Remove files
This commit is contained in:
parent
e84f6468c8
commit
aa236286de
|
@ -1,835 +0,0 @@
|
|||
/********************************************************************************
|
||||
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
|
||||
* Copyright (c) 2010-2012 Daniel Chappuis *
|
||||
*********************************************************************************
|
||||
* *
|
||||
* This software is provided 'as-is', without any express or implied warranty. *
|
||||
* In no event will the authors be held liable for any damages arising from the *
|
||||
* use of this software. *
|
||||
* *
|
||||
* Permission is granted to anyone to use this software for any purpose, *
|
||||
* including commercial applications, and to alter it and redistribute it *
|
||||
* freely, subject to the following restrictions: *
|
||||
* *
|
||||
* 1. The origin of this software must not be misrepresented; you must not claim *
|
||||
* that you wrote the original software. If you use this software in a *
|
||||
* product, an acknowledgment in the product documentation would be *
|
||||
* appreciated but is not required. *
|
||||
* *
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be *
|
||||
* misrepresented as being the original software. *
|
||||
* *
|
||||
* 3. This notice may not be removed or altered from any source distribution. *
|
||||
* *
|
||||
********************************************************************************/
|
||||
|
||||
// Libraries
|
||||
#include "ConstraintSolver.h"
|
||||
#include "DynamicsWorld.h"
|
||||
#include "../body/RigidBody.h"
|
||||
|
||||
using namespace reactphysics3d;
|
||||
using namespace std;
|
||||
|
||||
// Constants initialization
|
||||
const decimal ConstraintSolver::BETA = 0.2;
|
||||
const decimal ConstraintSolver::BETA_SPLIT_IMPULSE = 0.2;
|
||||
const decimal ConstraintSolver::SLOP = 0.01;
|
||||
|
||||
// Constructor
|
||||
ConstraintSolver::ConstraintSolver(DynamicsWorld* world)
|
||||
:world(world), nbConstraints(0), mNbIterations(10), mContactConstraints(0),
|
||||
mLinearVelocities(0), mAngularVelocities(0), mIsWarmStartingActive(true),
|
||||
mIsSplitImpulseActive(true), mIsSolveFrictionAtContactManifoldCenterActive(true) {
|
||||
|
||||
}
|
||||
|
||||
// Destructor
|
||||
ConstraintSolver::~ConstraintSolver() {
|
||||
|
||||
}
|
||||
|
||||
// Initialize the constraint solver
|
||||
void ConstraintSolver::initialize() {
|
||||
|
||||
nbConstraints = 0;
|
||||
|
||||
// TODO : Use better allocation here
|
||||
mContactConstraints = new ContactConstraint[world->getNbContactManifolds()];
|
||||
|
||||
mNbContactConstraints = 0;
|
||||
|
||||
// For each contact manifold of the world
|
||||
vector<ContactManifold>::iterator it;
|
||||
for (it = world->getContactManifoldsBeginIterator(); it != world->getContactManifoldsEndIterator(); ++it) {
|
||||
ContactManifold contactManifold = *it;
|
||||
|
||||
ContactConstraint& constraint = mContactConstraints[mNbContactConstraints];
|
||||
|
||||
assert(contactManifold.nbContacts > 0);
|
||||
|
||||
RigidBody* body1 = contactManifold.contacts[0]->getBody1();
|
||||
RigidBody* body2 = contactManifold.contacts[0]->getBody2();
|
||||
|
||||
// Fill in the body number maping
|
||||
mMapBodyToIndex.insert(make_pair(body1, mMapBodyToIndex.size()));
|
||||
mMapBodyToIndex.insert(make_pair(body2, mMapBodyToIndex.size()));
|
||||
|
||||
// Add the two bodies of the constraint in the constraintBodies list
|
||||
mConstraintBodies.insert(body1);
|
||||
mConstraintBodies.insert(body2);
|
||||
|
||||
Vector3 x1 = body1->getTransform().getPosition();
|
||||
Vector3 x2 = body2->getTransform().getPosition();
|
||||
|
||||
constraint.indexBody1 = mMapBodyToIndex[body1];
|
||||
constraint.indexBody2 = mMapBodyToIndex[body2];
|
||||
constraint.inverseInertiaTensorBody1 = body1->getInertiaTensorInverseWorld();
|
||||
constraint.inverseInertiaTensorBody2 = body2->getInertiaTensorInverseWorld();
|
||||
constraint.isBody1Moving = body1->getIsMotionEnabled();
|
||||
constraint.isBody2Moving = body2->getIsMotionEnabled();
|
||||
constraint.massInverseBody1 = body1->getMassInverse();
|
||||
constraint.massInverseBody2 = body2->getMassInverse();
|
||||
constraint.nbContacts = contactManifold.nbContacts;
|
||||
constraint.restitutionFactor = computeMixRestitutionFactor(body1, body2);
|
||||
constraint.contactManifold = &contactManifold;
|
||||
|
||||
// If we solve the friction constraints at the center of the contact manifold
|
||||
if (mIsSolveFrictionAtContactManifoldCenterActive) {
|
||||
constraint.frictionPointBody1 = Vector3(0.0, 0.0, 0.0);
|
||||
constraint.frictionPointBody2 = Vector3(0.0, 0.0, 0.0);
|
||||
}
|
||||
|
||||
// For each contact point of the contact manifold
|
||||
for (uint c=0; c<contactManifold.nbContacts; c++) {
|
||||
|
||||
ContactPointConstraint& contactPointConstraint = constraint.contacts[c];
|
||||
|
||||
// Get a contact point
|
||||
Contact* contact = contactManifold.contacts[c];
|
||||
|
||||
Vector3 p1 = contact->getWorldPointOnBody1();
|
||||
Vector3 p2 = contact->getWorldPointOnBody2();
|
||||
|
||||
contactPointConstraint.contact = contact;
|
||||
contactPointConstraint.normal = contact->getNormal();
|
||||
contactPointConstraint.r1 = p1 - x1;
|
||||
contactPointConstraint.r2 = p2 - x2;
|
||||
contactPointConstraint.penetrationDepth = contact->getPenetrationDepth();
|
||||
contactPointConstraint.isRestingContact = contact->getIsRestingContact();
|
||||
contact->setIsRestingContact(true);
|
||||
contactPointConstraint.oldFrictionVector1 = contact->getFrictionVector1();
|
||||
contactPointConstraint.oldFrictionVector2 = contact->getFrictionVector2();
|
||||
contactPointConstraint.penetrationImpulse = 0.0;
|
||||
contactPointConstraint.friction1Impulse = 0.0;
|
||||
contactPointConstraint.friction2Impulse = 0.0;
|
||||
|
||||
// If we solve the friction constraints at the center of the contact manifold
|
||||
if (mIsSolveFrictionAtContactManifoldCenterActive) {
|
||||
constraint.frictionPointBody1 += p1;
|
||||
constraint.frictionPointBody2 += p2;
|
||||
}
|
||||
}
|
||||
|
||||
// If we solve the friction constraints at the center of the contact manifold
|
||||
if (mIsSolveFrictionAtContactManifoldCenterActive) {
|
||||
constraint.frictionPointBody1 /= constraint.nbContacts;
|
||||
constraint.frictionPointBody2 /= constraint.nbContacts;
|
||||
constraint.r1Friction = constraint.frictionPointBody1 - x1;
|
||||
constraint.r2Friction = constraint.frictionPointBody2 - x2;
|
||||
constraint.oldFrictionVector1 = contactManifold.frictionVector1;
|
||||
constraint.oldFrictionVector2 = contactManifold.frictionVector2;
|
||||
|
||||
if (mIsWarmStartingActive) {
|
||||
constraint.friction1Impulse = contactManifold.friction1Impulse;
|
||||
constraint.friction2Impulse = contactManifold.friction2Impulse;
|
||||
constraint.frictionTwistImpulse = contactManifold.frictionTwistImpulse;
|
||||
}
|
||||
else {
|
||||
constraint.friction1Impulse = 0.0;
|
||||
constraint.friction2Impulse = 0.0;
|
||||
constraint.frictionTwistImpulse = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
mNbContactConstraints++;
|
||||
}
|
||||
|
||||
// Compute the number of bodies that are part of some active constraint
|
||||
nbBodies = mConstraintBodies.size();
|
||||
|
||||
mLinearVelocities = new Vector3[nbBodies];
|
||||
mAngularVelocities = new Vector3[nbBodies];
|
||||
mSplitLinearVelocities = new Vector3[nbBodies];
|
||||
mSplitAngularVelocities = new Vector3[nbBodies];
|
||||
|
||||
assert(mMapBodyToIndex.size() == nbBodies);
|
||||
}
|
||||
|
||||
// Initialize the constrained bodies
|
||||
void ConstraintSolver::initializeBodies() {
|
||||
|
||||
// For each current body that is implied in some constraint
|
||||
RigidBody* rigidBody;
|
||||
for (set<RigidBody*>::iterator it = mConstraintBodies.begin(); it != mConstraintBodies.end(); ++it) {
|
||||
rigidBody = *it;
|
||||
uint bodyNumber = mMapBodyToIndex[rigidBody];
|
||||
|
||||
// TODO : Use polymorphism and remove this downcasting
|
||||
assert(rigidBody);
|
||||
|
||||
mLinearVelocities[bodyNumber] = rigidBody->getLinearVelocity() + mTimeStep * rigidBody->getMassInverse() * rigidBody->getExternalForce();
|
||||
mAngularVelocities[bodyNumber] = rigidBody->getAngularVelocity() + mTimeStep * rigidBody->getInertiaTensorInverseWorld() * rigidBody->getExternalTorque();
|
||||
mSplitLinearVelocities[bodyNumber] = Vector3(0, 0, 0);
|
||||
mSplitAngularVelocities[bodyNumber] = Vector3(0, 0, 0);
|
||||
}
|
||||
}
|
||||
|
||||
// Initialize the contact constraints before solving the system
|
||||
void ConstraintSolver::initializeContactConstraints() {
|
||||
|
||||
// For each contact constraint
|
||||
for (uint c=0; c<mNbContactConstraints; c++) {
|
||||
|
||||
ContactConstraint& constraint = mContactConstraints[c];
|
||||
|
||||
Matrix3x3& I1 = constraint.inverseInertiaTensorBody1;
|
||||
Matrix3x3& I2 = constraint.inverseInertiaTensorBody2;
|
||||
|
||||
// If we solve the friction constraints at the center of the contact manifold
|
||||
if (mIsSolveFrictionAtContactManifoldCenterActive) {
|
||||
constraint.normal = Vector3(0.0, 0.0, 0.0);
|
||||
}
|
||||
|
||||
const Vector3& v1 = mLinearVelocities[constraint.indexBody1];
|
||||
const Vector3& w1 = mAngularVelocities[constraint.indexBody1];
|
||||
const Vector3& v2 = mLinearVelocities[constraint.indexBody2];
|
||||
const Vector3& w2 = mAngularVelocities[constraint.indexBody2];
|
||||
|
||||
// For each contact point constraint
|
||||
for (uint i=0; i<constraint.nbContacts; i++) {
|
||||
|
||||
ContactPointConstraint& contact = constraint.contacts[i];
|
||||
Contact* realContact = contact.contact;
|
||||
|
||||
Vector3 deltaV = v2 + w2.cross(contact.r2) - v1 - w1.cross(contact.r1);
|
||||
|
||||
contact.r1CrossN = contact.r1.cross(contact.normal);
|
||||
contact.r2CrossN = contact.r2.cross(contact.normal);
|
||||
|
||||
decimal massPenetration = 0.0;
|
||||
if (constraint.isBody1Moving) {
|
||||
massPenetration += constraint.massInverseBody1 +
|
||||
((I1 * contact.r1CrossN).cross(contact.r1)).dot(contact.normal);
|
||||
}
|
||||
if (constraint.isBody2Moving) {
|
||||
massPenetration += constraint.massInverseBody2 +
|
||||
((I2 * contact.r2CrossN).cross(contact.r2)).dot(contact.normal);
|
||||
}
|
||||
massPenetration > 0.0 ? contact.inversePenetrationMass = 1.0 / massPenetration : 0.0;
|
||||
|
||||
if (!mIsSolveFrictionAtContactManifoldCenterActive) {
|
||||
|
||||
// Compute the friction vectors
|
||||
computeFrictionVectors(deltaV, contact);
|
||||
|
||||
contact.r1CrossT1 = contact.r1.cross(contact.frictionVector1);
|
||||
contact.r1CrossT2 = contact.r1.cross(contact.frictionVector2);
|
||||
contact.r2CrossT1 = contact.r2.cross(contact.frictionVector1);
|
||||
contact.r2CrossT2 = contact.r2.cross(contact.frictionVector2);
|
||||
|
||||
// Compute the inverse mass matrix K for the friction constraints at each contact point
|
||||
decimal friction1Mass = 0.0;
|
||||
decimal friction2Mass = 0.0;
|
||||
if (constraint.isBody1Moving) {
|
||||
friction1Mass += constraint.massInverseBody1 + ((I1 * contact.r1CrossT1).cross(contact.r1)).dot(contact.frictionVector1);
|
||||
friction2Mass += constraint.massInverseBody1 + ((I1 * contact.r1CrossT2).cross(contact.r1)).dot(contact.frictionVector2);
|
||||
}
|
||||
if (constraint.isBody2Moving) {
|
||||
friction1Mass += constraint.massInverseBody2 + ((I2 * contact.r2CrossT1).cross(contact.r2)).dot(contact.frictionVector1);
|
||||
friction2Mass += constraint.massInverseBody2 + ((I2 * contact.r2CrossT2).cross(contact.r2)).dot(contact.frictionVector2);
|
||||
}
|
||||
friction1Mass > 0.0 ? contact.inverseFriction1Mass = 1.0 / friction1Mass : 0.0;
|
||||
friction2Mass > 0.0 ? contact.inverseFriction2Mass = 1.0 / friction2Mass : 0.0;
|
||||
}
|
||||
|
||||
// Compute the restitution velocity bias "b". We compute this here instead
|
||||
// of inside the solve() method because we need to use the velocity difference
|
||||
// at the beginning of the contact. Note that if it is a resting contact (normal velocity
|
||||
// under a given threshold), we don't add a restitution velocity bias
|
||||
contact.restitutionBias = 0.0;
|
||||
decimal deltaVDotN = deltaV.dot(contact.normal);
|
||||
// TODO : Use a constant here
|
||||
if (deltaVDotN < 1.0f) {
|
||||
contact.restitutionBias = constraint.restitutionFactor * deltaVDotN;
|
||||
}
|
||||
|
||||
// Get the cached lambda values of the constraint
|
||||
if (mIsWarmStartingActive) {
|
||||
contact.penetrationImpulse = realContact->getCachedLambda(0);
|
||||
contact.friction1Impulse = realContact->getCachedLambda(1);
|
||||
contact.friction2Impulse = realContact->getCachedLambda(2);
|
||||
}
|
||||
|
||||
// Initialize the split impulses to zero
|
||||
contact.penetrationSplitImpulse = 0.0;
|
||||
|
||||
// If we solve the friction constraints at the center of the contact manifold
|
||||
if (mIsSolveFrictionAtContactManifoldCenterActive) {
|
||||
constraint.normal += contact.normal;
|
||||
}
|
||||
}
|
||||
|
||||
// If we solve the friction constraints at the center of the contact manifold
|
||||
if (mIsSolveFrictionAtContactManifoldCenterActive) {
|
||||
|
||||
constraint.normal.normalize();
|
||||
|
||||
Vector3 deltaVFrictionPoint = v2 + w2.cross(constraint.r2Friction) -
|
||||
v1 - w1.cross(constraint.r1Friction);
|
||||
|
||||
// Compute the friction vectors
|
||||
computeFrictionVectors(deltaVFrictionPoint, constraint);
|
||||
|
||||
// Compute the inverse mass matrix K for the friction constraints at the center of
|
||||
// the contact manifold
|
||||
constraint.r1CrossT1 = constraint.r1Friction.cross(constraint.frictionVector1);
|
||||
constraint.r1CrossT2 = constraint.r1Friction.cross(constraint.frictionVector2);
|
||||
constraint.r2CrossT1 = constraint.r2Friction.cross(constraint.frictionVector1);
|
||||
constraint.r2CrossT2 = constraint.r2Friction.cross(constraint.frictionVector2);
|
||||
decimal friction1Mass = 0.0;
|
||||
decimal friction2Mass = 0.0;
|
||||
if (constraint.isBody1Moving) {
|
||||
friction1Mass += constraint.massInverseBody1 + ((I1 * constraint.r1CrossT1).cross(constraint.r1Friction)).dot(constraint.frictionVector1);
|
||||
friction2Mass += constraint.massInverseBody1 + ((I1 * constraint.r1CrossT2).cross(constraint.r1Friction)).dot(constraint.frictionVector2);
|
||||
}
|
||||
if (constraint.isBody2Moving) {
|
||||
friction1Mass += constraint.massInverseBody2 + ((I2 * constraint.r2CrossT1).cross(constraint.r2Friction)).dot(constraint.frictionVector1);
|
||||
friction2Mass += constraint.massInverseBody2 + ((I2 * constraint.r2CrossT2).cross(constraint.r2Friction)).dot(constraint.frictionVector2);
|
||||
}
|
||||
friction1Mass > 0.0 ? constraint.inverseFriction1Mass = 1.0 / friction1Mass : 0.0;
|
||||
friction2Mass > 0.0 ? constraint.inverseFriction2Mass = 1.0 / friction2Mass : 0.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Warm start the solver
|
||||
// For each constraint, we apply the previous impulse (from the previous step)
|
||||
// at the beginning. With this technique, we will converge faster towards
|
||||
// the solution of the linear system
|
||||
void ConstraintSolver::warmStart() {
|
||||
|
||||
// For each constraint
|
||||
for (uint c=0; c<mNbContactConstraints; c++) {
|
||||
|
||||
ContactConstraint& constraint = mContactConstraints[c];
|
||||
|
||||
bool atLeastOneRestingContactPoint = false;
|
||||
|
||||
for (uint i=0; i<constraint.nbContacts; i++) {
|
||||
|
||||
ContactPointConstraint& contact = constraint.contacts[i];
|
||||
|
||||
// If it is not a new contact (this contact was already existing at last time step)
|
||||
if (contact.isRestingContact) {
|
||||
|
||||
atLeastOneRestingContactPoint = true;
|
||||
|
||||
// --------- Penetration --------- //
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
const Vector3 linearImpulseBody1 = -contact.normal * contact.penetrationImpulse;
|
||||
const Vector3 angularImpulseBody1 = -contact.r1CrossN * contact.penetrationImpulse;
|
||||
const Vector3 linearImpulseBody2 = contact.normal * contact.penetrationImpulse;
|
||||
const Vector3 angularImpulseBody2 = contact.r2CrossN * contact.penetrationImpulse;
|
||||
const Impulse impulsePenetration(linearImpulseBody1, angularImpulseBody1,
|
||||
linearImpulseBody2, angularImpulseBody2);
|
||||
|
||||
// Apply the impulse to the bodies of the constraint
|
||||
applyImpulse(impulsePenetration, constraint);
|
||||
|
||||
// If we do not solve the friction constraints at the center of the contact manifold
|
||||
if (!mIsSolveFrictionAtContactManifoldCenterActive) {
|
||||
|
||||
// Project the old friction impulses (with old friction vectors) into the new friction
|
||||
// vectors to get the new friction impulses
|
||||
Vector3 oldFrictionImpulse = contact.friction1Impulse * contact.oldFrictionVector1 +
|
||||
contact.friction2Impulse * contact.oldFrictionVector2;
|
||||
contact.friction1Impulse = oldFrictionImpulse.dot(contact.frictionVector1);
|
||||
contact.friction2Impulse = oldFrictionImpulse.dot(contact.frictionVector2);
|
||||
|
||||
// --------- Friction 1 --------- //
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
Vector3 linearImpulseBody1Friction1 = -contact.frictionVector1 * contact.friction1Impulse;
|
||||
Vector3 angularImpulseBody1Friction1 = -contact.r1CrossT1 * contact.friction1Impulse;
|
||||
Vector3 linearImpulseBody2Friction1 = contact.frictionVector1 * contact.friction1Impulse;
|
||||
Vector3 angularImpulseBody2Friction1 = contact.r2CrossT1 * contact.friction1Impulse;
|
||||
Impulse impulseFriction1(linearImpulseBody1Friction1, angularImpulseBody1Friction1,
|
||||
linearImpulseBody2Friction1, angularImpulseBody2Friction1);
|
||||
|
||||
// Apply the impulses to the bodies of the constraint
|
||||
applyImpulse(impulseFriction1, constraint);
|
||||
|
||||
// --------- Friction 2 --------- //
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
Vector3 linearImpulseBody1Friction2 = -contact.frictionVector2 * contact.friction2Impulse;
|
||||
Vector3 angularImpulseBody1Friction2 = -contact.r1CrossT2 * contact.friction2Impulse;
|
||||
Vector3 linearImpulseBody2Friction2 = contact.frictionVector2 * contact.friction2Impulse;
|
||||
Vector3 angularImpulseBody2Friction2 = contact.r2CrossT2 * contact.friction2Impulse;
|
||||
Impulse impulseFriction2(linearImpulseBody1Friction2, angularImpulseBody1Friction2,
|
||||
linearImpulseBody2Friction2, angularImpulseBody2Friction2);
|
||||
|
||||
// Apply the impulses to the bodies of the constraint
|
||||
applyImpulse(impulseFriction2, constraint);
|
||||
}
|
||||
}
|
||||
else { // If it is a new contact point
|
||||
|
||||
// Initialize the accumulated impulses to zero
|
||||
contact.penetrationImpulse = 0.0;
|
||||
contact.friction1Impulse = 0.0;
|
||||
contact.friction2Impulse = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
// If we solve the friction constraints at the center of the contact manifold and there is
|
||||
// at least one resting contact point in the contact manifold
|
||||
if (mIsSolveFrictionAtContactManifoldCenterActive && atLeastOneRestingContactPoint) {
|
||||
|
||||
// Project the old friction impulses (with old friction vectors) into the new friction
|
||||
// vectors to get the new friction impulses
|
||||
Vector3 oldFrictionImpulse = constraint.friction1Impulse * constraint.oldFrictionVector1 +
|
||||
constraint.friction2Impulse * constraint.oldFrictionVector2;
|
||||
constraint.friction1Impulse = oldFrictionImpulse.dot(constraint.frictionVector1);
|
||||
constraint.friction2Impulse = oldFrictionImpulse.dot(constraint.frictionVector2);
|
||||
|
||||
// ------ First friction constraint at the center of the contact manifol ------ //
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
Vector3 linearImpulseBody1 = -constraint.frictionVector1 * constraint.friction1Impulse;
|
||||
Vector3 angularImpulseBody1 = -constraint.r1CrossT1 * constraint.friction1Impulse;
|
||||
Vector3 linearImpulseBody2 = constraint.frictionVector1 * constraint.friction1Impulse;
|
||||
Vector3 angularImpulseBody2 = constraint.r2CrossT1 * constraint.friction1Impulse;
|
||||
const Impulse impulseFriction1(linearImpulseBody1, angularImpulseBody1,
|
||||
linearImpulseBody2, angularImpulseBody2);
|
||||
|
||||
// Apply the impulses to the bodies of the constraint
|
||||
applyImpulse(impulseFriction1, constraint);
|
||||
|
||||
// ------ Second friction constraint at the center of the contact manifol ----- //
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
linearImpulseBody1 = -constraint.frictionVector2 * constraint.friction2Impulse;
|
||||
angularImpulseBody1 = -constraint.r1CrossT2 * constraint.friction2Impulse;
|
||||
linearImpulseBody2 = constraint.frictionVector2 * constraint.friction2Impulse;
|
||||
angularImpulseBody2 = constraint.r2CrossT2 * constraint.friction2Impulse;
|
||||
const Impulse impulseFriction2(linearImpulseBody1, angularImpulseBody1,
|
||||
linearImpulseBody2, angularImpulseBody2);
|
||||
|
||||
// Apply the impulses to the bodies of the constraint
|
||||
applyImpulse(impulseFriction2, constraint);
|
||||
|
||||
// ------ Twist friction constraint at the center of the contact manifol ------ //
|
||||
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
linearImpulseBody1 = Vector3(0.0, 0.0, 0.0);
|
||||
angularImpulseBody1 = -constraint.normal * constraint.frictionTwistImpulse;
|
||||
linearImpulseBody2 = Vector3(0.0, 0.0, 0.0);
|
||||
angularImpulseBody2 = constraint.normal * constraint.frictionTwistImpulse;
|
||||
const Impulse impulseTwistFriction(linearImpulseBody1, angularImpulseBody1,
|
||||
linearImpulseBody2, angularImpulseBody2);
|
||||
|
||||
// Apply the impulses to the bodies of the constraint
|
||||
applyImpulse(impulseTwistFriction, constraint);
|
||||
}
|
||||
else { // If it is a new contact manifold
|
||||
|
||||
// Initialize the accumulated impulses to zero
|
||||
constraint.friction1Impulse = 0.0;
|
||||
constraint.friction2Impulse = 0.0;
|
||||
constraint.frictionTwistImpulse = 0.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Solve the contact constraints by applying sequential impulses
|
||||
void ConstraintSolver::solveContactConstraints() {
|
||||
|
||||
decimal deltaLambda;
|
||||
decimal lambdaTemp;
|
||||
uint iter;
|
||||
|
||||
// For each iteration
|
||||
for(iter=0; iter<mNbIterations; iter++) {
|
||||
|
||||
// For each constraint
|
||||
for (uint c=0; c<mNbContactConstraints; c++) {
|
||||
|
||||
ContactConstraint& constraint = mContactConstraints[c];
|
||||
|
||||
decimal sumPenetrationImpulse = 0.0;
|
||||
|
||||
const Vector3& v1 = mLinearVelocities[constraint.indexBody1];
|
||||
const Vector3& w1 = mAngularVelocities[constraint.indexBody1];
|
||||
const Vector3& v2 = mLinearVelocities[constraint.indexBody2];
|
||||
const Vector3& w2 = mAngularVelocities[constraint.indexBody2];
|
||||
|
||||
for (uint i=0; i<constraint.nbContacts; i++) {
|
||||
|
||||
ContactPointConstraint& contact = constraint.contacts[i];
|
||||
|
||||
// --------- Penetration --------- //
|
||||
|
||||
// Compute J*v
|
||||
Vector3 deltaV = v2 + w2.cross(contact.r2) - v1 - w1.cross(contact.r1);
|
||||
decimal deltaVDotN = deltaV.dot(contact.normal);
|
||||
decimal Jv = deltaVDotN;
|
||||
|
||||
// Compute the bias "b" of the constraint
|
||||
decimal beta = mIsSplitImpulseActive ? BETA_SPLIT_IMPULSE : BETA;
|
||||
decimal biasPenetrationDepth = 0.0;
|
||||
if (contact.penetrationDepth > SLOP) biasPenetrationDepth = -(beta/mTimeStep) *
|
||||
max(0.0f, float(contact.penetrationDepth - SLOP));
|
||||
decimal b = biasPenetrationDepth + contact.restitutionBias;
|
||||
|
||||
// Compute the Lagrange multiplier
|
||||
if (mIsSplitImpulseActive) {
|
||||
deltaLambda = - (Jv + contact.restitutionBias) * contact.inversePenetrationMass;
|
||||
}
|
||||
else {
|
||||
deltaLambda = - (Jv + b) * contact.inversePenetrationMass;
|
||||
}
|
||||
lambdaTemp = contact.penetrationImpulse;
|
||||
contact.penetrationImpulse = std::max(contact.penetrationImpulse + deltaLambda, 0.0f);
|
||||
deltaLambda = contact.penetrationImpulse - lambdaTemp;
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
Vector3 linearImpulseBody1 = -contact.normal * deltaLambda;
|
||||
Vector3 angularImpulseBody1 = -contact.r1CrossN * deltaLambda;
|
||||
Vector3 linearImpulseBody2 = contact.normal * deltaLambda;
|
||||
Vector3 angularImpulseBody2 = contact.r2CrossN * deltaLambda;
|
||||
const Impulse impulsePenetration(linearImpulseBody1, angularImpulseBody1,
|
||||
linearImpulseBody2, angularImpulseBody2);
|
||||
|
||||
// Apply the impulse to the bodies of the constraint
|
||||
applyImpulse(impulsePenetration, constraint);
|
||||
|
||||
sumPenetrationImpulse += contact.penetrationImpulse;
|
||||
|
||||
// If the split impulse position correction is active
|
||||
if (mIsSplitImpulseActive) {
|
||||
|
||||
// Split impulse (position correction)
|
||||
const Vector3& v1Split = mSplitLinearVelocities[constraint.indexBody1];
|
||||
const Vector3& w1Split = mSplitAngularVelocities[constraint.indexBody1];
|
||||
const Vector3& v2Split = mSplitLinearVelocities[constraint.indexBody2];
|
||||
const Vector3& w2Split = mSplitAngularVelocities[constraint.indexBody2];
|
||||
Vector3 deltaVSplit = v2Split + w2Split.cross(contact.r2) - v1Split - w1Split.cross(contact.r1);
|
||||
decimal JvSplit = deltaVSplit.dot(contact.normal);
|
||||
decimal deltaLambdaSplit = - (JvSplit + biasPenetrationDepth) * contact.inversePenetrationMass;
|
||||
decimal lambdaTempSplit = contact.penetrationSplitImpulse;
|
||||
contact.penetrationSplitImpulse = std::max(contact.penetrationSplitImpulse + deltaLambdaSplit, 0.0f);
|
||||
deltaLambda = contact.penetrationSplitImpulse - lambdaTempSplit;
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
linearImpulseBody1 = -contact.normal * deltaLambdaSplit;
|
||||
angularImpulseBody1 = -contact.r1CrossN * deltaLambdaSplit;
|
||||
linearImpulseBody2 = contact.normal * deltaLambdaSplit;
|
||||
angularImpulseBody2 = contact.r2CrossN * deltaLambdaSplit;
|
||||
const Impulse splitImpulsePenetration(linearImpulseBody1, angularImpulseBody1,
|
||||
linearImpulseBody2, angularImpulseBody2);
|
||||
|
||||
applySplitImpulse(splitImpulsePenetration, constraint);
|
||||
}
|
||||
|
||||
// If we do not solve the friction constraints at the center of the contact manifold
|
||||
if (!mIsSolveFrictionAtContactManifoldCenterActive) {
|
||||
|
||||
// --------- Friction 1 --------- //
|
||||
|
||||
// Compute J*v
|
||||
deltaV = v2 + w2.cross(contact.r2) - v1 - w1.cross(contact.r1);
|
||||
Jv = deltaV.dot(contact.frictionVector1);
|
||||
|
||||
deltaLambda = -Jv;
|
||||
deltaLambda *= contact.inverseFriction1Mass;
|
||||
decimal frictionLimit = 0.3 * contact.penetrationImpulse; // TODO : Use constant here
|
||||
lambdaTemp = contact.friction1Impulse;
|
||||
contact.friction1Impulse = std::max(-frictionLimit, std::min(contact.friction1Impulse + deltaLambda, frictionLimit));
|
||||
deltaLambda = contact.friction1Impulse - lambdaTemp;
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
linearImpulseBody1 = -contact.frictionVector1 * deltaLambda;
|
||||
angularImpulseBody1 = -contact.r1CrossT1 * deltaLambda;
|
||||
linearImpulseBody2 = contact.frictionVector1 * deltaLambda;
|
||||
angularImpulseBody2 = contact.r2CrossT1 * deltaLambda;
|
||||
const Impulse impulseFriction1(linearImpulseBody1, angularImpulseBody1,
|
||||
linearImpulseBody2, angularImpulseBody2);
|
||||
|
||||
// Apply the impulses to the bodies of the constraint
|
||||
applyImpulse(impulseFriction1, constraint);
|
||||
|
||||
// --------- Friction 2 --------- //
|
||||
|
||||
// Compute J*v
|
||||
deltaV = v2 + w2.cross(contact.r2) - v1 - w1.cross(contact.r1);
|
||||
Jv = deltaV.dot(contact.frictionVector2);
|
||||
|
||||
deltaLambda = -Jv;
|
||||
deltaLambda *= contact.inverseFriction2Mass;
|
||||
frictionLimit = 0.3 * contact.penetrationImpulse; // TODO : Use constant here
|
||||
lambdaTemp = contact.friction2Impulse;
|
||||
contact.friction2Impulse = std::max(-frictionLimit, std::min(contact.friction2Impulse + deltaLambda, frictionLimit));
|
||||
deltaLambda = contact.friction2Impulse - lambdaTemp;
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
linearImpulseBody1 = -contact.frictionVector2 * deltaLambda;
|
||||
angularImpulseBody1 = -contact.r1CrossT2 * deltaLambda;
|
||||
linearImpulseBody2 = contact.frictionVector2 * deltaLambda;
|
||||
angularImpulseBody2 = contact.r2CrossT2 * deltaLambda;
|
||||
const Impulse impulseFriction2(linearImpulseBody1, angularImpulseBody1,
|
||||
linearImpulseBody2, angularImpulseBody2);
|
||||
|
||||
// Apply the impulses to the bodies of the constraint
|
||||
applyImpulse(impulseFriction2, constraint);
|
||||
}
|
||||
}
|
||||
|
||||
// If we solve the friction constraints at the center of the contact manifold
|
||||
if (mIsSolveFrictionAtContactManifoldCenterActive) {
|
||||
|
||||
// ------ First friction constraint at the center of the contact manifol ------ //
|
||||
|
||||
// Compute J*v
|
||||
Vector3 deltaV = v2 + w2.cross(constraint.r2Friction) - v1 - w1.cross(constraint.r1Friction);
|
||||
decimal Jv = deltaV.dot(constraint.frictionVector1);
|
||||
|
||||
decimal deltaLambda = -Jv * constraint.inverseFriction1Mass;
|
||||
decimal frictionLimit = 0.3 * sumPenetrationImpulse; // TODO : Use constant here
|
||||
lambdaTemp = constraint.friction1Impulse;
|
||||
constraint.friction1Impulse = std::max(-frictionLimit, std::min(constraint.friction1Impulse + deltaLambda, frictionLimit));
|
||||
deltaLambda = constraint.friction1Impulse - lambdaTemp;
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
Vector3 linearImpulseBody1 = -constraint.frictionVector1 * deltaLambda;
|
||||
Vector3 angularImpulseBody1 = -constraint.r1CrossT1 * deltaLambda;
|
||||
Vector3 linearImpulseBody2 = constraint.frictionVector1 * deltaLambda;
|
||||
Vector3 angularImpulseBody2 = constraint.r2CrossT1 * deltaLambda;
|
||||
const Impulse impulseFriction1(linearImpulseBody1, angularImpulseBody1,
|
||||
linearImpulseBody2, angularImpulseBody2);
|
||||
|
||||
// Apply the impulses to the bodies of the constraint
|
||||
applyImpulse(impulseFriction1, constraint);
|
||||
|
||||
// ------ Second friction constraint at the center of the contact manifol ----- //
|
||||
|
||||
// Compute J*v
|
||||
deltaV = v2 + w2.cross(constraint.r2Friction) - v1 - w1.cross(constraint.r1Friction);
|
||||
Jv = deltaV.dot(constraint.frictionVector2);
|
||||
|
||||
deltaLambda = -Jv * constraint.inverseFriction2Mass;
|
||||
frictionLimit = 0.3 * sumPenetrationImpulse; // TODO : Use constant here
|
||||
lambdaTemp = constraint.friction2Impulse;
|
||||
constraint.friction2Impulse = std::max(-frictionLimit, std::min(constraint.friction2Impulse + deltaLambda, frictionLimit));
|
||||
deltaLambda = constraint.friction2Impulse - lambdaTemp;
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
linearImpulseBody1 = -constraint.frictionVector2 * deltaLambda;
|
||||
angularImpulseBody1 = -constraint.r1CrossT2 * deltaLambda;
|
||||
linearImpulseBody2 = constraint.frictionVector2 * deltaLambda;
|
||||
angularImpulseBody2 = constraint.r2CrossT2 * deltaLambda;
|
||||
const Impulse impulseFriction2(linearImpulseBody1, angularImpulseBody1,
|
||||
linearImpulseBody2, angularImpulseBody2);
|
||||
|
||||
// Apply the impulses to the bodies of the constraint
|
||||
applyImpulse(impulseFriction2, constraint);
|
||||
|
||||
// ------ Twist friction constraint at the center of the contact manifol ------ //
|
||||
|
||||
// TODO : Put this in the initialization method
|
||||
decimal K = constraint.normal.dot(constraint.inverseInertiaTensorBody1 * constraint.normal) +
|
||||
constraint.normal.dot(constraint.inverseInertiaTensorBody2 * constraint.normal);
|
||||
|
||||
|
||||
// Compute J*v
|
||||
deltaV = w2 - w1;
|
||||
Jv = deltaV.dot(constraint.normal);
|
||||
|
||||
// TODO : Compute the inverse mass matrix here for twist friction
|
||||
deltaLambda = -Jv * (1.0 / K);
|
||||
frictionLimit = 0.3 * sumPenetrationImpulse; // TODO : Use constant here
|
||||
lambdaTemp = constraint.frictionTwistImpulse;
|
||||
constraint.frictionTwistImpulse = std::max(-frictionLimit, std::min(constraint.frictionTwistImpulse + deltaLambda, frictionLimit));
|
||||
deltaLambda = constraint.frictionTwistImpulse - lambdaTemp;
|
||||
|
||||
// Compute the impulse P=J^T * lambda
|
||||
linearImpulseBody1 = Vector3(0.0, 0.0, 0.0);
|
||||
angularImpulseBody1 = -constraint.normal * deltaLambda;
|
||||
linearImpulseBody2 = Vector3(0.0, 0.0, 0.0);;
|
||||
angularImpulseBody2 = constraint.normal * deltaLambda;
|
||||
const Impulse impulseTwistFriction(linearImpulseBody1, angularImpulseBody1,
|
||||
linearImpulseBody2, angularImpulseBody2);
|
||||
|
||||
// Apply the impulses to the bodies of the constraint
|
||||
applyImpulse(impulseTwistFriction, constraint);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Solve the constraints
|
||||
void ConstraintSolver::solve(decimal timeStep) {
|
||||
|
||||
mTimeStep = timeStep;
|
||||
|
||||
// Initialize the solver
|
||||
initialize();
|
||||
|
||||
initializeBodies();
|
||||
|
||||
// Fill-in all the matrices needed to solve the LCP problem
|
||||
initializeContactConstraints();
|
||||
|
||||
// Warm start the solver
|
||||
if (mIsWarmStartingActive) {
|
||||
warmStart();
|
||||
}
|
||||
|
||||
// Solve the contact constraints
|
||||
solveContactConstraints();
|
||||
|
||||
// Cache the lambda values in order to use them in the next step
|
||||
storeImpulses();
|
||||
}
|
||||
|
||||
// Store the computed impulses to use them to
|
||||
// warm start the solver at the next iteration
|
||||
void ConstraintSolver::storeImpulses() {
|
||||
|
||||
// For each constraint
|
||||
for (uint c=0; c<mNbContactConstraints; c++) {
|
||||
|
||||
ContactConstraint& constraint = mContactConstraints[c];
|
||||
|
||||
for (uint i=0; i<constraint.nbContacts; i++) {
|
||||
|
||||
ContactPointConstraint& contact = constraint.contacts[i];
|
||||
|
||||
contact.contact->setCachedLambda(0, contact.penetrationImpulse);
|
||||
contact.contact->setCachedLambda(1, contact.friction1Impulse);
|
||||
contact.contact->setCachedLambda(2, contact.friction2Impulse);
|
||||
|
||||
contact.contact->setFrictionVector1(contact.frictionVector1);
|
||||
contact.contact->setFrictionVector2(contact.frictionVector2);
|
||||
}
|
||||
|
||||
constraint.contactManifold->friction1Impulse = constraint.friction1Impulse;
|
||||
constraint.contactManifold->friction2Impulse = constraint.friction2Impulse;
|
||||
constraint.contactManifold->frictionTwistImpulse = constraint.frictionTwistImpulse;
|
||||
constraint.contactManifold->frictionVector1 = constraint.frictionVector1;
|
||||
constraint.contactManifold->frictionVector2 = constraint.frictionVector2;
|
||||
}
|
||||
}
|
||||
|
||||
// Apply an impulse to the two bodies of a constraint
|
||||
void ConstraintSolver::applyImpulse(const Impulse& impulse, const ContactConstraint& constraint) {
|
||||
|
||||
// Update the velocities of the bodies by applying the impulse P
|
||||
if (constraint.isBody1Moving) {
|
||||
mLinearVelocities[constraint.indexBody1] += constraint.massInverseBody1 *
|
||||
impulse.linearImpulseBody1;
|
||||
mAngularVelocities[constraint.indexBody1] += constraint.inverseInertiaTensorBody1 *
|
||||
impulse.angularImpulseBody1;
|
||||
}
|
||||
if (constraint.isBody2Moving) {
|
||||
mLinearVelocities[constraint.indexBody2] += constraint.massInverseBody2 *
|
||||
impulse.linearImpulseBody2;
|
||||
mAngularVelocities[constraint.indexBody2] += constraint.inverseInertiaTensorBody2 *
|
||||
impulse.angularImpulseBody2;
|
||||
}
|
||||
}
|
||||
|
||||
// Apply an impulse to the two bodies of a constraint
|
||||
void ConstraintSolver::applySplitImpulse(const Impulse& impulse, const ContactConstraint& constraint) {
|
||||
|
||||
// Update the velocities of the bodies by applying the impulse P
|
||||
if (constraint.isBody1Moving) {
|
||||
mSplitLinearVelocities[constraint.indexBody1] += constraint.massInverseBody1 *
|
||||
impulse.linearImpulseBody1;
|
||||
mSplitAngularVelocities[constraint.indexBody1] += constraint.inverseInertiaTensorBody1 *
|
||||
impulse.angularImpulseBody1;
|
||||
}
|
||||
if (constraint.isBody2Moving) {
|
||||
mSplitLinearVelocities[constraint.indexBody2] += constraint.massInverseBody2 *
|
||||
impulse.linearImpulseBody2;
|
||||
mSplitAngularVelocities[constraint.indexBody2] += constraint.inverseInertiaTensorBody2 *
|
||||
impulse.angularImpulseBody2;
|
||||
}
|
||||
}
|
||||
|
||||
// Compute the two unit orthogonal vectors "t1" and "t2" that span the tangential friction plane
|
||||
// for a contact point constraint. The two vectors have to be such that : t1 x t2 = contactNormal.
|
||||
void ConstraintSolver::computeFrictionVectors(const Vector3& deltaVelocity,
|
||||
ContactPointConstraint& contact) const {
|
||||
|
||||
// Update the old friction vectors
|
||||
//contact.oldFrictionVector1 = contact.frictionVector1;
|
||||
//contact.oldFrictionVector2 = contact.frictionVector2;
|
||||
|
||||
assert(contact.normal.length() > 0.0);
|
||||
|
||||
// Compute the velocity difference vector in the tangential plane
|
||||
Vector3 normalVelocity = deltaVelocity.dot(contact.normal) * contact.normal;
|
||||
Vector3 tangentVelocity = deltaVelocity - normalVelocity;
|
||||
|
||||
// If the velocty difference in the tangential plane is not zero
|
||||
decimal lengthTangenVelocity = tangentVelocity.length();
|
||||
if (lengthTangenVelocity > 0.0) {
|
||||
|
||||
// Compute the first friction vector in the direction of the tangent
|
||||
// velocity difference
|
||||
contact.frictionVector1 = tangentVelocity / lengthTangenVelocity;
|
||||
}
|
||||
else {
|
||||
|
||||
// Get any orthogonal vector to the normal as the first friction vector
|
||||
contact.frictionVector1 = contact.normal.getOneUnitOrthogonalVector();
|
||||
}
|
||||
|
||||
// The second friction vector is computed by the cross product of the firs
|
||||
// friction vector and the contact normal
|
||||
contact.frictionVector2 = contact.normal.cross(contact.frictionVector1).getUnit();
|
||||
}
|
||||
|
||||
// Compute the two unit orthogonal vectors "t1" and "t2" that span the tangential friction plane
|
||||
// for a contact constraint. The two vectors have to be such that : t1 x t2 = contactNormal.
|
||||
void ConstraintSolver::computeFrictionVectors(const Vector3& deltaVelocity,
|
||||
ContactConstraint& contact) const {
|
||||
|
||||
assert(contact.normal.length() > 0.0);
|
||||
|
||||
// Compute the velocity difference vector in the tangential plane
|
||||
Vector3 normalVelocity = deltaVelocity.dot(contact.normal) * contact.normal;
|
||||
Vector3 tangentVelocity = deltaVelocity - normalVelocity;
|
||||
|
||||
// If the velocty difference in the tangential plane is not zero
|
||||
decimal lengthTangenVelocity = tangentVelocity.length();
|
||||
if (lengthTangenVelocity > 0.0) {
|
||||
|
||||
// Compute the first friction vector in the direction of the tangent
|
||||
// velocity difference
|
||||
contact.frictionVector1 = tangentVelocity / lengthTangenVelocity;
|
||||
}
|
||||
else {
|
||||
|
||||
// Get any orthogonal vector to the normal as the first friction vector
|
||||
contact.frictionVector1 = contact.normal.getOneUnitOrthogonalVector();
|
||||
}
|
||||
|
||||
// The second friction vector is computed by the cross product of the firs
|
||||
// friction vector and the contact normal
|
||||
contact.frictionVector2 = contact.normal.cross(contact.frictionVector1).getUnit();
|
||||
}
|
|
@ -1,424 +0,0 @@
|
|||
/********************************************************************************
|
||||
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
|
||||
* Copyright (c) 2010-2012 Daniel Chappuis *
|
||||
*********************************************************************************
|
||||
* *
|
||||
* This software is provided 'as-is', without any express or implied warranty. *
|
||||
* In no event will the authors be held liable for any damages arising from the *
|
||||
* use of this software. *
|
||||
* *
|
||||
* Permission is granted to anyone to use this software for any purpose, *
|
||||
* including commercial applications, and to alter it and redistribute it *
|
||||
* freely, subject to the following restrictions: *
|
||||
* *
|
||||
* 1. The origin of this software must not be misrepresented; you must not claim *
|
||||
* that you wrote the original software. If you use this software in a *
|
||||
* product, an acknowledgment in the product documentation would be *
|
||||
* appreciated but is not required. *
|
||||
* *
|
||||
* 2. Altered source versions must be plainly marked as such, and must not be *
|
||||
* misrepresented as being the original software. *
|
||||
* *
|
||||
* 3. This notice may not be removed or altered from any source distribution. *
|
||||
* *
|
||||
********************************************************************************/
|
||||
|
||||
#ifndef CONSTRAINT_SOLVER_H
|
||||
#define CONSTRAINT_SOLVER_H
|
||||
|
||||
// Libraries
|
||||
#include "../constraint/Contact.h"
|
||||
#include "ContactManifold.h"
|
||||
#include "../configuration.h"
|
||||
#include "../constraint/Constraint.h"
|
||||
#include <map>
|
||||
#include <set>
|
||||
|
||||
// ReactPhysics3D namespace
|
||||
namespace reactphysics3d {
|
||||
|
||||
// Declarations
|
||||
class DynamicsWorld;
|
||||
|
||||
// Structure Impulse
|
||||
struct Impulse {
|
||||
|
||||
public:
|
||||
const Vector3& linearImpulseBody1;
|
||||
const Vector3& linearImpulseBody2;
|
||||
const Vector3& angularImpulseBody1;
|
||||
const Vector3& angularImpulseBody2;
|
||||
|
||||
// Constructor
|
||||
Impulse(const Vector3& linearImpulseBody1, const Vector3& angularImpulseBody1,
|
||||
const Vector3& linearImpulseBody2, const Vector3& angularImpulseBody2)
|
||||
: linearImpulseBody1(linearImpulseBody1), angularImpulseBody1(angularImpulseBody1),
|
||||
linearImpulseBody2(linearImpulseBody2), angularImpulseBody2(angularImpulseBody2) {
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
// Structure ContactPointConstraint
|
||||
// Internal structure for a contact point constraint
|
||||
struct ContactPointConstraint {
|
||||
|
||||
decimal penetrationImpulse; // Accumulated normal impulse
|
||||
decimal friction1Impulse; // Accumulated impulse in the 1st friction direction
|
||||
decimal friction2Impulse; // Accumulated impulse in the 2nd friction direction
|
||||
decimal penetrationSplitImpulse; // Accumulated split impulse for penetration correction
|
||||
Vector3 normal; // Normal vector of the contact
|
||||
Vector3 frictionVector1; // First friction vector in the tangent plane
|
||||
Vector3 frictionVector2; // Second friction vector in the tangent plane
|
||||
Vector3 oldFrictionVector1; // Old first friction vector in the tangent plane
|
||||
Vector3 oldFrictionVector2; // Old second friction vector in the tangent plane
|
||||
Vector3 r1; // Vector from the body 1 center to the contact point
|
||||
Vector3 r2; // Vector from the body 2 center to the contact point
|
||||
Vector3 r1CrossT1; // Cross product of r1 with 1st friction vector
|
||||
Vector3 r1CrossT2; // Cross product of r1 with 2nd friction vector
|
||||
Vector3 r2CrossT1; // Cross product of r2 with 1st friction vector
|
||||
Vector3 r2CrossT2; // Cross product of r2 with 2nd friction vector
|
||||
Vector3 r1CrossN; // Cross product of r1 with the contact normal
|
||||
Vector3 r2CrossN; // Cross product of r2 with the contact normal
|
||||
decimal penetrationDepth; // Penetration depth
|
||||
decimal restitutionBias; // Velocity restitution bias
|
||||
decimal inversePenetrationMass; // Inverse of the matrix K for the penenetration
|
||||
decimal inverseFriction1Mass; // Inverse of the matrix K for the 1st friction
|
||||
decimal inverseFriction2Mass; // Inverse of the matrix K for the 2nd friction
|
||||
bool isRestingContact; // True if the contact was existing last time step
|
||||
Contact* contact; // TODO : REMOVE THIS
|
||||
};
|
||||
|
||||
// Structure ContactConstraint
|
||||
struct ContactConstraint {
|
||||
|
||||
// TODO : Use a constant for the number of contact points
|
||||
|
||||
uint indexBody1; // Index of body 1 in the constraint solver
|
||||
uint indexBody2; // Index of body 2 in the constraint solver
|
||||
decimal massInverseBody1; // Inverse of the mass of body 1
|
||||
decimal massInverseBody2; // Inverse of the mass of body 2
|
||||
Matrix3x3 inverseInertiaTensorBody1; // Inverse inertia tensor of body 1
|
||||
Matrix3x3 inverseInertiaTensorBody2; // Inverse inertia tensor of body 2
|
||||
bool isBody1Moving; // True if the body 1 is allowed to move
|
||||
bool isBody2Moving; // True if the body 2 is allowed to move
|
||||
ContactPointConstraint contacts[4]; // Contact point constraints
|
||||
uint nbContacts; // Number of contact points
|
||||
decimal restitutionFactor; // Mix of the restitution factor for two bodies
|
||||
ContactManifold* contactManifold; // Contact manifold
|
||||
|
||||
// --- Variables used when friction constraints are apply at the center of the manifold --- //
|
||||
|
||||
Vector3 normal; // Average normal vector of the contact manifold
|
||||
Vector3 frictionPointBody1; // Point on body 1 where to apply the friction constraints
|
||||
Vector3 frictionPointBody2; // Point on body 2 where to apply the friction constraints
|
||||
Vector3 r1Friction; // R1 vector for the friction constraints
|
||||
Vector3 r2Friction; // R2 vector for the friction constraints
|
||||
Vector3 r1CrossT1; // Cross product of r1 with 1st friction vector
|
||||
Vector3 r1CrossT2; // Cross product of r1 with 2nd friction vector
|
||||
Vector3 r2CrossT1; // Cross product of r2 with 1st friction vector
|
||||
Vector3 r2CrossT2; // Cross product of r2 with 2nd friction vector
|
||||
decimal inverseFriction1Mass; // Matrix K for the first friction constraint
|
||||
decimal inverseFriction2Mass; // Matrix K for the second friction constraint
|
||||
Vector3 frictionVector1; // First friction direction at contact manifold center
|
||||
Vector3 frictionVector2; // Second friction direction at contact manifold center
|
||||
Vector3 oldFrictionVector1; // Old 1st friction direction at contact manifold center
|
||||
Vector3 oldFrictionVector2; // Old 2nd friction direction at contact manifold center
|
||||
decimal friction1Impulse; // First friction direction impulse at manifold center
|
||||
decimal friction2Impulse; // Second friction direction impulse at manifold center
|
||||
decimal frictionTwistImpulse; // Twist friction impulse at contact manifold center
|
||||
};
|
||||
|
||||
/* -------------------------------------------------------------------
|
||||
Class ConstrainSolver :
|
||||
This class represents the constraint solver that is used is solve constraints and
|
||||
rigid bodies contacts. The constraint solver is based on the "Sequential Impulse" technique
|
||||
described by Erin Catto in his GDC slides (http://code.google.com/p/box2d/downloads/list).
|
||||
|
||||
A constraint between two bodies is represented by a function C(x) which is equal to zero
|
||||
when the constraint is satisfied. The condition C(x)=0 describes a valid position and the
|
||||
condition dC(x)/dt=0 describes a valid velocity. We have dC(x)/dt = Jv + b = 0 where J is
|
||||
the Jacobian matrix of the constraint, v is a vector that contains the velocity of both
|
||||
bodies and b is the constraint bias. We are looking for a force F_c that will act on the
|
||||
bodies to keep the constraint satisfied. Note that from the virtual work principle, we have
|
||||
F_c = J^t * lambda where J^t is the transpose of the Jacobian matrix and lambda is a
|
||||
Lagrange multiplier. Therefore, finding the force F_c is equivalent to finding the Lagrange
|
||||
multiplier lambda.
|
||||
|
||||
An impulse P = F * dt where F is a force and dt is the timestep. We can apply impulses a
|
||||
body to change its velocity. The idea of the Sequential Impulse technique is to apply
|
||||
impulses to bodies of each constraints in order to keep the constraint satisfied.
|
||||
|
||||
--- Step 1 ---
|
||||
|
||||
First, we integrate the applied force F_a acting of each rigid body (like gravity, ...) and
|
||||
we obtain some new velocities v2' that tends to violate the constraints.
|
||||
|
||||
v2' = v1 + dt * M^-1 * F_a
|
||||
|
||||
where M is a matrix that contains mass and inertia tensor information.
|
||||
|
||||
--- Step 2 ---
|
||||
|
||||
During the second step, we iterate over all the constraints for a certain number of
|
||||
iterations and for each constraint we compute the impulse to apply to the bodies needed
|
||||
so that the new velocity of the bodies satisfy Jv + b = 0. From the Newton law, we know that
|
||||
M * deltaV = P_c where M is the mass of the body, deltaV is the difference of velocity and
|
||||
P_c is the constraint impulse to apply to the body. Therefore, we have
|
||||
v2 = v2' + M^-1 * P_c. For each constraint, we can compute the Lagrange multiplier lambda
|
||||
using : lambda = -m_c (Jv2' + b) where m_c = 1 / (J * M^-1 * J^t). Now that we have the
|
||||
Lagrange multiplier lambda, we can compute the impulse P_c = J^t * lambda * dt to apply to
|
||||
the bodies to satisfy the constraint.
|
||||
|
||||
--- Step 3 ---
|
||||
|
||||
In the third step, we integrate the new position x2 of the bodies using the new velocities
|
||||
v2 computed in the second step with : x2 = x1 + dt * v2.
|
||||
|
||||
Note that in the following code (as it is also explained in the slides from Erin Catto),
|
||||
the value lambda is not only the lagrange multiplier but is the multiplication of the
|
||||
Lagrange multiplier with the timestep dt. Therefore, in the following code, when we use
|
||||
lambda, we mean (lambda * dt).
|
||||
|
||||
We are using the accumulated impulse technique that is also described in the slides from
|
||||
Erin Catto.
|
||||
|
||||
We are also using warm starting. The idea is to warm start the solver at the beginning of
|
||||
each step by applying the last impulstes for the constraints that we already existing at the
|
||||
previous step. This allows the iterative solver to converge faster towards the solution.
|
||||
|
||||
For contact constraints, we are also using split impulses so that the position correction
|
||||
that uses Baumgarte stabilization does not change the momentum of the bodies.
|
||||
|
||||
There are two ways to apply the friction constraints. Either the friction constraints are
|
||||
applied at each contact point or they are applied only at the center of the contact manifold
|
||||
between two bodies. If we solve the friction constraints at each contact point, we need
|
||||
two constraints (two tangential friction directions) and if we solve the friction constraints
|
||||
at the center of the contact manifold, we need two constraints for tangential friction but
|
||||
also another twist friction constraint to prevent spin of the body around the contact
|
||||
manifold center.
|
||||
|
||||
-------------------------------------------------------------------
|
||||
*/
|
||||
class ConstraintSolver {
|
||||
|
||||
private:
|
||||
|
||||
// -------------------- Constants --------------------- //
|
||||
|
||||
// Beta value for the penetration depth position correction without split impulses
|
||||
static const decimal BETA;
|
||||
|
||||
// Beta value for the penetration depth position correction with split impulses
|
||||
static const decimal BETA_SPLIT_IMPULSE;
|
||||
|
||||
// Slop distance (allowed penetration distance between bodies)
|
||||
static const decimal SLOP;
|
||||
|
||||
// -------------------- Attributes -------------------- //
|
||||
|
||||
DynamicsWorld* world; // Reference to the world
|
||||
std::vector<Constraint*> activeConstraints; // Current active constraints in the physics world
|
||||
bool isErrorCorrectionActive; // True if error correction (with world order) is active
|
||||
uint mNbIterations; // Number of iterations of the LCP solver
|
||||
uint nbConstraints; // Total number of constraints (with the auxiliary constraints)
|
||||
uint nbBodies; // Current number of bodies in the physics world
|
||||
RigidBody* bodyMapping[NB_MAX_CONSTRAINTS][2]; // 2-dimensional array that contains the mapping of body reference
|
||||
// in the J_sp and B_sp matrices. For instance the cell bodyMapping[i][j] contains
|
||||
Vector3* mLinearVelocities; // Array of constrained linear velocities
|
||||
Vector3* mAngularVelocities; // Array of constrained angular velocities
|
||||
|
||||
// Split linear velocities for the position contact solver (split impulse)
|
||||
Vector3* mSplitLinearVelocities;
|
||||
|
||||
// Split angular velocities for the position contact solver (split impulse)
|
||||
Vector3* mSplitAngularVelocities;
|
||||
|
||||
decimal mTimeStep; // Current time step
|
||||
|
||||
// Contact constraints
|
||||
ContactConstraint* mContactConstraints;
|
||||
|
||||
// Number of contact constraints
|
||||
uint mNbContactConstraints;
|
||||
|
||||
// Constrained bodies
|
||||
std::set<RigidBody*> mConstraintBodies;
|
||||
|
||||
// Map body to index
|
||||
std::map<RigidBody*, uint> mMapBodyToIndex;
|
||||
|
||||
// True if the warm starting of the solver is active
|
||||
bool mIsWarmStartingActive;
|
||||
|
||||
// True if the split impulse position correction is active
|
||||
bool mIsSplitImpulseActive;
|
||||
|
||||
// True if we solve 3 friction constraints at the contact manifold center only
|
||||
// instead of 2 friction constraints at each contact point
|
||||
bool mIsSolveFrictionAtContactManifoldCenterActive;
|
||||
|
||||
// -------------------- Methods -------------------- //
|
||||
|
||||
// Initialize the constraint solver
|
||||
void initialize();
|
||||
|
||||
// Initialize the constrained bodies
|
||||
void initializeBodies();
|
||||
|
||||
// Initialize the contact constraints before solving the system
|
||||
void initializeContactConstraints();
|
||||
|
||||
// Store the computed impulses to use them to
|
||||
// warm start the solver at the next iteration
|
||||
void storeImpulses();
|
||||
|
||||
// Warm start the solver
|
||||
void warmStart();
|
||||
|
||||
// Solve the contact constraints by applying sequential impulses
|
||||
void solveContactConstraints();
|
||||
|
||||
// Apply an impulse to the two bodies of a constraint
|
||||
void applyImpulse(const Impulse& impulse, const ContactConstraint& constraint);
|
||||
|
||||
// Apply an impulse to the two bodies of a constraint
|
||||
void applySplitImpulse(const Impulse& impulse, const ContactConstraint& constraint);
|
||||
|
||||
// Compute the collision restitution factor from the restitution factor of each body
|
||||
decimal computeMixRestitutionFactor(const RigidBody *body1, const RigidBody *body2) const;
|
||||
|
||||
// Compute the two unit orthogonal vectors "t1" and "t2" that span the tangential friction
|
||||
// plane for a contact point constraint. The two vectors have to be
|
||||
// such that : t1 x t2 = contactNormal.
|
||||
void computeFrictionVectors(const Vector3& deltaVelocity,
|
||||
ContactPointConstraint& contact) const;
|
||||
|
||||
// Compute the two unit orthogonal vectors "t1" and "t2" that span the tangential friction
|
||||
// plane for a contact constraint. The two vectors have to be
|
||||
// such that : t1 x t2 = contactNormal.
|
||||
void computeFrictionVectors(const Vector3& deltaVelocity, ContactConstraint& contact) const;
|
||||
|
||||
public:
|
||||
|
||||
// -------------------- Methods -------------------- //
|
||||
|
||||
// Constructor
|
||||
ConstraintSolver(DynamicsWorld* world);
|
||||
|
||||
// Destructor
|
||||
virtual ~ConstraintSolver();
|
||||
|
||||
// Solve the constraints
|
||||
void solve(decimal timeStep);
|
||||
|
||||
// Return true if the body is in at least one constraint
|
||||
bool isConstrainedBody(RigidBody* body) const;
|
||||
|
||||
// Return the constrained linear velocity of a body after solving the constraints
|
||||
Vector3 getConstrainedLinearVelocityOfBody(RigidBody *body);
|
||||
|
||||
// Return the split linear velocity
|
||||
Vector3 getSplitLinearVelocityOfBody(RigidBody* body);
|
||||
|
||||
// Return the constrained angular velocity of a body after solving the constraints
|
||||
Vector3 getConstrainedAngularVelocityOfBody(RigidBody* body);
|
||||
|
||||
// Return the split angular velocity
|
||||
Vector3 getSplitAngularVelocityOfBody(RigidBody* body);
|
||||
|
||||
// Clean up the constraint solver
|
||||
void cleanup();
|
||||
|
||||
// Set the number of iterations of the constraint solver
|
||||
void setNbIterationsSolver(uint nbIterations);
|
||||
|
||||
// Activate or Deactivate the split impulses for contacts
|
||||
void setIsSplitImpulseActive(bool isActive);
|
||||
|
||||
// Activate or deactivate the solving of friction constraints at the center of
|
||||
// the contact manifold instead of solving them at each contact point
|
||||
void setIsSolveFrictionAtContactManifoldCenterActive(bool isActive);
|
||||
};
|
||||
|
||||
// Return true if the body is in at least one constraint
|
||||
inline bool ConstraintSolver::isConstrainedBody(RigidBody* body) const {
|
||||
return mConstraintBodies.count(body) == 1;
|
||||
}
|
||||
|
||||
// Return the constrained linear velocity of a body after solving the constraints
|
||||
inline Vector3 ConstraintSolver::getConstrainedLinearVelocityOfBody(RigidBody* body) {
|
||||
assert(isConstrainedBody(body));
|
||||
uint indexBody = mMapBodyToIndex[body];
|
||||
return mLinearVelocities[indexBody];
|
||||
}
|
||||
|
||||
// Return the split linear velocity
|
||||
inline Vector3 ConstraintSolver::getSplitLinearVelocityOfBody(RigidBody* body) {
|
||||
assert(isConstrainedBody(body));
|
||||
uint indexBody = mMapBodyToIndex[body];
|
||||
return mSplitLinearVelocities[indexBody];
|
||||
}
|
||||
|
||||
// Return the constrained angular velocity of a body after solving the constraints
|
||||
inline Vector3 ConstraintSolver::getConstrainedAngularVelocityOfBody(RigidBody *body) {
|
||||
assert(isConstrainedBody(body));
|
||||
uint indexBody = mMapBodyToIndex[body];
|
||||
return mAngularVelocities[indexBody];
|
||||
}
|
||||
|
||||
// Return the split angular velocity
|
||||
inline Vector3 ConstraintSolver::getSplitAngularVelocityOfBody(RigidBody* body) {
|
||||
assert(isConstrainedBody(body));
|
||||
uint indexBody = mMapBodyToIndex[body];
|
||||
return mSplitAngularVelocities[indexBody];
|
||||
}
|
||||
|
||||
// Clean up the constraint solver
|
||||
inline void ConstraintSolver::cleanup() {
|
||||
mMapBodyToIndex.clear();
|
||||
mConstraintBodies.clear();
|
||||
activeConstraints.clear();
|
||||
|
||||
if (mContactConstraints != 0) {
|
||||
delete[] mContactConstraints;
|
||||
mContactConstraints = 0;
|
||||
}
|
||||
if (mLinearVelocities != 0) {
|
||||
delete[] mLinearVelocities;
|
||||
mLinearVelocities = 0;
|
||||
}
|
||||
if (mAngularVelocities != 0) {
|
||||
delete[] mAngularVelocities;
|
||||
mAngularVelocities = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// Set the number of iterations of the constraint solver
|
||||
inline void ConstraintSolver::setNbIterationsSolver(uint nbIterations) {
|
||||
mNbIterations = nbIterations;
|
||||
}
|
||||
|
||||
// Activate or Deactivate the split impulses for contacts
|
||||
inline void ConstraintSolver::setIsSplitImpulseActive(bool isActive) {
|
||||
mIsSplitImpulseActive = isActive;
|
||||
}
|
||||
|
||||
// Activate or deactivate the solving of friction constraints at the center of
|
||||
// the contact manifold instead of solving them at each contact point
|
||||
inline void ConstraintSolver::setIsSolveFrictionAtContactManifoldCenterActive(bool isActive) {
|
||||
mIsSolveFrictionAtContactManifoldCenterActive = isActive;
|
||||
}
|
||||
|
||||
// Compute the collision restitution factor from the restitution factor of each body
|
||||
inline decimal ConstraintSolver::computeMixRestitutionFactor(const RigidBody* body1,
|
||||
const RigidBody* body2) const {
|
||||
decimal restitution1 = body1->getRestitution();
|
||||
decimal restitution2 = body2->getRestitution();
|
||||
|
||||
// Return the largest restitution factor
|
||||
return (restitution1 > restitution2) ? restitution1 : restitution2;
|
||||
}
|
||||
|
||||
} // End of ReactPhysics3D namespace
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user