reactphysics3d/src/collision/narrowphase/DefaultCollisionDispatch.h

89 lines
3.9 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2016 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef REACTPHYSICS3D_DEFAULT_COLLISION_DISPATCH_H
#define REACTPHYSICS3D_DEFAULT_COLLISION_DISPATCH_H
// Libraries
#include "CollisionDispatch.h"
#include "ConcaveVsConvexAlgorithm.h"
#include "SphereVsSphereAlgorithm.h"
#include "SphereVsConvexPolyhedronAlgorithm.h"
#include "SphereVsCapsuleAlgorithm.h"
#include "CapsuleVsCapsuleAlgorithm.h"
#include "CapsuleVsConvexPolyhedronAlgorithm.h"
#include "ConvexPolyhedronVsConvexPolyhedronAlgorithm.h"
#include "GJK/GJKAlgorithm.h"
namespace reactphysics3d {
// Class DefaultCollisionDispatch
/**
* This is the default collision dispatch configuration use in ReactPhysics3D.
* Collision dispatching decides which collision
* algorithm to use given two types of proxy collision shapes.
*/
class DefaultCollisionDispatch : public CollisionDispatch {
protected:
/// Sphere vs Sphere collision algorithm
SphereVsSphereAlgorithm mSphereVsSphereAlgorithm;
/// Capsule vs Capsule collision algorithm
CapsuleVsCapsuleAlgorithm mCapsuleVsCapsuleAlgorithm;
/// Sphere vs Capsule collision algorithm
SphereVsCapsuleAlgorithm mSphereVsCapsuleAlgorithm;
/// Sphere vs Convex Polyhedron collision algorithm
SphereVsConvexPolyhedronAlgorithm mSphereVsConvexPolyhedronAlgorithm;
/// Capsule vs Convex Polyhedron collision algorithm
CapsuleVsConvexPolyhedronAlgorithm mCapsuleVsConvexPolyhedronAlgorithm;
/// Convex Polyhedron vs Convex Polyhedron collision algorithm
ConvexPolyhedronVsConvexPolyhedronAlgorithm mConvexPolyhedronVsConvexPolyhedronAlgorithm;
public:
/// Constructor
DefaultCollisionDispatch() = default;
/// Destructor
virtual ~DefaultCollisionDispatch() override = default;
/// Select and return the narrow-phase collision detection algorithm to
/// use between two types of collision shapes.
virtual NarrowPhaseAlgorithm* selectAlgorithm(int type1, int type2) override;
};
}
#endif