reactphysics3d/src/constraint/HingeJoint.h
2016-04-11 20:15:20 +02:00

407 lines
16 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2016 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef REACTPHYSICS3D_HINGE_JOINT_H
#define REACTPHYSICS3D_HINGE_JOINT_H
// Libraries
#include "Joint.h"
#include "mathematics/mathematics.h"
namespace reactphysics3d {
// Structure HingeJointInfo
/**
* This structure is used to gather the information needed to create a hinge joint.
* This structure will be used to create the actual hinge joint.
*/
struct HingeJointInfo : public JointInfo {
public :
// -------------------- Attributes -------------------- //
/// Anchor point (in world-space coordinates)
Vector3 anchorPointWorldSpace;
/// Hinge rotation axis (in world-space coordinates)
Vector3 rotationAxisWorld;
/// True if the hinge joint limits are enabled
bool isLimitEnabled;
/// True if the hinge joint motor is enabled
bool isMotorEnabled;
/// Minimum allowed rotation angle (in radian) if limits are enabled.
/// The angle must be in the range [-2*pi, 0]
decimal minAngleLimit;
/// Maximum allowed rotation angle (in radian) if limits are enabled.
/// The angle must be in the range [0, 2*pi]
decimal maxAngleLimit;
/// Motor speed (in radian/second)
decimal motorSpeed;
/// Maximum motor torque (in Newtons * meters) that can be applied to reach
/// to desired motor speed
decimal maxMotorTorque;
/// Constructor without limits and without motor
/**
* @param rigidBody1 The first body of the joint
* @param rigidBody2 The second body of the joint
* @param initAnchorPointWorldSpace The initial anchor point in world-space
* coordinates
* @param initRotationAxisWorld The initial rotation axis in world-space
* coordinates
*/
HingeJointInfo(RigidBody* rigidBody1, RigidBody* rigidBody2,
const Vector3& initAnchorPointWorldSpace,
const Vector3& initRotationAxisWorld)
: JointInfo(rigidBody1, rigidBody2, HINGEJOINT),
anchorPointWorldSpace(initAnchorPointWorldSpace),
rotationAxisWorld(initRotationAxisWorld), isLimitEnabled(false),
isMotorEnabled(false), minAngleLimit(-1), maxAngleLimit(1),
motorSpeed(0), maxMotorTorque(0) {}
/// Constructor with limits but without motor
/**
* @param rigidBody1 The first body of the joint
* @param rigidBody2 The second body of the joint
* @param initAnchorPointWorldSpace The initial anchor point in world-space coordinates
* @param initRotationAxisWorld The intial rotation axis in world-space coordinates
* @param initMinAngleLimit The initial minimum limit angle (in radian)
* @param initMaxAngleLimit The initial maximum limit angle (in radian)
*/
HingeJointInfo(RigidBody* rigidBody1, RigidBody* rigidBody2,
const Vector3& initAnchorPointWorldSpace,
const Vector3& initRotationAxisWorld,
decimal initMinAngleLimit, decimal initMaxAngleLimit)
: JointInfo(rigidBody1, rigidBody2, HINGEJOINT),
anchorPointWorldSpace(initAnchorPointWorldSpace),
rotationAxisWorld(initRotationAxisWorld), isLimitEnabled(true),
isMotorEnabled(false), minAngleLimit(initMinAngleLimit),
maxAngleLimit(initMaxAngleLimit), motorSpeed(0),
maxMotorTorque(0) {}
/// Constructor with limits and motor
/**
* @param rigidBody1 The first body of the joint
* @param rigidBody2 The second body of the joint
* @param initAnchorPointWorldSpace The initial anchor point in world-space
* @param initRotationAxisWorld The initial rotation axis in world-space
* @param initMinAngleLimit The initial minimum limit angle (in radian)
* @param initMaxAngleLimit The initial maximum limit angle (in radian)
* @param initMotorSpeed The initial motor speed of the joint (in radian per second)
* @param initMaxMotorTorque The initial maximum motor torque (in Newtons)
*/
HingeJointInfo(RigidBody* rigidBody1, RigidBody* rigidBody2,
const Vector3& initAnchorPointWorldSpace,
const Vector3& initRotationAxisWorld,
decimal initMinAngleLimit, decimal initMaxAngleLimit,
decimal initMotorSpeed, decimal initMaxMotorTorque)
: JointInfo(rigidBody1, rigidBody2, HINGEJOINT),
anchorPointWorldSpace(initAnchorPointWorldSpace),
rotationAxisWorld(initRotationAxisWorld), isLimitEnabled(true),
isMotorEnabled(false), minAngleLimit(initMinAngleLimit),
maxAngleLimit(initMaxAngleLimit), motorSpeed(initMotorSpeed),
maxMotorTorque(initMaxMotorTorque) {}
};
// Class HingeJoint
/**
* This class represents a hinge joint that allows arbitrary rotation
* between two bodies around a single axis. This joint has one degree of freedom. It
* can be useful to simulate doors or pendulumns.
*/
class HingeJoint : public Joint {
private :
// -------------------- Constants -------------------- //
// Beta value for the bias factor of position correction
static const decimal BETA;
// -------------------- Attributes -------------------- //
/// Anchor point of body 1 (in local-space coordinates of body 1)
Vector3 mLocalAnchorPointBody1;
/// Anchor point of body 2 (in local-space coordinates of body 2)
Vector3 mLocalAnchorPointBody2;
/// Hinge rotation axis (in local-space coordinates of body 1)
Vector3 mHingeLocalAxisBody1;
/// Hinge rotation axis (in local-space coordiantes of body 2)
Vector3 mHingeLocalAxisBody2;
/// Inertia tensor of body 1 (in world-space coordinates)
Matrix3x3 mI1;
/// Inertia tensor of body 2 (in world-space coordinates)
Matrix3x3 mI2;
/// Hinge rotation axis (in world-space coordinates) computed from body 1
Vector3 mA1;
/// Vector from center of body 2 to anchor point in world-space
Vector3 mR1World;
/// Vector from center of body 2 to anchor point in world-space
Vector3 mR2World;
/// Cross product of vector b2 and a1
Vector3 mB2CrossA1;
/// Cross product of vector c2 and a1;
Vector3 mC2CrossA1;
/// Impulse for the 3 translation constraints
Vector3 mImpulseTranslation;
/// Impulse for the 2 rotation constraints
Vector2 mImpulseRotation;
/// Accumulated impulse for the lower limit constraint
decimal mImpulseLowerLimit;
/// Accumulated impulse for the upper limit constraint
decimal mImpulseUpperLimit;
/// Accumulated impulse for the motor constraint;
decimal mImpulseMotor;
/// Inverse mass matrix K=JM^-1J^t for the 3 translation constraints
Matrix3x3 mInverseMassMatrixTranslation;
/// Inverse mass matrix K=JM^-1J^t for the 2 rotation constraints
Matrix2x2 mInverseMassMatrixRotation;
/// Inverse of mass matrix K=JM^-1J^t for the limits and motor constraints (1x1 matrix)
decimal mInverseMassMatrixLimitMotor;
/// Inverse of mass matrix K=JM^-1J^t for the motor
decimal mInverseMassMatrixMotor;
/// Bias vector for the error correction for the translation constraints
Vector3 mBTranslation;
/// Bias vector for the error correction for the rotation constraints
Vector2 mBRotation;
/// Bias of the lower limit constraint
decimal mBLowerLimit;
/// Bias of the upper limit constraint
decimal mBUpperLimit;
/// Inverse of the initial orientation difference between the bodies
Quaternion mInitOrientationDifferenceInv;
/// True if the joint limits are enabled
bool mIsLimitEnabled;
/// True if the motor of the joint in enabled
bool mIsMotorEnabled;
/// Lower limit (minimum allowed rotation angle in radian)
decimal mLowerLimit;
/// Upper limit (maximum translation distance)
decimal mUpperLimit;
/// True if the lower limit is violated
bool mIsLowerLimitViolated;
/// True if the upper limit is violated
bool mIsUpperLimitViolated;
/// Motor speed (in rad/s)
decimal mMotorSpeed;
/// Maximum motor torque (in Newtons) that can be applied to reach to desired motor speed
decimal mMaxMotorTorque;
// -------------------- Methods -------------------- //
/// Private copy-constructor
HingeJoint(const HingeJoint& constraint);
/// Private assignment operator
HingeJoint& operator=(const HingeJoint& constraint);
/// Reset the limits
void resetLimits();
/// Given an angle in radian, this method returns the corresponding
/// angle in the range [-pi; pi]
decimal computeNormalizedAngle(decimal angle) const;
/// Given an "inputAngle" in the range [-pi, pi], this method returns an
/// angle (modulo 2*pi) in the range [-2*pi; 2*pi] that is closest to one of the
/// two angle limits in arguments.
decimal computeCorrespondingAngleNearLimits(decimal inputAngle, decimal lowerLimitAngle,
decimal upperLimitAngle) const;
/// Compute the current angle around the hinge axis
decimal computeCurrentHingeAngle(const Quaternion& orientationBody1,
const Quaternion& orientationBody2);
/// Return the number of bytes used by the joint
virtual size_t getSizeInBytes() const;
/// Initialize before solving the constraint
virtual void initBeforeSolve(const ConstraintSolverData& constraintSolverData);
/// Warm start the constraint (apply the previous impulse at the beginning of the step)
virtual void warmstart(const ConstraintSolverData& constraintSolverData);
/// Solve the velocity constraint
virtual void solveVelocityConstraint(const ConstraintSolverData& constraintSolverData);
/// Solve the position constraint (for position error correction)
virtual void solvePositionConstraint(const ConstraintSolverData& constraintSolverData);
public :
// -------------------- Methods -------------------- //
/// Constructor
HingeJoint(const HingeJointInfo& jointInfo);
/// Destructor
virtual ~HingeJoint();
/// Return true if the limits or the joint are enabled
bool isLimitEnabled() const;
/// Return true if the motor of the joint is enabled
bool isMotorEnabled() const;
/// Enable/Disable the limits of the joint
void enableLimit(bool isLimitEnabled);
/// Enable/Disable the motor of the joint
void enableMotor(bool isMotorEnabled);
/// Return the minimum angle limit
decimal getMinAngleLimit() const;
/// Set the minimum angle limit
void setMinAngleLimit(decimal lowerLimit);
/// Return the maximum angle limit
decimal getMaxAngleLimit() const;
/// Set the maximum angle limit
void setMaxAngleLimit(decimal upperLimit);
/// Return the motor speed
decimal getMotorSpeed() const;
/// Set the motor speed
void setMotorSpeed(decimal motorSpeed);
/// Return the maximum motor torque
decimal getMaxMotorTorque() const;
/// Set the maximum motor torque
void setMaxMotorTorque(decimal maxMotorTorque);
/// Return the intensity of the current torque applied for the joint motor
decimal getMotorTorque(decimal timeStep) const;
};
// Return true if the limits of the joint are enabled
/**
* @return True if the limits of the joint are enabled and false otherwise
*/
inline bool HingeJoint::isLimitEnabled() const {
return mIsLimitEnabled;
}
// Return true if the motor of the joint is enabled
/**
* @return True if the motor of joint is enabled and false otherwise
*/
inline bool HingeJoint::isMotorEnabled() const {
return mIsMotorEnabled;
}
// Return the minimum angle limit
/**
* @return The minimum limit angle of the joint (in radian)
*/
inline decimal HingeJoint::getMinAngleLimit() const {
return mLowerLimit;
}
// Return the maximum angle limit
/**
* @return The maximum limit angle of the joint (in radian)
*/
inline decimal HingeJoint::getMaxAngleLimit() const {
return mUpperLimit;
}
// Return the motor speed
/**
* @return The current speed of the joint motor (in radian per second)
*/
inline decimal HingeJoint::getMotorSpeed() const {
return mMotorSpeed;
}
// Return the maximum motor torque
/**
* @return The maximum torque of the joint motor (in Newtons)
*/
inline decimal HingeJoint::getMaxMotorTorque() const {
return mMaxMotorTorque;
}
// Return the intensity of the current torque applied for the joint motor
/**
* @param timeStep The current time step (in seconds)
* @return The intensity of the current torque (in Newtons) of the joint motor
*/
inline decimal HingeJoint::getMotorTorque(decimal timeStep) const {
return mImpulseMotor / timeStep;
}
// Return the number of bytes used by the joint
inline size_t HingeJoint::getSizeInBytes() const {
return sizeof(HingeJoint);
}
}
#endif