reactphysics3d/src/body/CollisionBody.cpp
2020-05-11 11:13:26 +02:00

454 lines
18 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2019 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
// Libraries
#include <reactphysics3d/body/CollisionBody.h>
#include <reactphysics3d/engine/PhysicsCommon.h>
#include <reactphysics3d/engine/PhysicsWorld.h>
#include <reactphysics3d/collision/ContactManifold.h>
#include <reactphysics3d/collision/RaycastInfo.h>
#include <reactphysics3d/utils/Logger.h>
// We want to use the ReactPhysics3D namespace
using namespace reactphysics3d;
// Constructor
/**
* @param transform The transform of the body
* @param world The physics world where the body is created
* @param id ID of the body
*/
CollisionBody::CollisionBody(PhysicsWorld& world, Entity entity)
: mEntity(entity), mWorld(world) {
#ifdef IS_PROFILING_ACTIVE
mProfiler = nullptr;
#endif
}
// Destructor
CollisionBody::~CollisionBody() {
}
// Create a new collider and add it to the body
/// This method will return a pointer to a new collider. A collider is
/// an object with a collision shape that is attached to a body. It is possible to
/// attach multiple colliders to a given body. You can use the
/// returned collider to get and set information about the corresponding
/// collision shape for that body.
/**
* @param collisionShape A pointer to the collision shape of the new collider
* @param transform The transformation of the collider that transforms the
* local-space of the collider into the local-space of the body
* @return A pointer to the collider that has been created
*/
Collider* CollisionBody::addCollider(CollisionShape* collisionShape, const Transform& transform) {
// Create a new entity for the collider
Entity colliderEntity = mWorld.mEntityManager.createEntity();
// Create a new collider to attach the collision shape to the body
Collider* collider = new (mWorld.mMemoryManager.allocate(MemoryManager::AllocationType::Pool,
sizeof(Collider))) Collider(colliderEntity, this, mWorld.mMemoryManager);
// Add the collider component to the entity of the body
Vector3 localBoundsMin;
Vector3 localBoundsMax;
// TODO : Maybe this method can directly returns an AABB
collisionShape->getLocalBounds(localBoundsMin, localBoundsMax);
const Transform localToWorldTransform = mWorld.mTransformComponents.getTransform(mEntity) * transform;
ColliderComponents::ColliderComponent colliderComponent(mEntity, collider,
AABB(localBoundsMin, localBoundsMax),
transform, collisionShape, 0x0001, 0xFFFF, localToWorldTransform);
bool isActive = mWorld.mCollisionBodyComponents.getIsActive(mEntity);
mWorld.mCollidersComponents.addComponent(colliderEntity, !isActive, colliderComponent);
mWorld.mCollisionBodyComponents.addColliderToBody(mEntity, colliderEntity);
// Assign the collider with the collision shape
collisionShape->addCollider(collider);
#ifdef IS_PROFILING_ACTIVE
// Set the profiler
collider->setProfiler(mProfiler);
#endif
// Compute the world-space AABB of the new collision shape
AABB aabb;
collisionShape->computeAABB(aabb, mWorld.mTransformComponents.getTransform(mEntity) * transform);
// Notify the collision detection about this new collision shape
mWorld.mCollisionDetection.addCollider(collider, aabb);
RP3D_LOG(mWorld.mConfig.worldName, Logger::Level::Information, Logger::Category::Body,
"Body " + std::to_string(mEntity.id) + ": Collider " + std::to_string(collider->getBroadPhaseId()) + " added to body", __FILE__, __LINE__);
RP3D_LOG(mWorld.mConfig.worldName, Logger::Level::Information, Logger::Category::Collider,
"Collider " + std::to_string(collider->getBroadPhaseId()) + ": collisionShape=" +
collider->getCollisionShape()->to_string(), __FILE__, __LINE__);
// Return a pointer to the collision shape
return collider;
}
// Return the number of colliders associated with this body
/**
* @return The number of colliders associated with this body
*/
uint CollisionBody::getNbColliders() const {
return static_cast<uint>(mWorld.mCollisionBodyComponents.getColliders(mEntity).size());
}
// Return a const pointer to a given collider of the body
/**
* @param index Index of a Collider of the body
* @return The const pointer of a given collider of the body
*/
const Collider* CollisionBody::getCollider(uint colliderIndex) const {
assert(colliderIndex < getNbColliders());
Entity colliderEntity = mWorld.mCollisionBodyComponents.getColliders(mEntity)[colliderIndex];
return mWorld.mCollidersComponents.getCollider(colliderEntity);
}
// Return a pointer to a given collider of the body
/**
* @param index Index of a Collider of the body
* @return The pointer of a given collider of the body
*/
Collider* CollisionBody::getCollider(uint colliderIndex) {
assert(colliderIndex < getNbColliders());
Entity colliderEntity = mWorld.mCollisionBodyComponents.getColliders(mEntity)[colliderIndex];
return mWorld.mCollidersComponents.getCollider(colliderEntity);
}
// Remove a collider from the body
/// To remove a collider, you need to specify its pointer
/**
* @param collider The pointer of the collider you want to remove
*/
void CollisionBody::removeCollider(Collider* collider) {
RP3D_LOG(mWorld.mConfig.worldName, Logger::Level::Information, Logger::Category::Body,
"Body " + std::to_string(mEntity.id) + ": Collider " + std::to_string(collider->getBroadPhaseId()) + " removed from body", __FILE__, __LINE__);
// Remove the collider from the broad-phase
if (collider->getBroadPhaseId() != -1) {
mWorld.mCollisionDetection.removeCollider(collider);
}
mWorld.mCollisionBodyComponents.removeColliderFromBody(mEntity, collider->getEntity());
// Unassign the collider from the collision shape
collider->getCollisionShape()->removeCollider(collider);
// Remove the collider component
mWorld.mCollidersComponents.removeComponent(collider->getEntity());
// Destroy the entity
mWorld.mEntityManager.destroyEntity(collider->getEntity());
// Call the constructor of the collider
collider->~Collider();
// Release allocated memory for the collider
mWorld.mMemoryManager.release(MemoryManager::AllocationType::Pool, collider, sizeof(Collider));
}
// Remove all the colliders
void CollisionBody::removeAllColliders() {
// Look for the collider that contains the collision shape in parameter.
// Note that we need to copy the list of collider entities because we are deleting them in a loop.
const List<Entity> collidersEntities = mWorld.mCollisionBodyComponents.getColliders(mEntity);
for (uint i=0; i < collidersEntities.size(); i++) {
removeCollider(mWorld.mCollidersComponents.getCollider(collidersEntities[i]));
}
}
// Return the current position and orientation
/**
* @return The current transformation of the body that transforms the local-space
* of the body into world-space
*/
const Transform& CollisionBody::getTransform() const {
return mWorld.mTransformComponents.getTransform(mEntity);
}
// Update the broad-phase state for this body (because it has moved for instance)
void CollisionBody::updateBroadPhaseState(decimal timeStep) const {
// For all the colliders of the body
const List<Entity>& colliderEntities = mWorld.mCollisionBodyComponents.getColliders(mEntity);
for (uint i=0; i < colliderEntities.size(); i++) {
// Update the local-to-world transform of the collider
mWorld.mCollidersComponents.setLocalToWorldTransform(colliderEntities[i],
mWorld.mTransformComponents.getTransform(mEntity) *
mWorld.mCollidersComponents.getLocalToBodyTransform(colliderEntities[i]));
// Update the collider
mWorld.mCollisionDetection.updateCollider(colliderEntities[i], timeStep);
}
}
// Set whether or not the body is active
/**
* @param isActive True if you want to activate the body
*/
void CollisionBody::setIsActive(bool isActive) {
// If the state does not change
if (mWorld.mCollisionBodyComponents.getIsActive(mEntity) == isActive) return;
mWorld.mCollisionBodyComponents.setIsActive(mEntity, isActive);
// If we have to activate the body
if (isActive) {
const Transform& transform = mWorld.mTransformComponents.getTransform(mEntity);
// For each collider of the body
const List<Entity>& colliderEntities = mWorld.mCollisionBodyComponents.getColliders(mEntity);
for (uint i=0; i < colliderEntities.size(); i++) {
Collider* collider = mWorld.mCollidersComponents.getCollider(colliderEntities[i]);
// Compute the world-space AABB of the new collision shape
AABB aabb;
collider->getCollisionShape()->computeAABB(aabb, transform * mWorld.mCollidersComponents.getLocalToBodyTransform(collider->getEntity()));
// Add the collider to the collision detection
mWorld.mCollisionDetection.addCollider(collider, aabb);
}
}
else { // If we have to deactivate the body
// For each collider of the body
const List<Entity>& colliderEntities = mWorld.mCollisionBodyComponents.getColliders(mEntity);
for (uint i=0; i < colliderEntities.size(); i++) {
Collider* collider = mWorld.mCollidersComponents.getCollider(colliderEntities[i]);
if (collider->getBroadPhaseId() != -1) {
// Remove the collider from the collision detection
mWorld.mCollisionDetection.removeCollider(collider);
}
}
}
RP3D_LOG(mWorld.mConfig.worldName, Logger::Level::Information, Logger::Category::Body,
"Body " + std::to_string(mEntity.id) + ": Set isActive=" +
(isActive ? "true" : "false"), __FILE__, __LINE__);
}
// Ask the broad-phase to test again the collision shapes of the body for collision
// (as if the body has moved).
void CollisionBody::askForBroadPhaseCollisionCheck() const {
// For all the colliders of the body
const List<Entity>& colliderEntities = mWorld.mCollisionBodyComponents.getColliders(mEntity);
for (uint i=0; i < colliderEntities.size(); i++) {
Collider* collider = mWorld.mCollidersComponents.getCollider(colliderEntities[i]);
mWorld.mCollisionDetection.askForBroadPhaseCollisionCheck(collider);
}
}
// Return true if a point is inside the collision body
/// This method returns true if a point is inside any collision shape of the body
/**
* @param worldPoint The point to test (in world-space coordinates)
* @return True if the point is inside the body
*/
bool CollisionBody::testPointInside(const Vector3& worldPoint) const {
// For each collider of the body
const List<Entity>& colliderEntities = mWorld.mCollisionBodyComponents.getColliders(mEntity);
for (uint i=0; i < colliderEntities.size(); i++) {
Collider* collider = mWorld.mCollidersComponents.getCollider(colliderEntities[i]);
// Test if the point is inside the collider
if (collider->testPointInside(worldPoint)) return true;
}
return false;
}
// Raycast method with feedback information
/// The method returns the closest hit among all the collision shapes of the body
/**
* @param ray The ray used to raycast agains the body
* @param[out] raycastInfo Structure that contains the result of the raycasting
* (valid only if the method returned true)
* @return True if the ray hit the body and false otherwise
*/
bool CollisionBody::raycast(const Ray& ray, RaycastInfo& raycastInfo) {
// If the body is not active, it cannot be hit by rays
if (!mWorld.mCollisionBodyComponents.getIsActive(mEntity)) return false;
bool isHit = false;
Ray rayTemp(ray);
// For each collider of the body
const List<Entity>& colliderEntities = mWorld.mCollisionBodyComponents.getColliders(mEntity);
for (uint i=0; i < colliderEntities.size(); i++) {
Collider* collider = mWorld.mCollidersComponents.getCollider(colliderEntities[i]);
// Test if the ray hits the collider
if (collider->raycast(rayTemp, raycastInfo)) {
rayTemp.maxFraction = raycastInfo.hitFraction;
isHit = true;
}
}
return isHit;
}
// Compute and return the AABB of the body by merging all colliders AABBs
/**
* @return The axis-aligned bounding box (AABB) of the body in world-space coordinates
*/
AABB CollisionBody::getAABB() const {
AABB bodyAABB;
const List<Entity>& colliderEntities = mWorld.mCollisionBodyComponents.getColliders(mEntity);
if (colliderEntities.size() == 0) return bodyAABB;
const Transform& transform = mWorld.mTransformComponents.getTransform(mEntity);
Collider* collider = mWorld.mCollidersComponents.getCollider(colliderEntities[0]);
collider->getCollisionShape()->computeAABB(bodyAABB, transform * collider->getLocalToBodyTransform());
// For each collider of the body
for (uint i=1; i < colliderEntities.size(); i++) {
Collider* collider = mWorld.mCollidersComponents.getCollider(colliderEntities[i]);
// Compute the world-space AABB of the collider
AABB aabb;
collider->getCollisionShape()->computeAABB(aabb, transform * collider->getLocalToBodyTransform());
// Merge the collider AABB with the current body AABB
bodyAABB.mergeWithAABB(aabb);
}
return bodyAABB;
}
// Set the current position and orientation
/**
* @param transform The transformation of the body that transforms the local-space
* of the body into world-space
*/
void CollisionBody::setTransform(const Transform& transform) {
// Update the transform of the body
mWorld.mTransformComponents.setTransform(mEntity, transform);
// Update the broad-phase state of the body
updateBroadPhaseState(0);
RP3D_LOG(mWorld.mConfig.worldName, Logger::Level::Information, Logger::Category::Body,
"Body " + std::to_string(mEntity.id) + ": Set transform=" + transform.to_string(), __FILE__, __LINE__);
}
// Return true if the body is active
/**
* @return True if the body currently active and false otherwise
*/
bool CollisionBody::isActive() const {
return mWorld.mCollisionBodyComponents.getIsActive(mEntity);
}
// Return a pointer to the user data attached to this body
/**
* @return A pointer to the user data you have attached to the body
*/
void* CollisionBody::getUserData() const {
return mWorld.mCollisionBodyComponents.getUserData(mEntity);
}
// Attach user data to this body
/**
* @param userData A pointer to the user data you want to attach to the body
*/
void CollisionBody::setUserData(void* userData) {
mWorld.mCollisionBodyComponents.setUserData(mEntity, userData);
}
// Return the world-space coordinates of a point given the local-space coordinates of the body
/**
* @param localPoint A point in the local-space coordinates of the body
* @return The point in world-space coordinates
*/
Vector3 CollisionBody::getWorldPoint(const Vector3& localPoint) const {
return mWorld.mTransformComponents.getTransform(mEntity) * localPoint;
}
// Return the world-space vector of a vector given in local-space coordinates of the body
/**
* @param localVector A vector in the local-space coordinates of the body
* @return The vector in world-space coordinates
*/
Vector3 CollisionBody::getWorldVector(const Vector3& localVector) const {
return mWorld.mTransformComponents.getTransform(mEntity).getOrientation() * localVector;
}
// Return the body local-space coordinates of a point given in the world-space coordinates
/**
* @param worldPoint A point in world-space coordinates
* @return The point in the local-space coordinates of the body
*/
Vector3 CollisionBody::getLocalPoint(const Vector3& worldPoint) const {
return mWorld.mTransformComponents.getTransform(mEntity).getInverse() * worldPoint;
}
// Return the body local-space coordinates of a vector given in the world-space coordinates
/**
* @param worldVector A vector in world-space coordinates
* @return The vector in the local-space coordinates of the body
*/
Vector3 CollisionBody::getLocalVector(const Vector3& worldVector) const {
return mWorld.mTransformComponents.getTransform(mEntity).getOrientation().getInverse() * worldVector;
}