353 lines
15 KiB
C++
353 lines
15 KiB
C++
/********************************************************************************
|
|
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
|
|
* Copyright (c) 2010-2016 Daniel Chappuis *
|
|
*********************************************************************************
|
|
* *
|
|
* This software is provided 'as-is', without any express or implied warranty. *
|
|
* In no event will the authors be held liable for any damages arising from the *
|
|
* use of this software. *
|
|
* *
|
|
* Permission is granted to anyone to use this software for any purpose, *
|
|
* including commercial applications, and to alter it and redistribute it *
|
|
* freely, subject to the following restrictions: *
|
|
* *
|
|
* 1. The origin of this software must not be misrepresented; you must not claim *
|
|
* that you wrote the original software. If you use this software in a *
|
|
* product, an acknowledgment in the product documentation would be *
|
|
* appreciated but is not required. *
|
|
* *
|
|
* 2. Altered source versions must be plainly marked as such, and must not be *
|
|
* misrepresented as being the original software. *
|
|
* *
|
|
* 3. This notice may not be removed or altered from any source distribution. *
|
|
* *
|
|
********************************************************************************/
|
|
|
|
// Libraries
|
|
#include "FixedJoint.h"
|
|
#include "engine/ConstraintSolver.h"
|
|
|
|
using namespace reactphysics3d;
|
|
|
|
// Static variables definition
|
|
const decimal FixedJoint::BETA = decimal(0.2);
|
|
|
|
// Constructor
|
|
FixedJoint::FixedJoint(const FixedJointInfo& jointInfo)
|
|
: Joint(jointInfo), mImpulseTranslation(0, 0, 0), mImpulseRotation(0, 0, 0) {
|
|
|
|
// Compute the local-space anchor point for each body
|
|
const Transform& transform1 = mBody1->getTransform();
|
|
const Transform& transform2 = mBody2->getTransform();
|
|
mLocalAnchorPointBody1 = transform1.getInverse() * jointInfo.anchorPointWorldSpace;
|
|
mLocalAnchorPointBody2 = transform2.getInverse() * jointInfo.anchorPointWorldSpace;
|
|
|
|
// Store inverse of initial rotation from body 1 to body 2 in body 1 space:
|
|
//
|
|
// q20 = q10 r0
|
|
// <=> r0 = q10^-1 q20
|
|
// <=> r0^-1 = q20^-1 q10
|
|
//
|
|
// where:
|
|
//
|
|
// q20 = initial orientation of body 2
|
|
// q10 = initial orientation of body 1
|
|
// r0 = initial rotation rotation from body 1 to body 2
|
|
mInitOrientationDifferenceInv = transform2.getOrientation().getInverse() * transform1.getOrientation();
|
|
}
|
|
|
|
// Initialize before solving the constraint
|
|
void FixedJoint::initBeforeSolve(const ConstraintSolverData& constraintSolverData) {
|
|
|
|
// Initialize the bodies index in the velocity array
|
|
mIndexBody1 = constraintSolverData.mapBodyToConstrainedVelocityIndex.find(mBody1)->second;
|
|
mIndexBody2 = constraintSolverData.mapBodyToConstrainedVelocityIndex.find(mBody2)->second;
|
|
|
|
// Get the bodies positions and orientations
|
|
const Vector3& x1 = mBody1->mCenterOfMassWorld;
|
|
const Vector3& x2 = mBody2->mCenterOfMassWorld;
|
|
const Quaternion& orientationBody1 = mBody1->getTransform().getOrientation();
|
|
const Quaternion& orientationBody2 = mBody2->getTransform().getOrientation();
|
|
|
|
// Get the inertia tensor of bodies
|
|
mI1 = mBody1->getInertiaTensorInverseWorld();
|
|
mI2 = mBody2->getInertiaTensorInverseWorld();
|
|
|
|
// Compute the vector from body center to the anchor point in world-space
|
|
mR1World = orientationBody1 * mLocalAnchorPointBody1;
|
|
mR2World = orientationBody2 * mLocalAnchorPointBody2;
|
|
|
|
// Compute the corresponding skew-symmetric matrices
|
|
Matrix3x3 skewSymmetricMatrixU1= Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(mR1World);
|
|
Matrix3x3 skewSymmetricMatrixU2= Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(mR2World);
|
|
|
|
// Compute the matrix K=JM^-1J^t (3x3 matrix) for the 3 translation constraints
|
|
decimal inverseMassBodies = mBody1->mMassInverse + mBody2->mMassInverse;
|
|
Matrix3x3 massMatrix = Matrix3x3(inverseMassBodies, 0, 0,
|
|
0, inverseMassBodies, 0,
|
|
0, 0, inverseMassBodies) +
|
|
skewSymmetricMatrixU1 * mI1 * skewSymmetricMatrixU1.getTranspose() +
|
|
skewSymmetricMatrixU2 * mI2 * skewSymmetricMatrixU2.getTranspose();
|
|
|
|
// Compute the inverse mass matrix K^-1 for the 3 translation constraints
|
|
mInverseMassMatrixTranslation.setToZero();
|
|
if (mBody1->getType() == BodyType::DYNAMIC || mBody2->getType() == BodyType::DYNAMIC) {
|
|
mInverseMassMatrixTranslation = massMatrix.getInverse();
|
|
}
|
|
|
|
// Compute the bias "b" of the constraint for the 3 translation constraints
|
|
decimal biasFactor = (BETA / constraintSolverData.timeStep);
|
|
mBiasTranslation.setToZero();
|
|
if (mPositionCorrectionTechnique == JointsPositionCorrectionTechnique::BAUMGARTE_JOINTS) {
|
|
mBiasTranslation = biasFactor * (x2 + mR2World - x1 - mR1World);
|
|
}
|
|
|
|
// Compute the inverse of the mass matrix K=JM^-1J^t for the 3 rotation
|
|
// contraints (3x3 matrix)
|
|
mInverseMassMatrixRotation = mI1 + mI2;
|
|
if (mBody1->getType() == BodyType::DYNAMIC || mBody2->getType() == BodyType::DYNAMIC) {
|
|
mInverseMassMatrixRotation = mInverseMassMatrixRotation.getInverse();
|
|
}
|
|
|
|
// Compute the bias "b" for the 3 rotation constraints
|
|
mBiasRotation.setToZero();
|
|
|
|
if (mPositionCorrectionTechnique == JointsPositionCorrectionTechnique::BAUMGARTE_JOINTS) {
|
|
const Quaternion qError = orientationBody2 * mInitOrientationDifferenceInv * orientationBody1.getInverse();
|
|
mBiasRotation = biasFactor * decimal(2.0) * qError.getVectorV();
|
|
}
|
|
|
|
// If warm-starting is not enabled
|
|
if (!constraintSolverData.isWarmStartingActive) {
|
|
|
|
// Reset the accumulated impulses
|
|
mImpulseTranslation.setToZero();
|
|
mImpulseRotation.setToZero();
|
|
}
|
|
}
|
|
|
|
// Warm start the constraint (apply the previous impulse at the beginning of the step)
|
|
void FixedJoint::warmstart(const ConstraintSolverData& constraintSolverData) {
|
|
|
|
// Get the velocities
|
|
Vector3& v1 = constraintSolverData.linearVelocities[mIndexBody1];
|
|
Vector3& v2 = constraintSolverData.linearVelocities[mIndexBody2];
|
|
Vector3& w1 = constraintSolverData.angularVelocities[mIndexBody1];
|
|
Vector3& w2 = constraintSolverData.angularVelocities[mIndexBody2];
|
|
|
|
// Get the inverse mass of the bodies
|
|
const decimal inverseMassBody1 = mBody1->mMassInverse;
|
|
const decimal inverseMassBody2 = mBody2->mMassInverse;
|
|
|
|
// Compute the impulse P=J^T * lambda for the 3 translation constraints for body 1
|
|
Vector3 linearImpulseBody1 = -mImpulseTranslation;
|
|
Vector3 angularImpulseBody1 = mImpulseTranslation.cross(mR1World);
|
|
|
|
// Compute the impulse P=J^T * lambda for the 3 rotation constraints for body 1
|
|
angularImpulseBody1 += -mImpulseRotation;
|
|
|
|
// Apply the impulse to the body 1
|
|
v1 += inverseMassBody1 * linearImpulseBody1;
|
|
w1 += mI1 * angularImpulseBody1;
|
|
|
|
// Compute the impulse P=J^T * lambda for the 3 translation constraints for body 2
|
|
Vector3 angularImpulseBody2 = -mImpulseTranslation.cross(mR2World);
|
|
|
|
// Compute the impulse P=J^T * lambda for the 3 rotation constraints for body 2
|
|
angularImpulseBody2 += mImpulseRotation;
|
|
|
|
// Apply the impulse to the body 2
|
|
v2 += inverseMassBody2 * mImpulseTranslation;
|
|
w2 += mI2 * angularImpulseBody2;
|
|
}
|
|
|
|
// Solve the velocity constraint
|
|
void FixedJoint::solveVelocityConstraint(const ConstraintSolverData& constraintSolverData) {
|
|
|
|
// Get the velocities
|
|
Vector3& v1 = constraintSolverData.linearVelocities[mIndexBody1];
|
|
Vector3& v2 = constraintSolverData.linearVelocities[mIndexBody2];
|
|
Vector3& w1 = constraintSolverData.angularVelocities[mIndexBody1];
|
|
Vector3& w2 = constraintSolverData.angularVelocities[mIndexBody2];
|
|
|
|
// Get the inverse mass of the bodies
|
|
decimal inverseMassBody1 = mBody1->mMassInverse;
|
|
decimal inverseMassBody2 = mBody2->mMassInverse;
|
|
|
|
// --------------- Translation Constraints --------------- //
|
|
|
|
// Compute J*v for the 3 translation constraints
|
|
const Vector3 JvTranslation = v2 + w2.cross(mR2World) - v1 - w1.cross(mR1World);
|
|
|
|
// Compute the Lagrange multiplier lambda
|
|
const Vector3 deltaLambda = mInverseMassMatrixTranslation *
|
|
(-JvTranslation - mBiasTranslation);
|
|
mImpulseTranslation += deltaLambda;
|
|
|
|
// Compute the impulse P=J^T * lambda for body 1
|
|
const Vector3 linearImpulseBody1 = -deltaLambda;
|
|
Vector3 angularImpulseBody1 = deltaLambda.cross(mR1World);
|
|
|
|
// Apply the impulse to the body 1
|
|
v1 += inverseMassBody1 * linearImpulseBody1;
|
|
w1 += mI1 * angularImpulseBody1;
|
|
|
|
// Compute the impulse P=J^T * lambda for body 2
|
|
const Vector3 angularImpulseBody2 = -deltaLambda.cross(mR2World);
|
|
|
|
// Apply the impulse to the body 2
|
|
v2 += inverseMassBody2 * deltaLambda;
|
|
w2 += mI2 * angularImpulseBody2;
|
|
|
|
// --------------- Rotation Constraints --------------- //
|
|
|
|
// Compute J*v for the 3 rotation constraints
|
|
const Vector3 JvRotation = w2 - w1;
|
|
|
|
// Compute the Lagrange multiplier lambda for the 3 rotation constraints
|
|
Vector3 deltaLambda2 = mInverseMassMatrixRotation * (-JvRotation - mBiasRotation);
|
|
mImpulseRotation += deltaLambda2;
|
|
|
|
// Compute the impulse P=J^T * lambda for the 3 rotation constraints for body 1
|
|
angularImpulseBody1 = -deltaLambda2;
|
|
|
|
// Apply the impulse to the body 1
|
|
w1 += mI1 * angularImpulseBody1;
|
|
|
|
// Apply the impulse to the body 2
|
|
w2 += mI2 * deltaLambda2;
|
|
}
|
|
|
|
// Solve the position constraint (for position error correction)
|
|
void FixedJoint::solvePositionConstraint(const ConstraintSolverData& constraintSolverData) {
|
|
|
|
// If the error position correction technique is not the non-linear-gauss-seidel, we do
|
|
// do not execute this method
|
|
if (mPositionCorrectionTechnique != JointsPositionCorrectionTechnique::NON_LINEAR_GAUSS_SEIDEL) return;
|
|
|
|
// Get the bodies positions and orientations
|
|
Vector3& x1 = constraintSolverData.positions[mIndexBody1];
|
|
Vector3& x2 = constraintSolverData.positions[mIndexBody2];
|
|
Quaternion& q1 = constraintSolverData.orientations[mIndexBody1];
|
|
Quaternion& q2 = constraintSolverData.orientations[mIndexBody2];
|
|
|
|
// Get the inverse mass and inverse inertia tensors of the bodies
|
|
decimal inverseMassBody1 = mBody1->mMassInverse;
|
|
decimal inverseMassBody2 = mBody2->mMassInverse;
|
|
|
|
// Recompute the inverse inertia tensors
|
|
mI1 = mBody1->getInertiaTensorInverseWorld();
|
|
mI2 = mBody2->getInertiaTensorInverseWorld();
|
|
|
|
// Compute the vector from body center to the anchor point in world-space
|
|
mR1World = q1 * mLocalAnchorPointBody1;
|
|
mR2World = q2 * mLocalAnchorPointBody2;
|
|
|
|
// Compute the corresponding skew-symmetric matrices
|
|
Matrix3x3 skewSymmetricMatrixU1= Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(mR1World);
|
|
Matrix3x3 skewSymmetricMatrixU2= Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(mR2World);
|
|
|
|
// --------------- Translation Constraints --------------- //
|
|
|
|
// Compute the matrix K=JM^-1J^t (3x3 matrix) for the 3 translation constraints
|
|
decimal inverseMassBodies = mBody1->mMassInverse + mBody2->mMassInverse;
|
|
Matrix3x3 massMatrix = Matrix3x3(inverseMassBodies, 0, 0,
|
|
0, inverseMassBodies, 0,
|
|
0, 0, inverseMassBodies) +
|
|
skewSymmetricMatrixU1 * mI1 * skewSymmetricMatrixU1.getTranspose() +
|
|
skewSymmetricMatrixU2 * mI2 * skewSymmetricMatrixU2.getTranspose();
|
|
mInverseMassMatrixTranslation.setToZero();
|
|
if (mBody1->getType() == BodyType::DYNAMIC || mBody2->getType() == BodyType::DYNAMIC) {
|
|
mInverseMassMatrixTranslation = massMatrix.getInverse();
|
|
}
|
|
|
|
// Compute position error for the 3 translation constraints
|
|
const Vector3 errorTranslation = x2 + mR2World - x1 - mR1World;
|
|
|
|
// Compute the Lagrange multiplier lambda
|
|
const Vector3 lambdaTranslation = mInverseMassMatrixTranslation * (-errorTranslation);
|
|
|
|
// Compute the impulse of body 1
|
|
Vector3 linearImpulseBody1 = -lambdaTranslation;
|
|
Vector3 angularImpulseBody1 = lambdaTranslation.cross(mR1World);
|
|
|
|
// Compute the pseudo velocity of body 1
|
|
const Vector3 v1 = inverseMassBody1 * linearImpulseBody1;
|
|
Vector3 w1 = mI1 * angularImpulseBody1;
|
|
|
|
// Update the body position/orientation of body 1
|
|
x1 += v1;
|
|
q1 += Quaternion(0, w1) * q1 * decimal(0.5);
|
|
q1.normalize();
|
|
|
|
// Compute the impulse of body 2
|
|
Vector3 angularImpulseBody2 = -lambdaTranslation.cross(mR2World);
|
|
|
|
// Compute the pseudo velocity of body 2
|
|
const Vector3 v2 = inverseMassBody2 * lambdaTranslation;
|
|
Vector3 w2 = mI2 * angularImpulseBody2;
|
|
|
|
// Update the body position/orientation of body 2
|
|
x2 += v2;
|
|
q2 += Quaternion(0, w2) * q2 * decimal(0.5);
|
|
q2.normalize();
|
|
|
|
// --------------- Rotation Constraints --------------- //
|
|
|
|
// Compute the inverse of the mass matrix K=JM^-1J^t for the 3 rotation
|
|
// contraints (3x3 matrix)
|
|
mInverseMassMatrixRotation = mI1 + mI2;
|
|
if (mBody1->getType() == BodyType::DYNAMIC || mBody2->getType() == BodyType::DYNAMIC) {
|
|
mInverseMassMatrixRotation = mInverseMassMatrixRotation.getInverse();
|
|
}
|
|
|
|
// Calculate difference in rotation
|
|
//
|
|
// The rotation should be:
|
|
//
|
|
// q2 = q1 r0
|
|
//
|
|
// But because of drift the actual rotation is:
|
|
//
|
|
// q2 = qError q1 r0
|
|
// <=> qError = q2 r0^-1 q1^-1
|
|
//
|
|
// Where:
|
|
// q1 = current rotation of body 1
|
|
// q2 = current rotation of body 2
|
|
// qError = error that needs to be reduced to zero
|
|
Quaternion qError = q2 * mInitOrientationDifferenceInv * q1.getInverse();
|
|
|
|
// A quaternion can be seen as:
|
|
//
|
|
// q = [sin(theta / 2) * v, cos(theta/2)]
|
|
//
|
|
// Where:
|
|
// v = rotation vector
|
|
// theta = rotation angle
|
|
//
|
|
// If we assume theta is small (error is small) then sin(x) = x so an approximation of the error angles is:
|
|
const Vector3 errorRotation = decimal(2.0) * qError.getVectorV();
|
|
|
|
// Compute the Lagrange multiplier lambda for the 3 rotation constraints
|
|
Vector3 lambdaRotation = mInverseMassMatrixRotation * (-errorRotation);
|
|
|
|
// Compute the impulse P=J^T * lambda for the 3 rotation constraints of body 1
|
|
angularImpulseBody1 = -lambdaRotation;
|
|
|
|
// Compute the pseudo velocity of body 1
|
|
w1 = mI1 * angularImpulseBody1;
|
|
|
|
// Update the body position/orientation of body 1
|
|
q1 += Quaternion(0, w1) * q1 * decimal(0.5);
|
|
q1.normalize();
|
|
|
|
// Compute the pseudo velocity of body 2
|
|
w2 = mI2 * lambdaRotation;
|
|
|
|
// Update the body position/orientation of body 2
|
|
q2 += Quaternion(0, w2) * q2 * decimal(0.5);
|
|
q2.normalize();
|
|
}
|
|
|