoints, const List<Vector3>& planesPoints,
const std::vector<Vector3>& planesNormals); const List<Vector3>& planesNormals,
Allocator& allocator);
/// Clip a polygon against multiple planes and return the clipped polygon vertices /// Clip a polygon against multiple planes and return the clipped polygon vertices
std::vector<Vector3> clipPolygonWithPlanes(const std::vector<Vector3>& polygonVertices, const std::vector<Vector3>& planesPoints, List<Vector3> clipPolygonWithPlanes(const List<Vector3>& polygonVertices, const List<Vector3>& planesPoints,
const std::vector<Vector3>& planesNormals); const List<Vector3>& planesNormals, Allocator& allocator);
/// Project a point onto a plane that is given by a point and its unit length normal /// Project a point onto a plane that is given by a point and its unit length normal
Vector3 projectPointOntoPlane(const Vector3& point, const Vector3& planeNormal, const Vector3& planePoint); Vector3 projectPointOntoPlane(const Vector3& point, const Vector3& planeNormal, const Vector3& planePoint);

View File

@ -0,0 +1,66 @@
/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2016 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef REACTPHYSICS3D_DEFAULT_ALLOCATOR_H
#define REACTPHYSICS3D_DEFAULT_ALLOCATOR_H
// Libraries
#include "memory/Allocator.h"
#include <cstdlib>
/// ReactPhysics3D namespace
namespace reactphysics3d {
// Class DefaultAllocator
/**
* This class represents a default memory allocator that uses default malloc/free methods
*/
class DefaultAllocator : public Allocator {
public:
/// Destructor
virtual ~DefaultAllocator() = default;
/// Allocate memory of a given size (in bytes) and return a pointer to the
/// allocated memory.
virtual void* allocate(size_t size) override {
return malloc(size);
}
/// Release previously allocated memory.
virtual void release(void* pointer, size_t size) override {
free(pointer);
}
/// Return true if memory needs to be release with this allocator
virtual bool isReleaseNeeded() const override {
return true;
}
};
}
#endif

View File

@ -0,0 +1,32 @@
/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2015 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
// Libraries
#include "MemoryManager.h"
using namespace reactphysics3d;
// Static variables
DefaultAllocator MemoryManager::mDefaultAllocator;

View File

@ -0,0 +1,74 @@
/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2016 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef REACTPHYSICS3D_MEMORY_MANAGER_H
#define REACTPHYSICS3D_MEMORY_MANAGER_H
// Libraries
#include "memory/DefaultAllocator.h"
/// Namespace ReactPhysics3D
namespace reactphysics3d {
// Class MemoryManager
/**
* The memory manager is used to store the different memory allocators that are used
* by the library.
*/
class MemoryManager {
private:
/// Default memory allocator
static DefaultAllocator mDefaultAllocator;
public:
/// Memory allocation types
enum class AllocationType {
Default, // Default memory allocator
Pool, // Memory pool allocator
Frame, // Single frame memory allocator
};
/// Constructor
MemoryManager();
/// Destructor
~MemoryManager();
/// Return the default memory allocator
static DefaultAllocator& getDefaultAllocator();
};
// Return the default memory allocator
inline DefaultAllocator& MemoryManager::getDefaultAllocator() {
return mDefaultAllocator;
}
}
#endif

View File

@ -126,7 +126,7 @@ void* PoolAllocator::allocate(size_t size) {
} }
else { // If there is no more free memory units in the corresponding heap else { // If there is no more free memory units in the corresponding heap
// If we need to allocate more memory to containsthe blocks // If we need to allocate more memory to contains the blocks
if (mNbCurrentMemoryBlocks == mNbAllocatedMemoryBlocks) { if (mNbCurrentMemoryBlocks == mNbAllocatedMemoryBlocks) {
// Allocate more memory to contain the blocks // Allocate more memory to contain the blocks

View File

@ -94,7 +94,7 @@ class PoolAllocator : public Allocator {
/// Size of the memory units that each heap is responsible to allocate /// Size of the memory units that each heap is responsible to allocate
static size_t mUnitSizes[NB_HEAPS]; static size_t mUnitSizes[NB_HEAPS];
/// Lookup table that mape size to allocate to the index of the /// Lookup table that map the size to allocate to the index of the
/// corresponding heap we will use for the allocation. /// corresponding heap we will use for the allocation.
static int mMapSizeToHeapIndex[MAX_UNIT_SIZE + 1]; static int mMapSizeToHeapIndex[MAX_UNIT_SIZE + 1];

499
test/tests/collision/TestCollisionWorld.h Normal file → Executable file
View File

@ -40,21 +40,108 @@ enum CollisionCategory {
CATEGORY_3 = 0x0004 CATEGORY_3 = 0x0004
}; };
// TODO : Add test for concave shape collision here // Contact point collision data
struct CollisionPointData {
Vector3 localPointBody1;
Vector3 localPointBody2;
decimal penetrationDepth;
CollisionPointData(const Vector3& point1, const Vector3& point2, decimal penDepth) {
localPointBody1 = point1;
localPointBody2 = point2;
penetrationDepth = penDepth;
}
bool isContactPointSimilarTo(const Vector3& pointBody1, const Vector3& pointBody2, decimal penDepth, decimal epsilon = 0.001) {
return approxEqual(pointBody1, localPointBody1, epsilon) &&
approxEqual(pointBody2, localPointBody2, epsilon) &&
approxEqual(penetrationDepth, penDepth, epsilon);
}
};
// Contact manifold collision data
struct CollisionManifoldData {
std::vector<CollisionPointData> contactPoints;
int getNbContactPoints() const {
return contactPoints.size();
}
bool hasContactPointSimilarTo(const Vector3& localPointBody1, const Vector3& localPointBody2, decimal penetrationDepth, decimal epsilon = 0.001) {
std::vector<CollisionPointData>::iterator it;
for (it = contactPoints.begin(); it != contactPoints.end(); ++it) {
if (it->isContactPointSimilarTo(localPointBody1, localPointBody2, penetrationDepth)) {
return true;
}
}
return false;
}
};
// Collision data between two proxy shapes
struct CollisionData {
std::pair<const ProxyShape*, const ProxyShape*> proxyShapes;
std::pair<CollisionBody*, CollisionBody*> bodies;
std::vector<CollisionManifoldData> contactManifolds;
int getNbContactManifolds() const {
return contactManifolds.size();
}
int getTotalNbContactPoints() const {
int nbPoints = 0;
std::vector<CollisionManifoldData>::const_iterator it;
for (it = contactManifolds.begin(); it != contactManifolds.end(); ++it) {
nbPoints += it->getNbContactPoints();
}
return nbPoints;
}
bool hasContactPointSimilarTo(const Vector3& localPointBody1, const Vector3& localPointBody2, decimal penetrationDepth, decimal epsilon = 0.001) {
std::vector<CollisionManifoldData>::iterator it;
for (it = contactManifolds.begin(); it != contactManifolds.end(); ++it) {
if (it->hasContactPointSimilarTo(localPointBody1, localPointBody2, penetrationDepth)) {
return true;
}
}
return false;
}
};
// Class // Class
class WorldCollisionCallback : public CollisionCallback class WorldCollisionCallback : public CollisionCallback
{ {
private:
std::vector<std::pair<const ProxyShape*, const ProxyShape*>> mCollisionData;
std::pair<const ProxyShape*, const ProxyShape*> getCollisionKeyPair(std::pair<const ProxyShape*, const ProxyShape*> pair) const {
if (pair.first > pair.second) {
return std::make_pair(pair.second, pair.first);
}
return pair;
}
public: public:
bool boxCollideWithSphere1;
bool sphere1CollideWithSphere2;
CollisionBody* boxBody;
CollisionBody* sphere1Body;
CollisionBody* sphere2Body;
CollisionBody* cylinderBody;
WorldCollisionCallback() WorldCollisionCallback()
{ {
reset(); reset();
@ -62,30 +149,79 @@ class WorldCollisionCallback : public CollisionCallback
void reset() void reset()
{ {
boxCollideWithSphere1 = false; mCollisionData.clear();
sphere1CollideWithSphere2 = false;
} }
// This method will be called for contact bool hasContacts() const {
return mCollisionData.size() > 0;
}
bool areProxyShapesColliding(const ProxyShape* proxyShape1, const ProxyShape* proxyShape2) {
return std::find(mCollisionData.begin(), mCollisionData.end(), getCollisionKeyPair(std::make_pair(proxyShape1, proxyShape2))) != mCollisionData.end();
}
// This method will be called for each contact
virtual void notifyContact(const CollisionCallbackInfo& collisionCallbackInfo) override { virtual void notifyContact(const CollisionCallbackInfo& collisionCallbackInfo) override {
if (isContactBetweenBodies(boxBody, sphere1Body, collisionCallbackInfo)) { CollisionData collisionData;
boxCollideWithSphere1 = true; collisionData.bodies = std::make_pair(collisionCallbackInfo.body1, collisionCallbackInfo.body2);
} collisionData.proxyShapes = std::make_pair(collisionCallbackInfo.proxyShape1, collisionCallbackInfo.proxyShape2);
else if (isContactBetweenBodies(sphere1Body, sphere2Body, collisionCallbackInfo)) {
sphere1CollideWithSphere2 = true;
}
}
bool isContactBetweenBodies(const CollisionBody* body1, const CollisionBody* body2, ContactManifoldListElement* element = collisionCallbackInfo.contactManifoldElements;
const CollisionCallbackInfo& collisionCallbackInfo) { while (element != nullptr) {
return (collisionCallbackInfo.body1->getID() == body1->getID() &&
collisionCallbackInfo.body2->getID() == body2->getID()) || ContactManifold* contactManifold = element->getContactManifold();
(collisionCallbackInfo.body2->getID() == body1->getID() &&
collisionCallbackInfo.body1->getID() == body2->getID()); CollisionManifoldData collisionManifold;
ContactPoint* contactPoint = contactManifold->getContactPoints();
while (contactPoint != nullptr) {
CollisionPointData collisionPoint(contactPoint->getLocalPointOnShape1(), contactPoint->getLocalPointOnShape2(), contactPoint->getPenetrationDepth());
collisionManifold.contactPoints.push_back(collisionPoint);
contactPoint = contactPoint->getNext();
}
collisionData.contactManifolds.push_back(collisionManifold);
element = element->getNext();
}
} }
}; };
/// Overlap callback
class WorldOverlapCallback : public OverlapCallback {
private:
CollisionBody* mOverlapBody;
public:
/// Destructor
virtual ~WorldOverlapCallback() {
reset();
}
/// This method will be called for each reported overlapping bodies
virtual void notifyOverlap(CollisionBody* collisionBody) override {
}
void reset() {
mOverlapBody = nullptr;
}
bool hasOverlap() const {
return mOverlapBody != nullptr;
}
CollisionBody* getOverlapBody() {
return mOverlapBody;
}
};
// Class TestCollisionWorld // Class TestCollisionWorld
/** /**
* Unit test for the CollisionWorld class. * Unit test for the CollisionWorld class.
@ -100,22 +236,29 @@ class TestCollisionWorld : public Test {
CollisionWorld* mWorld; CollisionWorld* mWorld;
// Bodies // Bodies
CollisionBody* mBoxBody; CollisionBody* mBoxBody1;
CollisionBody* mSphere1Body; CollisionBody* mBoxBody2;
CollisionBody* mSphere2Body; CollisionBody* mSphereBody1;
CollisionBody* mSphereBody2;
// Collision shapes // Collision shapes
BoxShape* mBoxShape; BoxShape* mBoxShape1;
SphereShape* mSphereShape; BoxShape* mBoxShape2;
SphereShape* mSphereShape1;
SphereShape* mSphereShape2;
// Proxy shapes // Proxy shapes
ProxyShape* mBoxProxyShape; ProxyShape* mBoxProxyShape1;
ProxyShape* mSphere1ProxyShape; ProxyShape* mBoxProxyShape2;
ProxyShape* mSphere2ProxyShape; ProxyShape* mSphereProxyShape1;
ProxyShape* mSphereProxyShape2;
// Collision callback class // Collision callback
WorldCollisionCallback mCollisionCallback; WorldCollisionCallback mCollisionCallback;
// Overlap callback
WorldOverlapCallback mOverlapCallback;
public : public :
// ---------- Methods ---------- // // ---------- Methods ---------- //
@ -123,147 +266,243 @@ class TestCollisionWorld : public Test {
/// Constructor /// Constructor
TestCollisionWorld(const std::string& name) : Test(name) { TestCollisionWorld(const std::string& name) : Test(name) {
// Create the world // Create the collision world
mWorld = new CollisionWorld(); mWorld = new CollisionWorld();
// Create the bodies // ---------- Boxes ---------- //
Transform boxTransform(Vector3(10, 0, 0), Quaternion::identity()); Transform boxTransform1(Vector3(-20, 20, 0), Quaternion::identity());
mBoxBody = mWorld->createCollisionBody(boxTransform); mBoxBody1 = mWorld->createCollisionBody(boxTransform1);
mBoxShape = new BoxShape(Vector3(3, 3, 3)); mBoxShape1 = new BoxShape(Vector3(3, 3, 3));
mBoxProxyShape = mBoxBody->addCollisionShape(mBoxShape, Transform::identity()); mBoxProxyShape1 = mBoxBody1->addCollisionShape(mBoxShape1, Transform::identity());
mSphereShape = new SphereShape(3.0); Transform boxTransform2(Vector3(-10, 20, 0), Quaternion::identity());
Transform sphere1Transform(Vector3(10,5, 0), Quaternion::identity()); mBoxBody2 = mWorld->createCollisionBody(boxTransform2);
mSphere1Body = mWorld->createCollisionBody(sphere1Transform); mBoxShape2 = new BoxShape(Vector3(2, 2, 2));
mSphere1ProxyShape = mSphere1Body->addCollisionShape(mSphereShape, Transform::identity()); mBoxProxyShape2 = mBoxBody2->addCollisionShape(mBoxShape1, Transform::identity());
Transform sphere2Transform(Vector3(30, 10, 10), Quaternion::identity()); // ---------- Spheres ---------- //
mSphere2Body = mWorld->createCollisionBody(sphere2Transform); mSphereShape1 = new SphereShape(3.0);
mSphere2ProxyShape = mSphere2Body->addCollisionShape(mSphereShape, Transform::identity()); Transform sphereTransform1(Vector3(10, 20, 0), Quaternion::identity());
mSphereBody1 = mWorld->createCollisionBody(sphereTransform1);
mSphereProxyShape1 = mSphereBody1->addCollisionShape(mSphereShape1, Transform::identity());
// Assign collision categories to proxy shapes mSphereShape2 = new SphereShape(5.0);
mBoxProxyShape->setCollisionCategoryBits(CATEGORY_1); Transform sphereTransform2(Vector3(20, 20, 0), Quaternion::identity());
mSphere1ProxyShape->setCollisionCategoryBits(CATEGORY_1); mSphereBody2 = mWorld->createCollisionBody(sphereTransform2);
mSphere2ProxyShape->setCollisionCategoryBits(CATEGORY_2); mSphereProxyShape2 = mSphereBody2->addCollisionShape(mSphereShape2, Transform::identity());
mCollisionCallback.boxBody = mBoxBody;
mCollisionCallback.sphere1Body = mSphere1Body;
mCollisionCallback.sphere2Body = mSphere2Body;
} }
/// Destructor /// Destructor
virtual ~TestCollisionWorld() { virtual ~TestCollisionWorld() {
delete mBoxShape;
delete mSphereShape; delete mBoxShape1;
delete mBoxShape2;
delete mSphereShape1;
delete mSphereShape2;
delete mWorld;
} }
/// Run the tests /// Run the tests
void run() { void run() {
testCollisions(); testNoCollisions();
testNoOverlap();
testNoAABBOverlap();
testAABBOverlap();
testSphereVsSphereCollision();
testSphereVsBoxCollision();
testMultipleCollisions();
} }
void testCollisions() { void testNoCollisions() {
mCollisionCallback.reset(); // All the shapes of the world are not touching when they are created.
mWorld->testCollision(&mCollisionCallback); // Here we test that at the beginning, there is no collision at all.
test(mCollisionCallback.boxCollideWithSphere1);
test(!mCollisionCallback.sphere1CollideWithSphere2);
test(mWorld->testAABBOverlap(mBoxBody, mSphere1Body)); // ---------- Global test ---------- //
test(!mWorld->testAABBOverlap(mSphere1Body, mSphere2Body));
test(mBoxProxyShape->testAABBOverlap(mSphere1ProxyShape->getWorldAABB())); mCollisionCallback.reset();
test(!mSphere1ProxyShape->testAABBOverlap(mSphere2ProxyShape->getWorldAABB())); mWorld->testCollision(&mCollisionCallback);
test(!mCollisionCallback.hasContacts());
mCollisionCallback.reset(); // ---------- Single body test ---------- //
test(!mCollisionCallback.boxCollideWithSphere1);
test(!mCollisionCallback.sphere1CollideWithSphere2);
mCollisionCallback.reset(); mCollisionCallback.reset();
mWorld->testCollision(mBoxBody, mSphere1Body, &mCollisionCallback); mWorld->testCollision(mBoxBody1, &mCollisionCallback);
test(mCollisionCallback.boxCollideWithSphere1); test(!mCollisionCallback.hasContacts());
test(!mCollisionCallback.sphere1CollideWithSphere2);
mCollisionCallback.reset(); mCollisionCallback.reset();
test(!mCollisionCallback.boxCollideWithSphere1); mWorld->testCollision(mBoxBody2, &mCollisionCallback);
test(!mCollisionCallback.sphere1CollideWithSphere2); test(!mCollisionCallback.hasContacts());
// Move sphere 1 to collide with sphere 2 mCollisionCallback.reset();
mSphere1Body->setTransform(Transform(Vector3(30, 15, 10), Quaternion::identity())); mWorld->testCollision(mSphereBody1, &mCollisionCallback);
test(!mCollisionCallback.hasContacts());
mCollisionCallback.reset(); mCollisionCallback.reset();
mWorld->testCollision(&mCollisionCallback); mWorld->testCollision(mSphereBody2, &mCollisionCallback);
test(!mCollisionCallback.boxCollideWithSphere1); test(!mCollisionCallback.hasContacts());
test(mCollisionCallback.sphere1CollideWithSphere2);
mCollisionCallback.reset(); // Two bodies test
mWorld->testCollision(mBoxBody, mSphere1Body, &mCollisionCallback);
test(!mCollisionCallback.boxCollideWithSphere1);
test(!mCollisionCallback.sphere1CollideWithSphere2);
mCollisionCallback.reset(); mCollisionCallback.reset();
test(!mCollisionCallback.boxCollideWithSphere1); mWorld->testCollision(mBoxBody1, mBoxBody2, &mCollisionCallback);
test(!mCollisionCallback.sphere1CollideWithSphere2); test(!mCollisionCallback.hasContacts());
mCollisionCallback.reset();
mWorld->testCollision(mSphereBody1, mSphereBody2, &mCollisionCallback);
test(!mCollisionCallback.hasContacts());
mCollisionCallback.reset();
mWorld->testCollision(mBoxBody1, mSphereBody1, &mCollisionCallback);
test(!mCollisionCallback.hasContacts());
mCollisionCallback.reset();
mWorld->testCollision(mBoxBody1, mSphereBody2, &mCollisionCallback);
test(!mCollisionCallback.hasContacts());
mCollisionCallback.reset();
mWorld->testCollision(mBoxBody2, mSphereBody1, &mCollisionCallback);
test(!mCollisionCallback.hasContacts());
mCollisionCallback.reset();
mWorld->testCollision(mBoxBody2, mSphereBody2, &mCollisionCallback);
test(!mCollisionCallback.hasContacts());
}
void testNoOverlap() {
// All the shapes of the world are not touching when they are created.
// Here we test that at the beginning, there is no overlap at all.
// ---------- Single body test ---------- //
mOverlapCallback.reset();
mWorld->testOverlap(mBoxBody1, &mOverlapCallback);
test(!mOverlapCallback.hasOverlap());
mOverlapCallback.reset();
mWorld->testOverlap(mBoxBody2, &mOverlapCallback);
test(!mOverlapCallback.hasOverlap());
mOverlapCallback.reset();
mWorld->testOverlap(mSphereBody1, &mOverlapCallback);
test(!mOverlapCallback.hasOverlap());
mOverlapCallback.reset();
mWorld->testOverlap(mSphereBody2, &mOverlapCallback);
test(!mOverlapCallback.hasOverlap());
// Two bodies test
test(!mWorld->testOverlap(mBoxBody1, mBoxBody2));
test(!mWorld->testOverlap(mSphereBody1, mSphereBody2));
test(!mWorld->testOverlap(mBoxBody1, mSphereBody1));
test(!mWorld->testOverlap(mBoxBody1, mSphereBody2));
test(!mWorld->testOverlap(mBoxBody2, mSphereBody1));
test(!mWorld->testOverlap(mBoxBody2, mSphereBody2));
}
void testNoAABBOverlap() {
// All the shapes of the world are not touching when they are created.
// Here we test that at the beginning, there is no AABB overlap at all.
// Two bodies test
test(!mWorld->testAABBOverlap(mBoxBody1, mBoxBody2));
test(!mWorld->testAABBOverlap(mSphereBody1, mSphereBody2));
test(!mWorld->testAABBOverlap(mBoxBody1, mSphereBody1));
test(!mWorld->testAABBOverlap(mBoxBody1, mSphereBody2));
test(!mWorld->testAABBOverlap(mBoxBody2, mSphereBody1));
test(!mWorld->testAABBOverlap(mBoxBody2, mSphereBody2));
}
void testAABBOverlap() {
// TODO : Test the CollisionWorld::testAABBOverlap() method here
}
void testSphereVsSphereCollision() {
// Move sphere 1 to collide with sphere 2
mSphereBody1->setTransform(Transform(Vector3(30, 15, 10), Quaternion::identity()));
}
void testSphereVsBoxCollision() {
// Move sphere 1 to collide with box // Move sphere 1 to collide with box
mSphere1Body->setTransform(Transform(Vector3(10, 5, 0), Quaternion::identity())); mSphereBody1->setTransform(Transform(Vector3(10, 5, 0), Quaternion::identity()));
// --------- Test collision with inactive bodies --------- // // --------- Test collision with inactive bodies --------- //
mCollisionCallback.reset(); mCollisionCallback.reset();
mBoxBody->setIsActive(false); mBoxBody1->setIsActive(false);
mSphere1Body->setIsActive(false); mSphereBody1->setIsActive(false);
mSphere2Body->setIsActive(false); mSphereBody2->setIsActive(false);
mWorld->testCollision(&mCollisionCallback); mWorld->testCollision(&mCollisionCallback);
test(!mCollisionCallback.boxCollideWithSphere1);
test(!mCollisionCallback.sphere1CollideWithSphere2);
test(!mWorld->testAABBOverlap(mBoxBody, mSphere1Body)); mBoxBody1->setIsActive(true);
test(!mWorld->testAABBOverlap(mSphere1Body, mSphere2Body)); mSphereBody1->setIsActive(true);
mSphereBody2->setIsActive(true);
test(!mBoxProxyShape->testAABBOverlap(mSphere1ProxyShape->getWorldAABB()));
test(!mSphere1ProxyShape->testAABBOverlap(mSphere2ProxyShape->getWorldAABB()));
mBoxBody->setIsActive(true);
mSphere1Body->setIsActive(true);
mSphere2Body->setIsActive(true);
// --------- Test collision with collision filtering -------- // // --------- Test collision with collision filtering -------- //
mBoxProxyShape->setCollideWithMaskBits(CATEGORY_1 | CATEGORY_3); //mBoxProxyShape->setCollideWithMaskBits(CATEGORY_1 | CATEGORY_3);
mSphere1ProxyShape->setCollideWithMaskBits(CATEGORY_1 | CATEGORY_2); //mSphere1ProxyShape->setCollideWithMaskBits(CATEGORY_1 | CATEGORY_2);
mSphere2ProxyShape->setCollideWithMaskBits(CATEGORY_1); //mSphere2ProxyShape->setCollideWithMaskBits(CATEGORY_1);
mCollisionCallback.reset(); //mCollisionCallback.reset();
mWorld->testCollision(&mCollisionCallback); //mWorld->testCollision(&mCollisionCallback);
test(mCollisionCallback.boxCollideWithSphere1); //test(mCollisionCallback.boxCollideWithSphere1);
test(!mCollisionCallback.sphere1CollideWithSphere2); //test(!mCollisionCallback.sphere1CollideWithSphere2);
// Move sphere 1 to collide with sphere 2 //// Move sphere 1 to collide with sphere 2
mSphere1Body->setTransform(Transform(Vector3(30, 15, 10), Quaternion::identity())); //mSphere1Body->setTransform(Transform(Vector3(30, 15, 10), Quaternion::identity()));
mCollisionCallback.reset(); //mCollisionCallback.reset();
mWorld->testCollision(&mCollisionCallback); //mWorld->testCollision(&mCollisionCallback);
test(!mCollisionCallback.boxCollideWithSphere1); //test(!mCollisionCallback.boxCollideWithSphere1);
test(mCollisionCallback.sphere1CollideWithSphere2); //test(mCollisionCallback.sphere1CollideWithSphere2);
mBoxProxyShape->setCollideWithMaskBits(CATEGORY_2); //mBoxProxyShape->setCollideWithMaskBits(CATEGORY_2);
mSphere1ProxyShape->setCollideWithMaskBits(CATEGORY_2); //mSphere1ProxyShape->setCollideWithMaskBits(CATEGORY_2);
mSphere2ProxyShape->setCollideWithMaskBits(CATEGORY_3); //mSphere2ProxyShape->setCollideWithMaskBits(CATEGORY_3);
mCollisionCallback.reset(); //mCollisionCallback.reset();
mWorld->testCollision(&mCollisionCallback); //mWorld->testCollision(&mCollisionCallback);
test(!mCollisionCallback.boxCollideWithSphere1); //test(!mCollisionCallback.boxCollideWithSphere1);
test(!mCollisionCallback.sphere1CollideWithSphere2); //test(!mCollisionCallback.sphere1CollideWithSphere2);
// Move sphere 1 to collide with box //// Move sphere 1 to collide with box
mSphere1Body->setTransform(Transform(Vector3(10, 5, 0), Quaternion::identity())); //mSphere1Body->setTransform(Transform(Vector3(10, 5, 0), Quaternion::identity()));
mBoxProxyShape->setCollideWithMaskBits(0xFFFF); //mBoxProxyShape->setCollideWithMaskBits(0xFFFF);
mSphere1ProxyShape->setCollideWithMaskBits(0xFFFF); //mSphere1ProxyShape->setCollideWithMaskBits(0xFFFF);
mSphere2ProxyShape->setCollideWithMaskBits(0xFFFF); //mSphere2ProxyShape->setCollideWithMaskBits(0xFFFF);
} }
void testMultipleCollisions() {
// TODO : Test collisions without categories set
// TODO : Test colliisons with categories set
// Assign collision categories to proxy shapes
//mBoxProxyShape->setCollisionCategoryBits(CATEGORY_1);
//mSphere1ProxyShape->setCollisionCategoryBits(CATEGORY_1);
//mSphere2ProxyShape->setCollisionCategoryBits(CATEGORY_2);
}
}; };
} }

29
test/tests/collision/TestDynamicAABBTree.h Normal file → Executable file
View File

@ -114,6 +114,12 @@ class TestDynamicAABBTree : public Test {
// Dynamic AABB Tree // Dynamic AABB Tree
DynamicAABBTree tree; DynamicAABBTree tree;
#ifdef IS_PROFILING_ACTIVE
/// Pointer to the profiler
Profiler* profiler = new Profiler();
tree.setProfiler(profiler);
#endif
int object1Data = 56; int object1Data = 56;
int object2Data = 23; int object2Data = 23;
@ -152,6 +158,10 @@ class TestDynamicAABBTree : public Test {
test(*(int*)(tree.getNodeDataPointer(object2Id)) == object2Data); test(*(int*)(tree.getNodeDataPointer(object2Id)) == object2Data);
test(*(int*)(tree.getNodeDataPointer(object3Id)) == object3Data); test(*(int*)(tree.getNodeDataPointer(object3Id)) == object3Data);
test(*(int*)(tree.getNodeDataPointer(object4Id)) == object4Data); test(*(int*)(tree.getNodeDataPointer(object4Id)) == object4Data);
#ifdef IS_PROFILING_ACTIVE
delete profiler;
#endif
} }
void testOverlapping() { void testOverlapping() {
@ -161,6 +171,12 @@ class TestDynamicAABBTree : public Test {
// Dynamic AABB Tree // Dynamic AABB Tree
DynamicAABBTree tree; DynamicAABBTree tree;
#ifdef IS_PROFILING_ACTIVE
/// Pointer to the profiler
Profiler* profiler = new Profiler();
tree.setProfiler(profiler);
#endif
int object1Data = 56; int object1Data = 56;
int object2Data = 23; int object2Data = 23;
int object3Data = 13; int object3Data = 13;
@ -342,6 +358,9 @@ class TestDynamicAABBTree : public Test {
test(!mOverlapCallback.isOverlapping(object3Id)); test(!mOverlapCallback.isOverlapping(object3Id));
test(!mOverlapCallback.isOverlapping(object4Id)); test(!mOverlapCallback.isOverlapping(object4Id));
#ifdef IS_PROFILING_ACTIVE
delete profiler;
#endif
} }
void testRaycast() { void testRaycast() {
@ -351,6 +370,12 @@ class TestDynamicAABBTree : public Test {
// Dynamic AABB Tree // Dynamic AABB Tree
DynamicAABBTree tree; DynamicAABBTree tree;
#ifdef IS_PROFILING_ACTIVE
/// Pointer to the profiler
Profiler* profiler = new Profiler();
tree.setProfiler(profiler);
#endif
int object1Data = 56; int object1Data = 56;
int object2Data = 23; int object2Data = 23;
int object3Data = 13; int object3Data = 13;
@ -513,6 +538,10 @@ class TestDynamicAABBTree : public Test {
test(!mRaycastCallback.isHit(object2Id)); test(!mRaycastCallback.isHit(object2Id));
test(mRaycastCallback.isHit(object3Id)); test(mRaycastCallback.isHit(object3Id));
test(mRaycastCallback.isHit(object4Id)); test(mRaycastCallback.isHit(object4Id));
#ifdef IS_PROFILING_ACTIVE
delete profiler;
#endif
} }
}; };

View File

@ -19,6 +19,9 @@ class TestHalfEdgeStructure : public Test {
// ---------- Atributes ---------- // // ---------- Atributes ---------- //
/// Memory allocator
DefaultAllocator mAllocator;
public : public :
@ -43,7 +46,7 @@ class TestHalfEdgeStructure : public Test {
void testCube() { void testCube() {
// Create the half-edge structure for a cube // Create the half-edge structure for a cube
rp3d::HalfEdgeStructure cubeStructure; rp3d::HalfEdgeStructure cubeStructure(mAllocator, 6, 8, 24);
rp3d::Vector3 vertices[8] = { rp3d::Vector3 vertices[8] = {
rp3d::Vector3(-0.5, -0.5, 0.5), rp3d::Vector3(-0.5, -0.5, 0.5),
@ -67,18 +70,18 @@ class TestHalfEdgeStructure : public Test {
cubeStructure.addVertex(7); cubeStructure.addVertex(7);
// Faces // Faces
std::vector<uint> face0; List<uint> face0(mAllocator, 4);
face0.push_back(0); face0.push_back(1); face0.push_back(2); face0.push_back(3); face0.add(0); face0.add(1); face0.add(2); face0.add(3);
std::vector<uint> face1; List<uint> face1(mAllocator, 4);
face1.push_back(1); face1.push_back(5); face1.push_back(6); face1.push_back(2); face1.add(1); face1.add(5); face1.add(6); face1.add(2);
std::vector<uint> face2; List<uint> face2(mAllocator, 4);
face2.push_back(5); face2.push_back(4); face2.push_back(7); face2.push_back(6); face2.add(5); face2.add(4); face2.add(7); face2.add(6);
std::vector<uint> face3; List<uint> face3(mAllocator, 4);
face3.push_back(4); face3.push_back(0); face3.push_back(3); face3.push_back(7); face3.add(4); face3.add(0); face3.add(3); face3.add(7);
std::vector<uint> face4; List<uint> face4(mAllocator, 4);
face4.push_back(0); face4.push_back(4); face4.push_back(5); face4.push_back(1); face4.add(0); face4.add(4); face4.add(5); face4.add(1);
std::vector<uint> face5; List<uint> face5(mAllocator, 4);
face5.push_back(2); face5.push_back(6); face5.push_back(7); face5.push_back(3); face5.add(2); face5.add(6); face5.add(7); face5.add(3);
cubeStructure.addFace(face0); cubeStructure.addFace(face0);
cubeStructure.addFace(face1); cubeStructure.addFace(face1);
@ -168,7 +171,7 @@ class TestHalfEdgeStructure : public Test {
// Create the half-edge structure for a tetrahedron // Create the half-edge structure for a tetrahedron
std::vector<std::vector<uint>> faces; std::vector<std::vector<uint>> faces;
rp3d::HalfEdgeStructure tetrahedron; rp3d::HalfEdgeStructure tetrahedron(mAllocator, 4, 4, 12);
// Vertices // Vertices
rp3d::Vector3 vertices[4] = { rp3d::Vector3 vertices[4] = {
@ -184,14 +187,14 @@ class TestHalfEdgeStructure : public Test {
tetrahedron.addVertex(3); tetrahedron.addVertex(3);
// Faces // Faces
std::vector<uint> face0; List<uint> face0(mAllocator, 3);
face0.push_back(0); face0.push_back(1); face0.push_back(2); face0.add(0); face0.add(1); face0.add(2);
std::vector<uint> face1; List<uint> face1(mAllocator, 3);
face1.push_back(0); face1.push_back(3); face1.push_back(1); face1.add(0); face1.add(3); face1.add(1);
std::vector<uint> face2; List<uint> face2(mAllocator, 3);
face2.push_back(1); face2.push_back(3); face2.push_back(2); face2.add(1); face2.add(3); face2.add(2);
std::vector<uint> face3; List<uint> face3(mAllocator, 3);
face3.push_back(0); face3.push_back(2); face3.push_back(3); face3.add(0); face3.add(2); face3.add(3);
tetrahedron.addFace(face0); tetrahedron.addFace(face0);
tetrahedron.addFace(face1); tetrahedron.addFace(face1);

View File

@ -99,6 +99,8 @@ class TestRaycast : public Test {
// Raycast callback class // Raycast callback class
WorldRaycastCallback mCallback; WorldRaycastCallback mCallback;
DefaultAllocator mAllocator;
// Epsilon // Epsilon
decimal epsilon; decimal epsilon;
@ -203,7 +205,7 @@ class TestRaycast : public Test {
triangleVertices[1] = Vector3(105, 100, 0); triangleVertices[1] = Vector3(105, 100, 0);
triangleVertices[2] = Vector3(100, 103, 0); triangleVertices[2] = Vector3(100, 103, 0);
Vector3 triangleVerticesNormals[3] = {Vector3(0, 0, 1), Vector3(0, 0, 1), Vector3(0, 0, 1)}; Vector3 triangleVerticesNormals[3] = {Vector3(0, 0, 1), Vector3(0, 0, 1), Vector3(0, 0, 1)};
mTriangleShape = new TriangleShape(triangleVertices, triangleVerticesNormals, 0); mTriangleShape = new TriangleShape(triangleVertices, triangleVerticesNormals, 0, mAllocator);
mTriangleProxyShape = mTriangleBody->addCollisionShape(mTriangleShape, mShapeTransform); mTriangleProxyShape = mTriangleBody->addCollisionShape(mTriangleShape, mShapeTransform);
mCapsuleShape = new CapsuleShape(2, 5); mCapsuleShape = new CapsuleShape(2, 5);

View File

@ -27,6 +27,8 @@
#define TEST_MATHEMATICS_FUNCTIONS_H #define TEST_MATHEMATICS_FUNCTIONS_H
// Libraries // Libraries
#include "containers/List.h"
#include "memory/DefaultAllocator.h"
/// Reactphysics3D namespace /// Reactphysics3D namespace
namespace reactphysics3d { namespace reactphysics3d {
@ -41,7 +43,7 @@ class TestMathematicsFunctions : public Test {
// ---------- Atributes ---------- // // ---------- Atributes ---------- //
DefaultAllocator mAllocator;
public : public :
@ -174,13 +176,13 @@ class TestMathematicsFunctions : public Test {
segmentVertices.push_back(Vector3(-6, 3, 0)); segmentVertices.push_back(Vector3(-6, 3, 0));
segmentVertices.push_back(Vector3(8, 3, 0)); segmentVertices.push_back(Vector3(8, 3, 0));
std::vector<Vector3> planesNormals; List<Vector3> planesNormals(mAllocator, 2);
std::vector<Vector3> planesPoints; List<Vector3> planesPoints(mAllocator, 2);
planesNormals.push_back(Vector3(-1, 0, 0)); planesNormals.add(Vector3(-1, 0, 0));
planesPoints.push_back(Vector3(4, 0, 0)); planesPoints.add(Vector3(4, 0, 0));
std::vector<Vector3> clipSegmentVertices = clipSegmentWithPlanes(segmentVertices[0], segmentVertices[1], List<Vector3> clipSegmentVertices = clipSegmentWithPlanes(segmentVertices[0], segmentVertices[1],
planesPoints, planesNormals); planesPoints, planesNormals, mAllocator);
test(clipSegmentVertices.size() == 2); test(clipSegmentVertices.size() == 2);
test(approxEqual(clipSegmentVertices[0].x, -6, 0.000001)); test(approxEqual(clipSegmentVertices[0].x, -6, 0.000001));
test(approxEqual(clipSegmentVertices[0].y, 3, 0.000001)); test(approxEqual(clipSegmentVertices[0].y, 3, 0.000001));
@ -193,7 +195,7 @@ class TestMathematicsFunctions : public Test {
segmentVertices.push_back(Vector3(8, 3, 0)); segmentVertices.push_back(Vector3(8, 3, 0));
segmentVertices.push_back(Vector3(-6, 3, 0)); segmentVertices.push_back(Vector3(-6, 3, 0));
clipSegmentVertices = clipSegmentWithPlanes(segmentVertices[0], segmentVertices[1], planesPoints, planesNormals); clipSegmentVertices = clipSegmentWithPlanes(segmentVertices[0], segmentVertices[1], planesPoints, planesNormals, mAllocator);
test(clipSegmentVertices.size() == 2); test(clipSegmentVertices.size() == 2);
test(approxEqual(clipSegmentVertices[0].x, 4, 0.000001)); test(approxEqual(clipSegmentVertices[0].x, 4, 0.000001));
test(approxEqual(clipSegmentVertices[0].y, 3, 0.000001)); test(approxEqual(clipSegmentVertices[0].y, 3, 0.000001));
@ -206,7 +208,7 @@ class TestMathematicsFunctions : public Test {
segmentVertices.push_back(Vector3(-6, 3, 0)); segmentVertices.push_back(Vector3(-6, 3, 0));
segmentVertices.push_back(Vector3(3, 3, 0)); segmentVertices.push_back(Vector3(3, 3, 0));
clipSegmentVertices = clipSegmentWithPlanes(segmentVertices[0], segmentVertices[1], planesPoints, planesNormals); clipSegmentVertices = clipSegmentWithPlanes(segmentVertices[0], segmentVertices[1], planesPoints, planesNormals, mAllocator);
test(clipSegmentVertices.size() == 2); test(clipSegmentVertices.size() == 2);
test(approxEqual(clipSegmentVertices[0].x, -6, 0.000001)); test(approxEqual(clipSegmentVertices[0].x, -6, 0.000001));
test(approxEqual(clipSegmentVertices[0].y, 3, 0.000001)); test(approxEqual(clipSegmentVertices[0].y, 3, 0.000001));
@ -219,41 +221,41 @@ class TestMathematicsFunctions : public Test {
segmentVertices.push_back(Vector3(5, 3, 0)); segmentVertices.push_back(Vector3(5, 3, 0));
segmentVertices.push_back(Vector3(8, 3, 0)); segmentVertices.push_back(Vector3(8, 3, 0));
clipSegmentVertices = clipSegmentWithPlanes(segmentVertices[0], segmentVertices[1], planesPoints, planesNormals); clipSegmentVertices = clipSegmentWithPlanes(segmentVertices[0], segmentVertices[1], planesPoints, planesNormals, mAllocator);
test(clipSegmentVertices.size() == 0); test(clipSegmentVertices.size() == 0);
// Test clipPolygonWithPlanes() // Test clipPolygonWithPlanes()
std::vector<Vector3> polygonVertices; List<Vector3> polygonVertices(mAllocator);
polygonVertices.push_back(Vector3(-4, 2, 0)); polygonVertices.add(Vector3(-4, 2, 0));
polygonVertices.push_back(Vector3(7, 2, 0)); polygonVertices.add(Vector3(7, 2, 0));
polygonVertices.push_back(Vector3(7, 4, 0)); polygonVertices.add(Vector3(7, 4, 0));
polygonVertices.push_back(Vector3(-4, 4, 0)); polygonVertices.add(Vector3(-4, 4, 0));
planesNormals.clear(); List<Vector3> polygonPlanesNormals(mAllocator);
planesPoints.clear(); List<Vector3> polygonPlanesPoints(mAllocator);
planesNormals.push_back(Vector3(1, 0, 0)); polygonPlanesNormals.add(Vector3(1, 0, 0));
planesPoints.push_back(Vector3(0, 0, 0)); polygonPlanesPoints.add(Vector3(0, 0, 0));
planesNormals.push_back(Vector3(0, 1, 0)); polygonPlanesNormals.add(Vector3(0, 1, 0));
planesPoints.push_back(Vector3(0, 0, 0)); polygonPlanesPoints.add(Vector3(0, 0, 0));
planesNormals.push_back(Vector3(-1, 0, 0)); polygonPlanesNormals.add(Vector3(-1, 0, 0));
planesPoints.push_back(Vector3(10, 0, 0)); polygonPlanesPoints.add(Vector3(10, 0, 0));
planesNormals.push_back(Vector3(0, -1, 0)); polygonPlanesNormals.add(Vector3(0, -1, 0));
planesPoints.push_back(Vector3(10, 5, 0)); polygonPlanesPoints.add(Vector3(10, 5, 0));
clipSegmentVertices = clipPolygonWithPlanes(polygonVertices, planesPoints, planesNormals); List<Vector3> clipPolygonVertices = clipPolygonWithPlanes(polygonVertices, polygonPlanesPoints, polygonPlanesNormals, mAllocator);
test(clipSegmentVertices.size() == 4); test(clipPolygonVertices.size() == 4);
test(approxEqual(clipSegmentVertices[0].x, 0, 0.000001)); test(approxEqual(clipPolygonVertices[0].x, 0, 0.000001));
test(approxEqual(clipSegmentVertices[0].y, 2, 0.000001)); test(approxEqual(clipPolygonVertices[0].y, 2, 0.000001));
test(approxEqual(clipSegmentVertices[0].z, 0, 0.000001)); test(approxEqual(clipPolygonVertices[0].z, 0, 0.000001));
test(approxEqual(clipSegmentVertices[1].x, 7, 0.000001)); test(approxEqual(clipPolygonVertices[1].x, 7, 0.000001));
test(approxEqual(clipSegmentVertices[1].y, 2, 0.000001)); test(approxEqual(clipPolygonVertices[1].y, 2, 0.000001));
test(approxEqual(clipSegmentVertices[1].z, 0, 0.000001)); test(approxEqual(clipPolygonVertices[1].z, 0, 0.000001));
test(approxEqual(clipSegmentVertices[2].x, 7, 0.000001)); test(approxEqual(clipPolygonVertices[2].x, 7, 0.000001));
test(approxEqual(clipSegmentVertices[2].y, 4, 0.000001)); test(approxEqual(clipPolygonVertices[2].y, 4, 0.000001));
test(approxEqual(clipSegmentVertices[2].z, 0, 0.000001)); test(approxEqual(clipPolygonVertices[2].z, 0, 0.000001));
test(approxEqual(clipSegmentVertices[3].x, 0, 0.000001)); test(approxEqual(clipPolygonVertices[3].x, 0, 0.000001));
test(approxEqual(clipSegmentVertices[3].y, 4, 0.000001)); test(approxEqual(clipPolygonVertices[3].y, 4, 0.000001));
test(approxEqual(clipSegmentVertices[3].z, 0, 0.000001)); test(approxEqual(clipPolygonVertices[3].z, 0, 0.000001));
} }