reactphysics3d/test/tests/collision/TestCollisionWorld.h

511 lines
16 KiB
C++
Executable File

/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2016 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef TEST_COLLISION_WORLD_H
#define TEST_COLLISION_WORLD_H
// Libraries
#include "reactphysics3d.h"
#include "Test.h"
/// Reactphysics3D namespace
namespace reactphysics3d {
// Enumeration for categories
enum CollisionCategory {
CATEGORY_1 = 0x0001,
CATEGORY_2 = 0x0002,
CATEGORY_3 = 0x0004
};
// Contact point collision data
struct CollisionPointData {
Vector3 localPointBody1;
Vector3 localPointBody2;
decimal penetrationDepth;
CollisionPointData(const Vector3& point1, const Vector3& point2, decimal penDepth) {
localPointBody1 = point1;
localPointBody2 = point2;
penetrationDepth = penDepth;
}
bool isContactPointSimilarTo(const Vector3& pointBody1, const Vector3& pointBody2, decimal penDepth, decimal epsilon = 0.001) {
return approxEqual(pointBody1, localPointBody1, epsilon) &&
approxEqual(pointBody2, localPointBody2, epsilon) &&
approxEqual(penetrationDepth, penDepth, epsilon);
}
};
// Contact manifold collision data
struct CollisionManifoldData {
std::vector<CollisionPointData> contactPoints;
int getNbContactPoints() const {
return contactPoints.size();
}
bool hasContactPointSimilarTo(const Vector3& localPointBody1, const Vector3& localPointBody2, decimal penetrationDepth, decimal epsilon = 0.001) {
std::vector<CollisionPointData>::iterator it;
for (it = contactPoints.begin(); it != contactPoints.end(); ++it) {
if (it->isContactPointSimilarTo(localPointBody1, localPointBody2, penetrationDepth)) {
return true;
}
}
return false;
}
};
// Collision data between two proxy shapes
struct CollisionData {
std::pair<const ProxyShape*, const ProxyShape*> proxyShapes;
std::pair<CollisionBody*, CollisionBody*> bodies;
std::vector<CollisionManifoldData> contactManifolds;
int getNbContactManifolds() const {
return contactManifolds.size();
}
int getTotalNbContactPoints() const {
int nbPoints = 0;
std::vector<CollisionManifoldData>::const_iterator it;
for (it = contactManifolds.begin(); it != contactManifolds.end(); ++it) {
nbPoints += it->getNbContactPoints();
}
return nbPoints;
}
bool hasContactPointSimilarTo(const Vector3& localPointBody1, const Vector3& localPointBody2, decimal penetrationDepth, decimal epsilon = 0.001) {
std::vector<CollisionManifoldData>::iterator it;
for (it = contactManifolds.begin(); it != contactManifolds.end(); ++it) {
if (it->hasContactPointSimilarTo(localPointBody1, localPointBody2, penetrationDepth)) {
return true;
}
}
return false;
}
};
// Class
class WorldCollisionCallback : public CollisionCallback
{
private:
std::vector<std::pair<const ProxyShape*, const ProxyShape*>> mCollisionData;
std::pair<const ProxyShape*, const ProxyShape*> getCollisionKeyPair(std::pair<const ProxyShape*, const ProxyShape*> pair) const {
if (pair.first > pair.second) {
return std::make_pair(pair.second, pair.first);
}
return pair;
}
public:
WorldCollisionCallback()
{
reset();
}
void reset()
{
mCollisionData.clear();
}
bool hasContacts() const {
return mCollisionData.size() > 0;
}
bool areProxyShapesColliding(const ProxyShape* proxyShape1, const ProxyShape* proxyShape2) {
return std::find(mCollisionData.begin(), mCollisionData.end(), getCollisionKeyPair(std::make_pair(proxyShape1, proxyShape2))) != mCollisionData.end();
}
// This method will be called for each contact
virtual void notifyContact(const CollisionCallbackInfo& collisionCallbackInfo) override {
CollisionData collisionData;
collisionData.bodies = std::make_pair(collisionCallbackInfo.body1, collisionCallbackInfo.body2);
collisionData.proxyShapes = std::make_pair(collisionCallbackInfo.proxyShape1, collisionCallbackInfo.proxyShape2);
ContactManifoldListElement* element = collisionCallbackInfo.contactManifoldElements;
while (element != nullptr) {
ContactManifold* contactManifold = element->getContactManifold();
CollisionManifoldData collisionManifold;
ContactPoint* contactPoint = contactManifold->getContactPoints();
while (contactPoint != nullptr) {
CollisionPointData collisionPoint(contactPoint->getLocalPointOnShape1(), contactPoint->getLocalPointOnShape2(), contactPoint->getPenetrationDepth());
collisionManifold.contactPoints.push_back(collisionPoint);
contactPoint = contactPoint->getNext();
}
collisionData.contactManifolds.push_back(collisionManifold);
element = element->getNext();
}
}
};
/// Overlap callback
class WorldOverlapCallback : public OverlapCallback {
private:
CollisionBody* mOverlapBody;
public:
/// Destructor
virtual ~WorldOverlapCallback() {
reset();
}
/// This method will be called for each reported overlapping bodies
virtual void notifyOverlap(CollisionBody* collisionBody) override {
}
void reset() {
mOverlapBody = nullptr;
}
bool hasOverlap() const {
return mOverlapBody != nullptr;
}
CollisionBody* getOverlapBody() {
return mOverlapBody;
}
};
// Class TestCollisionWorld
/**
* Unit test for the CollisionWorld class.
*/
class TestCollisionWorld : public Test {
private :
// ---------- Atributes ---------- //
// Physics world
CollisionWorld* mWorld;
// Bodies
CollisionBody* mBoxBody1;
CollisionBody* mBoxBody2;
CollisionBody* mSphereBody1;
CollisionBody* mSphereBody2;
// Collision shapes
BoxShape* mBoxShape1;
BoxShape* mBoxShape2;
SphereShape* mSphereShape1;
SphereShape* mSphereShape2;
// Proxy shapes
ProxyShape* mBoxProxyShape1;
ProxyShape* mBoxProxyShape2;
ProxyShape* mSphereProxyShape1;
ProxyShape* mSphereProxyShape2;
// Collision callback
WorldCollisionCallback mCollisionCallback;
// Overlap callback
WorldOverlapCallback mOverlapCallback;
public :
// ---------- Methods ---------- //
/// Constructor
TestCollisionWorld(const std::string& name) : Test(name) {
// Create the collision world
mWorld = new CollisionWorld();
// ---------- Boxes ---------- //
Transform boxTransform1(Vector3(-20, 20, 0), Quaternion::identity());
mBoxBody1 = mWorld->createCollisionBody(boxTransform1);
mBoxShape1 = new BoxShape(Vector3(3, 3, 3));
mBoxProxyShape1 = mBoxBody1->addCollisionShape(mBoxShape1, Transform::identity());
Transform boxTransform2(Vector3(-10, 20, 0), Quaternion::identity());
mBoxBody2 = mWorld->createCollisionBody(boxTransform2);
mBoxShape2 = new BoxShape(Vector3(2, 2, 2));
mBoxProxyShape2 = mBoxBody2->addCollisionShape(mBoxShape1, Transform::identity());
// ---------- Spheres ---------- //
mSphereShape1 = new SphereShape(3.0);
Transform sphereTransform1(Vector3(10, 20, 0), Quaternion::identity());
mSphereBody1 = mWorld->createCollisionBody(sphereTransform1);
mSphereProxyShape1 = mSphereBody1->addCollisionShape(mSphereShape1, Transform::identity());
mSphereShape2 = new SphereShape(5.0);
Transform sphereTransform2(Vector3(20, 20, 0), Quaternion::identity());
mSphereBody2 = mWorld->createCollisionBody(sphereTransform2);
mSphereProxyShape2 = mSphereBody2->addCollisionShape(mSphereShape2, Transform::identity());
}
/// Destructor
virtual ~TestCollisionWorld() {
delete mBoxShape1;
delete mBoxShape2;
delete mSphereShape1;
delete mSphereShape2;
delete mWorld;
}
/// Run the tests
void run() {
testNoCollisions();
testNoOverlap();
testNoAABBOverlap();
testAABBOverlap();
testSphereVsSphereCollision();
testSphereVsBoxCollision();
testMultipleCollisions();
}
void testNoCollisions() {
// All the shapes of the world are not touching when they are created.
// Here we test that at the beginning, there is no collision at all.
// ---------- Global test ---------- //
mCollisionCallback.reset();
mWorld->testCollision(&mCollisionCallback);
test(!mCollisionCallback.hasContacts());
// ---------- Single body test ---------- //
mCollisionCallback.reset();
mWorld->testCollision(mBoxBody1, &mCollisionCallback);
test(!mCollisionCallback.hasContacts());
mCollisionCallback.reset();
mWorld->testCollision(mBoxBody2, &mCollisionCallback);
test(!mCollisionCallback.hasContacts());
mCollisionCallback.reset();
mWorld->testCollision(mSphereBody1, &mCollisionCallback);
test(!mCollisionCallback.hasContacts());
mCollisionCallback.reset();
mWorld->testCollision(mSphereBody2, &mCollisionCallback);
test(!mCollisionCallback.hasContacts());
// Two bodies test
mCollisionCallback.reset();
mWorld->testCollision(mBoxBody1, mBoxBody2, &mCollisionCallback);
test(!mCollisionCallback.hasContacts());
mCollisionCallback.reset();
mWorld->testCollision(mSphereBody1, mSphereBody2, &mCollisionCallback);
test(!mCollisionCallback.hasContacts());
mCollisionCallback.reset();
mWorld->testCollision(mBoxBody1, mSphereBody1, &mCollisionCallback);
test(!mCollisionCallback.hasContacts());
mCollisionCallback.reset();
mWorld->testCollision(mBoxBody1, mSphereBody2, &mCollisionCallback);
test(!mCollisionCallback.hasContacts());
mCollisionCallback.reset();
mWorld->testCollision(mBoxBody2, mSphereBody1, &mCollisionCallback);
test(!mCollisionCallback.hasContacts());
mCollisionCallback.reset();
mWorld->testCollision(mBoxBody2, mSphereBody2, &mCollisionCallback);
test(!mCollisionCallback.hasContacts());
}
void testNoOverlap() {
// All the shapes of the world are not touching when they are created.
// Here we test that at the beginning, there is no overlap at all.
// ---------- Single body test ---------- //
mOverlapCallback.reset();
mWorld->testOverlap(mBoxBody1, &mOverlapCallback);
test(!mOverlapCallback.hasOverlap());
mOverlapCallback.reset();
mWorld->testOverlap(mBoxBody2, &mOverlapCallback);
test(!mOverlapCallback.hasOverlap());
mOverlapCallback.reset();
mWorld->testOverlap(mSphereBody1, &mOverlapCallback);
test(!mOverlapCallback.hasOverlap());
mOverlapCallback.reset();
mWorld->testOverlap(mSphereBody2, &mOverlapCallback);
test(!mOverlapCallback.hasOverlap());
// Two bodies test
test(!mWorld->testOverlap(mBoxBody1, mBoxBody2));
test(!mWorld->testOverlap(mSphereBody1, mSphereBody2));
test(!mWorld->testOverlap(mBoxBody1, mSphereBody1));
test(!mWorld->testOverlap(mBoxBody1, mSphereBody2));
test(!mWorld->testOverlap(mBoxBody2, mSphereBody1));
test(!mWorld->testOverlap(mBoxBody2, mSphereBody2));
}
void testNoAABBOverlap() {
// All the shapes of the world are not touching when they are created.
// Here we test that at the beginning, there is no AABB overlap at all.
// Two bodies test
test(!mWorld->testAABBOverlap(mBoxBody1, mBoxBody2));
test(!mWorld->testAABBOverlap(mSphereBody1, mSphereBody2));
test(!mWorld->testAABBOverlap(mBoxBody1, mSphereBody1));
test(!mWorld->testAABBOverlap(mBoxBody1, mSphereBody2));
test(!mWorld->testAABBOverlap(mBoxBody2, mSphereBody1));
test(!mWorld->testAABBOverlap(mBoxBody2, mSphereBody2));
}
void testAABBOverlap() {
// TODO : Test the CollisionWorld::testAABBOverlap() method here
}
void testSphereVsSphereCollision() {
// Move sphere 1 to collide with sphere 2
mSphereBody1->setTransform(Transform(Vector3(30, 15, 10), Quaternion::identity()));
}
void testSphereVsBoxCollision() {
// Move sphere 1 to collide with box
mSphereBody1->setTransform(Transform(Vector3(10, 5, 0), Quaternion::identity()));
// --------- Test collision with inactive bodies --------- //
mCollisionCallback.reset();
mBoxBody1->setIsActive(false);
mSphereBody1->setIsActive(false);
mSphereBody2->setIsActive(false);
mWorld->testCollision(&mCollisionCallback);
mBoxBody1->setIsActive(true);
mSphereBody1->setIsActive(true);
mSphereBody2->setIsActive(true);
// --------- Test collision with collision filtering -------- //
//mBoxProxyShape->setCollideWithMaskBits(CATEGORY_1 | CATEGORY_3);
//mSphere1ProxyShape->setCollideWithMaskBits(CATEGORY_1 | CATEGORY_2);
//mSphere2ProxyShape->setCollideWithMaskBits(CATEGORY_1);
//mCollisionCallback.reset();
//mWorld->testCollision(&mCollisionCallback);
//test(mCollisionCallback.boxCollideWithSphere1);
//test(!mCollisionCallback.sphere1CollideWithSphere2);
//// Move sphere 1 to collide with sphere 2
//mSphere1Body->setTransform(Transform(Vector3(30, 15, 10), Quaternion::identity()));
//mCollisionCallback.reset();
//mWorld->testCollision(&mCollisionCallback);
//test(!mCollisionCallback.boxCollideWithSphere1);
//test(mCollisionCallback.sphere1CollideWithSphere2);
//mBoxProxyShape->setCollideWithMaskBits(CATEGORY_2);
//mSphere1ProxyShape->setCollideWithMaskBits(CATEGORY_2);
//mSphere2ProxyShape->setCollideWithMaskBits(CATEGORY_3);
//mCollisionCallback.reset();
//mWorld->testCollision(&mCollisionCallback);
//test(!mCollisionCallback.boxCollideWithSphere1);
//test(!mCollisionCallback.sphere1CollideWithSphere2);
//// Move sphere 1 to collide with box
//mSphere1Body->setTransform(Transform(Vector3(10, 5, 0), Quaternion::identity()));
//mBoxProxyShape->setCollideWithMaskBits(0xFFFF);
//mSphere1ProxyShape->setCollideWithMaskBits(0xFFFF);
//mSphere2ProxyShape->setCollideWithMaskBits(0xFFFF);
}
void testMultipleCollisions() {
// TODO : Test collisions without categories set
// TODO : Test colliisons with categories set
// Assign collision categories to proxy shapes
//mBoxProxyShape->setCollisionCategoryBits(CATEGORY_1);
//mSphere1ProxyShape->setCollisionCategoryBits(CATEGORY_1);
//mSphere2ProxyShape->setCollisionCategoryBits(CATEGORY_2);
}
};
}
#endif