reactphysics3d/src/engine/Timer.h
2012-12-11 23:09:54 +01:00

226 lines
7.1 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
* Copyright (c) 2010-2012 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef TIMER_H
#define TIMER_H
// Libraries
#include <stdexcept>
#include <iostream>
#include <ctime>
#include <cassert>
#include "../configuration.h"
#if defined(WINDOWS_OS) // For Windows platform
#include <windows.h>
#else // For Mac OS or Linux platform
#include <sys/time.h>
#endif
// Namespace ReactPhysics3D
namespace reactphysics3d {
/* -------------------------------------------------------------------
Class Timer :
This class will take care of the time in the physics engine. It
uses fuunctions that depend on the current platform to get the
current time.
-------------------------------------------------------------------
*/
class Timer {
private :
// -------------------- Attributes -------------------- //
// Timestep dt of the physics engine (timestep > 0.0)
double mTimeStep;
// Current time of the physics engine
long double mTime;
// Last time the timer has been updated
long double mLastUpdateTime;
// Time difference between the two last timer update() calls
long double mDeltaTime;
// Used to fix the time step and avoid strange time effects
double mAccumulator;
// True if the timer is running
bool mIsRunning;
// -------------------- Methods -------------------- //
// Private copy-constructor
Timer(const Timer& timer);
// Private assignment operator
Timer& operator=(const Timer& timer);
public :
// -------------------- Methods -------------------- //
// Constructor
Timer(double timeStep);
// Destructor
virtual ~Timer();
// Return the timestep of the physics engine
double getTimeStep() const;
// Set the timestep of the physics engine
void setTimeStep(double timeStep);
// Return the current time
long double getTime() const;
// Start the timer
void start();
// Stop the timer
void stop();
// Return true if the timer is running
bool getIsRunning() const;
// True if it's possible to take a new step
bool isPossibleToTakeStep() const;
// Compute the time since the last update() call and add it to the accumulator
void update();
// Take a new step => update the timer by adding the timeStep value to the current time
void nextStep();
// Compute the interpolation factor
double computeInterpolationFactor();
};
// Return the timestep of the physics engine
inline double Timer::getTimeStep() const {
return mTimeStep;
}
// Set the timestep of the physics engine
inline void Timer::setTimeStep(double timeStep) {
assert(timeStep > 0.0f);
mTimeStep = timeStep;
}
// Return the current time
inline long double Timer::getTime() const {
return mTime;
}
// Return if the timer is running
inline bool Timer::getIsRunning() const {
return mIsRunning;
}
// Start the timer
inline void Timer::start() {
if (!mIsRunning) {
#if defined(WINDOWS_OS)
LARGE_INTEGER ticksPerSecond;
LARGE_INTEGER ticks;
QueryPerformanceFrequency(&ticksPerSecond);
QueryPerformanceCounter(&ticks);
mLastUpdateTime = double(ticks.QuadPart) / double(ticksPerSecond.QuadPart);
#else
// Initialize the lastUpdateTime with the current time in seconds
timeval timeValue;
gettimeofday(&timeValue, NULL);
mLastUpdateTime = timeValue.tv_sec + (timeValue.tv_usec / 1000000.0);
#endif
mAccumulator = 0.0;
mIsRunning = true;
}
}
// Stop the timer
inline void Timer::stop() {
std::cout << "Timer stop" << std::endl;
mIsRunning = false;
}
// True if it's possible to take a new step
inline bool Timer::isPossibleToTakeStep() const {
return (mAccumulator >= mTimeStep);
}
// Take a new step => update the timer by adding the timeStep value to the current time
inline void Timer::nextStep() {
assert(mIsRunning);
// Update the current time of the physics engine
mTime += mTimeStep;
// Update the accumulator value
mAccumulator -= mTimeStep;
}
// Compute the interpolation factor
inline double Timer::computeInterpolationFactor() {
return (mAccumulator / mTimeStep);
}
// Compute the time since the last update() call and add it to the accumulator
inline void Timer::update() {
long double currentTime;
#if defined(WINDOWS_OS)
LARGE_INTEGER ticksPerSecond;
LARGE_INTEGER ticks;
QueryPerformanceFrequency(&ticksPerSecond);
QueryPerformanceCounter(&ticks);
currentTime = double(ticks.QuadPart) / double(ticksPerSecond.QuadPart);
#else
// Compute the current time is seconds
timeval timeValue;
gettimeofday(&timeValue, NULL);
currentTime = timeValue.tv_sec + (timeValue.tv_usec / 1000000.0);
#endif
// Compute the delta display time between two display frames
mDeltaTime = currentTime - mLastUpdateTime;
// Update the current display time
mLastUpdateTime = currentTime;
// Update the accumulator value
mAccumulator += mDeltaTime;
}
} // End of the ReactPhysics3D namespace
#endif