reactphysics3d/src/systems/SolveFixedJointSystem.cpp
2020-01-27 17:46:00 +01:00

537 lines
26 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2018 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
// Libraries
#include "systems/SolveFixedJointSystem.h"
#include "engine/PhysicsWorld.h"
#include "body/RigidBody.h"
using namespace reactphysics3d;
// Static variables definition
const decimal SolveFixedJointSystem::BETA = decimal(0.2);
// Constructor
SolveFixedJointSystem::SolveFixedJointSystem(PhysicsWorld& world, RigidBodyComponents& rigidBodyComponents,
TransformComponents& transformComponents,
JointComponents& jointComponents,
FixedJointComponents& fixedJointComponents)
:mWorld(world), mRigidBodyComponents(rigidBodyComponents), mTransformComponents(transformComponents),
mJointComponents(jointComponents), mFixedJointComponents(fixedJointComponents),
mTimeStep(0), mIsWarmStartingActive(true) {
}
// Initialize before solving the constraint
void SolveFixedJointSystem::initBeforeSolve() {
// For each joint
for (uint32 i=0; i < mFixedJointComponents.getNbEnabledComponents(); i++) {
const Entity jointEntity = mFixedJointComponents.mJointEntities[i];
// Get the bodies entities
const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity);
const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity);
assert(!mRigidBodyComponents.getIsEntityDisabled(body1Entity));
assert(!mRigidBodyComponents.getIsEntityDisabled(body2Entity));
// Get the inertia tensor of bodies
mFixedJointComponents.mI1[i] = RigidBody::getInertiaTensorInverseWorld(mWorld, body1Entity);
mFixedJointComponents.mI2[i] = RigidBody::getInertiaTensorInverseWorld(mWorld, body2Entity);
}
// For each joint
for (uint32 i=0; i < mFixedJointComponents.getNbEnabledComponents(); i++) {
const Entity jointEntity = mFixedJointComponents.mJointEntities[i];
// Get the bodies entities
const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity);
const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity);
const Quaternion& orientationBody1 = mTransformComponents.getTransform(body1Entity).getOrientation();
const Quaternion& orientationBody2 = mTransformComponents.getTransform(body2Entity).getOrientation();
// Compute the vector from body center to the anchor point in world-space
mFixedJointComponents.mR1World[i] = orientationBody1 * mFixedJointComponents.mLocalAnchorPointBody1[i];
mFixedJointComponents.mR2World[i] = orientationBody2 * mFixedJointComponents.mLocalAnchorPointBody2[i];
}
// For each joint
for (uint32 i=0; i < mFixedJointComponents.getNbEnabledComponents(); i++) {
const Entity jointEntity = mFixedJointComponents.mJointEntities[i];
// Get the bodies entities
const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity);
const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity);
// Compute the corresponding skew-symmetric matrices
Matrix3x3 skewSymmetricMatrixU1 = Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(mFixedJointComponents.mR1World[i]);
Matrix3x3 skewSymmetricMatrixU2 = Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(mFixedJointComponents.mR2World[i]);
const uint32 componentIndexBody1 = mRigidBodyComponents.getEntityIndex(body1Entity);
const uint32 componentIndexBody2 = mRigidBodyComponents.getEntityIndex(body2Entity);
// Compute the matrix K=JM^-1J^t (3x3 matrix) for the 3 translation constraints
const decimal body1MassInverse = mRigidBodyComponents.mInverseMasses[componentIndexBody1];
const decimal body2MassInverse = mRigidBodyComponents.mInverseMasses[componentIndexBody2];
const decimal inverseMassBodies = body1MassInverse + body2MassInverse;
Matrix3x3 massMatrix = Matrix3x3(inverseMassBodies, 0, 0,
0, inverseMassBodies, 0,
0, 0, inverseMassBodies) +
skewSymmetricMatrixU1 * mFixedJointComponents.mI1[i] * skewSymmetricMatrixU1.getTranspose() +
skewSymmetricMatrixU2 * mFixedJointComponents.mI2[i] * skewSymmetricMatrixU2.getTranspose();
// Compute the inverse mass matrix K^-1 for the 3 translation constraints
mFixedJointComponents.mInverseMassMatrixTranslation[i].setToZero();
if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC ||
mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) {
mFixedJointComponents.mInverseMassMatrixTranslation[i] = massMatrix.getInverse();
}
}
const decimal biasFactor = BETA / mTimeStep;
// For each joint
for (uint32 i=0; i < mFixedJointComponents.getNbEnabledComponents(); i++) {
const Entity jointEntity = mFixedJointComponents.mJointEntities[i];
// Get the bodies entities
const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity);
const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity);
// Get the bodies positions and orientations
const Vector3& x1 = mRigidBodyComponents.getCenterOfMassWorld(body1Entity);
const Vector3& x2 = mRigidBodyComponents.getCenterOfMassWorld(body2Entity);
const Vector3& r1World = mFixedJointComponents.mR1World[i];
const Vector3& r2World = mFixedJointComponents.mR2World[i];
// Compute the bias "b" of the constraint for the 3 translation constraints
mFixedJointComponents.mBiasTranslation[i].setToZero();
if (mJointComponents.getPositionCorrectionTechnique(jointEntity) == JointsPositionCorrectionTechnique::BAUMGARTE_JOINTS) {
mFixedJointComponents.mBiasTranslation[i] = biasFactor * (x2 + r2World - x1 - r1World);
}
}
// For each joint
for (uint32 i=0; i < mFixedJointComponents.getNbEnabledComponents(); i++) {
const Entity jointEntity = mFixedJointComponents.mJointEntities[i];
// Get the bodies entities
const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity);
const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity);
// Compute the inverse of the mass matrix K=JM^-1J^t for the 3 rotation contraints (3x3 matrix)
mFixedJointComponents.mInverseMassMatrixRotation[i] = mFixedJointComponents.mI1[i] + mFixedJointComponents.mI2[i];
if (mRigidBodyComponents.getBodyType(body1Entity) == BodyType::DYNAMIC ||
mRigidBodyComponents.getBodyType(body2Entity) == BodyType::DYNAMIC) {
mFixedJointComponents.mInverseMassMatrixRotation[i] = mFixedJointComponents.mInverseMassMatrixRotation[i].getInverse();
}
}
// For each joint
for (uint32 i=0; i < mFixedJointComponents.getNbEnabledComponents(); i++) {
const Entity jointEntity = mFixedJointComponents.mJointEntities[i];
// Get the bodies entities
const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity);
const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity);
// Compute the bias "b" for the 3 rotation constraints
mFixedJointComponents.mBiasRotation[i].setToZero();
const Quaternion& orientationBody1 = mTransformComponents.getTransform(body1Entity).getOrientation();
const Quaternion& orientationBody2 = mTransformComponents.getTransform(body2Entity).getOrientation();
if (mJointComponents.getPositionCorrectionTechnique(jointEntity) == JointsPositionCorrectionTechnique::BAUMGARTE_JOINTS) {
const Quaternion qError = orientationBody2 * mFixedJointComponents.mInitOrientationDifferenceInv[i] * orientationBody1.getInverse();
mFixedJointComponents.mBiasRotation[i] = biasFactor * decimal(2.0) * qError.getVectorV();
}
}
// If warm-starting is not enabled
if (!mIsWarmStartingActive) {
// For each joint
for (uint32 i=0; i < mFixedJointComponents.getNbEnabledComponents(); i++) {
// Reset the accumulated impulses
mFixedJointComponents.mImpulseTranslation[i].setToZero();
mFixedJointComponents.mImpulseRotation[i].setToZero();
}
}
}
// Warm start the constraint (apply the previous impulse at the beginning of the step)
void SolveFixedJointSystem::warmstart() {
// For each joint
for (uint32 i=0; i < mFixedJointComponents.getNbEnabledComponents(); i++) {
const Entity jointEntity = mFixedJointComponents.mJointEntities[i];
// Get the bodies entities
const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity);
const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity);
const uint32 componentIndexBody1 = mRigidBodyComponents.getEntityIndex(body1Entity);
const uint32 componentIndexBody2 = mRigidBodyComponents.getEntityIndex(body2Entity);
// Get the velocities
Vector3& v1 = mRigidBodyComponents.mConstrainedLinearVelocities[componentIndexBody1];
Vector3& v2 = mRigidBodyComponents.mConstrainedLinearVelocities[componentIndexBody2];
Vector3& w1 = mRigidBodyComponents.mConstrainedAngularVelocities[componentIndexBody1];
Vector3& w2 = mRigidBodyComponents.mConstrainedAngularVelocities[componentIndexBody2];
// Get the inverse mass of the bodies
const decimal inverseMassBody1 = mRigidBodyComponents.mInverseMasses[componentIndexBody1];
const decimal inverseMassBody2 = mRigidBodyComponents.mInverseMasses[componentIndexBody2];
const Vector3& impulseTranslation = mFixedJointComponents.mImpulseTranslation[i];
const Vector3& impulseRotation = mFixedJointComponents.mImpulseRotation[i];
const Vector3& r1World = mFixedJointComponents.mR1World[i];
const Vector3& r2World = mFixedJointComponents.mR2World[i];
// Compute the impulse P=J^T * lambda for the 3 translation constraints for body 1
Vector3 linearImpulseBody1 = -impulseTranslation;
Vector3 angularImpulseBody1 = impulseTranslation.cross(r1World);
// Compute the impulse P=J^T * lambda for the 3 rotation constraints for body 1
angularImpulseBody1 += -impulseRotation;
const Matrix3x3& i1 = mFixedJointComponents.mI1[i];
// Apply the impulse to the body 1
v1 += inverseMassBody1 * linearImpulseBody1;
w1 += i1 * angularImpulseBody1;
// Compute the impulse P=J^T * lambda for the 3 translation constraints for body 2
Vector3 angularImpulseBody2 = -impulseTranslation.cross(r2World);
// Compute the impulse P=J^T * lambda for the 3 rotation constraints for body 2
angularImpulseBody2 += impulseRotation;
const Matrix3x3& i2 = mFixedJointComponents.mI2[i];
// Apply the impulse to the body 2
v2 += inverseMassBody2 * impulseTranslation;
w2 += i2 * angularImpulseBody2;
}
}
// Solve the velocity constraint
void SolveFixedJointSystem::solveVelocityConstraint() {
// For each joint
for (uint32 i=0; i < mFixedJointComponents.getNbEnabledComponents(); i++) {
const Entity jointEntity = mFixedJointComponents.mJointEntities[i];
// Get the bodies entities
const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity);
const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity);
const uint32 componentIndexBody1 = mRigidBodyComponents.getEntityIndex(body1Entity);
const uint32 componentIndexBody2 = mRigidBodyComponents.getEntityIndex(body2Entity);
// Get the velocities
Vector3& v1 = mRigidBodyComponents.mConstrainedLinearVelocities[componentIndexBody1];
Vector3& v2 = mRigidBodyComponents.mConstrainedLinearVelocities[componentIndexBody2];
Vector3& w1 = mRigidBodyComponents.mConstrainedAngularVelocities[componentIndexBody1];
Vector3& w2 = mRigidBodyComponents.mConstrainedAngularVelocities[componentIndexBody2];
// Get the inverse mass of the bodies
decimal inverseMassBody1 = mRigidBodyComponents.mInverseMasses[componentIndexBody1];
decimal inverseMassBody2 = mRigidBodyComponents.mInverseMasses[componentIndexBody2];
const Vector3& r1World = mFixedJointComponents.mR1World[i];
const Vector3& r2World = mFixedJointComponents.mR2World[i];
// --------------- Translation Constraints --------------- //
// Compute J*v for the 3 translation constraints
const Vector3 JvTranslation = v2 + w2.cross(r2World) - v1 - w1.cross(r1World);
const Matrix3x3& inverseMassMatrixTranslation = mFixedJointComponents.mInverseMassMatrixTranslation[i];
// Compute the Lagrange multiplier lambda
const Vector3 deltaLambda = inverseMassMatrixTranslation * (-JvTranslation - mFixedJointComponents.mBiasTranslation[i]);
mFixedJointComponents.mImpulseTranslation[i] += deltaLambda;
// Compute the impulse P=J^T * lambda for body 1
const Vector3 linearImpulseBody1 = -deltaLambda;
Vector3 angularImpulseBody1 = deltaLambda.cross(r1World);
const Matrix3x3& i1 = mFixedJointComponents.mI1[i];
// Apply the impulse to the body 1
v1 += inverseMassBody1 * linearImpulseBody1;
w1 += i1 * angularImpulseBody1;
// Compute the impulse P=J^T * lambda for body 2
const Vector3 angularImpulseBody2 = -deltaLambda.cross(r2World);
const Matrix3x3& i2 = mFixedJointComponents.mI2[i];
// Apply the impulse to the body 2
v2 += inverseMassBody2 * deltaLambda;
w2 += i2 * angularImpulseBody2;
// --------------- Rotation Constraints --------------- //
// Compute J*v for the 3 rotation constraints
const Vector3 JvRotation = w2 - w1;
const Vector3& biasRotation = mFixedJointComponents.mBiasRotation[i];
const Matrix3x3& inverseMassMatrixRotation = mFixedJointComponents.mInverseMassMatrixRotation[i];
// Compute the Lagrange multiplier lambda for the 3 rotation constraints
Vector3 deltaLambda2 = inverseMassMatrixRotation * (-JvRotation - biasRotation);
mFixedJointComponents.mImpulseRotation[i] += deltaLambda2;
// Compute the impulse P=J^T * lambda for the 3 rotation constraints for body 1
angularImpulseBody1 = -deltaLambda2;
// Apply the impulse to the body 1
w1 += i1 * angularImpulseBody1;
// Apply the impulse to the body 2
w2 += i2 * deltaLambda2;
}
}
// Solve the position constraint (for position error correction)
void SolveFixedJointSystem::solvePositionConstraint() {
// For each joint
for (uint32 i=0; i < mFixedJointComponents.getNbEnabledComponents(); i++) {
const Entity jointEntity = mFixedJointComponents.mJointEntities[i];
// If the error position correction technique is not the non-linear-gauss-seidel, we do
// do not execute this method
if (mJointComponents.getPositionCorrectionTechnique(jointEntity) != JointsPositionCorrectionTechnique::NON_LINEAR_GAUSS_SEIDEL) continue;
// Get the bodies entities
const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity);
const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity);
// Recompute the inverse inertia tensors
mFixedJointComponents.mI1[i] = RigidBody::getInertiaTensorInverseWorld(mWorld, body1Entity);
mFixedJointComponents.mI2[i] = RigidBody::getInertiaTensorInverseWorld(mWorld, body2Entity);
}
// For each joint
for (uint32 i=0; i < mFixedJointComponents.getNbEnabledComponents(); i++) {
const Entity jointEntity = mFixedJointComponents.mJointEntities[i];
// If the error position correction technique is not the non-linear-gauss-seidel, we do
// do not execute this method
if (mJointComponents.getPositionCorrectionTechnique(jointEntity) != JointsPositionCorrectionTechnique::NON_LINEAR_GAUSS_SEIDEL) continue;
// Get the bodies entities
const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity);
const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity);
// Get the bodies positions and orientations
const Quaternion& q1 = mRigidBodyComponents.getConstrainedOrientation(body1Entity);
const Quaternion& q2 = mRigidBodyComponents.getConstrainedOrientation(body2Entity);
// Compute the vector from body center to the anchor point in world-space
mFixedJointComponents.mR1World[i] = q1 * mFixedJointComponents.getLocalAnchorPointBody1(jointEntity);
mFixedJointComponents.mR2World[i] = q2 * mFixedJointComponents.getLocalAnchorPointBody2(jointEntity);
}
// For each joint
for (uint32 i=0; i < mFixedJointComponents.getNbEnabledComponents(); i++) {
const Entity jointEntity = mFixedJointComponents.mJointEntities[i];
// If the error position correction technique is not the non-linear-gauss-seidel, we do
// do not execute this method
if (mJointComponents.getPositionCorrectionTechnique(jointEntity) != JointsPositionCorrectionTechnique::NON_LINEAR_GAUSS_SEIDEL) continue;
// Get the bodies entities
const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity);
const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity);
const uint32 componentIndexBody1 = mRigidBodyComponents.getEntityIndex(body1Entity);
const uint32 componentIndexBody2 = mRigidBodyComponents.getEntityIndex(body2Entity);
// Get the inverse mass and inverse inertia tensors of the bodies
decimal inverseMassBody1 = mRigidBodyComponents.mInverseMasses[componentIndexBody1];
decimal inverseMassBody2 = mRigidBodyComponents.mInverseMasses[componentIndexBody2];
const Vector3& r1World = mFixedJointComponents.mR1World[i];
const Vector3& r2World = mFixedJointComponents.mR2World[i];
// Compute the corresponding skew-symmetric matrices
Matrix3x3 skewSymmetricMatrixU1= Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(r1World);
Matrix3x3 skewSymmetricMatrixU2= Matrix3x3::computeSkewSymmetricMatrixForCrossProduct(r2World);
// --------------- Translation Constraints --------------- //
// Compute the matrix K=JM^-1J^t (3x3 matrix) for the 3 translation constraints
decimal inverseMassBodies = inverseMassBody1 + inverseMassBody2;
Matrix3x3 massMatrix = Matrix3x3(inverseMassBodies, 0, 0,
0, inverseMassBodies, 0,
0, 0, inverseMassBodies) +
skewSymmetricMatrixU1 * mFixedJointComponents.mI1[i] * skewSymmetricMatrixU1.getTranspose() +
skewSymmetricMatrixU2 * mFixedJointComponents.mI2[i] * skewSymmetricMatrixU2.getTranspose();
mFixedJointComponents.mInverseMassMatrixTranslation[i].setToZero();
if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC ||
mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) {
mFixedJointComponents.mInverseMassMatrixTranslation[i] = massMatrix.getInverse();
}
}
// For each joint
for (uint32 i=0; i < mFixedJointComponents.getNbEnabledComponents(); i++) {
const Entity jointEntity = mFixedJointComponents.mJointEntities[i];
// If the error position correction technique is not the non-linear-gauss-seidel, we do
// do not execute this method
if (mJointComponents.getPositionCorrectionTechnique(jointEntity) != JointsPositionCorrectionTechnique::NON_LINEAR_GAUSS_SEIDEL) continue;
// Get the bodies entities
const Entity body1Entity = mJointComponents.getBody1Entity(jointEntity);
const Entity body2Entity = mJointComponents.getBody2Entity(jointEntity);
const Vector3& r1World = mFixedJointComponents.mR1World[i];
const Vector3& r2World = mFixedJointComponents.mR2World[i];
const uint32 componentIndexBody1 = mRigidBodyComponents.getEntityIndex(body1Entity);
const uint32 componentIndexBody2 = mRigidBodyComponents.getEntityIndex(body2Entity);
Vector3& x1 = mRigidBodyComponents.mConstrainedPositions[componentIndexBody1];
Vector3& x2 = mRigidBodyComponents.mConstrainedPositions[componentIndexBody2];
Quaternion& q1 = mRigidBodyComponents.mConstrainedOrientations[componentIndexBody1];
Quaternion& q2 = mRigidBodyComponents.mConstrainedOrientations[componentIndexBody2];
// Compute position error for the 3 translation constraints
const Vector3 errorTranslation = x2 + r2World - x1 - r1World;
// Compute the Lagrange multiplier lambda
const Vector3 lambdaTranslation = mFixedJointComponents.mInverseMassMatrixTranslation[i] * (-errorTranslation);
// Compute the impulse of body 1
Vector3 linearImpulseBody1 = -lambdaTranslation;
Vector3 angularImpulseBody1 = lambdaTranslation.cross(r1World);
const decimal inverseMassBody1 = mRigidBodyComponents.mInverseMasses[componentIndexBody1];
// Compute the pseudo velocity of body 1
const Vector3 v1 = inverseMassBody1 * linearImpulseBody1;
Vector3 w1 = mFixedJointComponents.mI2[i] * angularImpulseBody1;
// Update the body position/orientation of body 1
x1 += v1;
q1 += Quaternion(0, w1) * q1 * decimal(0.5);
q1.normalize();
// Compute the impulse of body 2
Vector3 angularImpulseBody2 = -lambdaTranslation.cross(r2World);
const decimal inverseMassBody2 = mRigidBodyComponents.mInverseMasses[componentIndexBody2];
// Compute the pseudo velocity of body 2
const Vector3 v2 = inverseMassBody2 * lambdaTranslation;
Vector3 w2 = mFixedJointComponents.mI2[i] * angularImpulseBody2;
// Update the body position/orientation of body 2
x2 += v2;
q2 += Quaternion(0, w2) * q2 * decimal(0.5);
q2.normalize();
// --------------- Rotation Constraints --------------- //
// Compute the inverse of the mass matrix K=JM^-1J^t for the 3 rotation
// contraints (3x3 matrix)
mFixedJointComponents.mInverseMassMatrixRotation[i] = mFixedJointComponents.mI1[i] + mFixedJointComponents.mI2[i];
if (mRigidBodyComponents.mBodyTypes[componentIndexBody1] == BodyType::DYNAMIC ||
mRigidBodyComponents.mBodyTypes[componentIndexBody2] == BodyType::DYNAMIC) {
mFixedJointComponents.mInverseMassMatrixRotation[i] = mFixedJointComponents.mInverseMassMatrixRotation[i].getInverse();
}
// Calculate difference in rotation
//
// The rotation should be:
//
// q2 = q1 r0
//
// But because of drift the actual rotation is:
//
// q2 = qError q1 r0
// <=> qError = q2 r0^-1 q1^-1
//
// Where:
// q1 = current rotation of body 1
// q2 = current rotation of body 2
// qError = error that needs to be reduced to zero
Quaternion qError = q2 * mFixedJointComponents.mInitOrientationDifferenceInv[i] * q1.getInverse();
// A quaternion can be seen as:
//
// q = [sin(theta / 2) * v, cos(theta/2)]
//
// Where:
// v = rotation vector
// theta = rotation angle
//
// If we assume theta is small (error is small) then sin(x) = x so an approximation of the error angles is:
const Vector3 errorRotation = decimal(2.0) * qError.getVectorV();
// Compute the Lagrange multiplier lambda for the 3 rotation constraints
Vector3 lambdaRotation = mFixedJointComponents.mInverseMassMatrixRotation[i] * (-errorRotation);
// Compute the impulse P=J^T * lambda for the 3 rotation constraints of body 1
angularImpulseBody1 = -lambdaRotation;
// Compute the pseudo velocity of body 1
w1 = mFixedJointComponents.mI1[i] * angularImpulseBody1;
// Update the body position/orientation of body 1
q1 += Quaternion(0, w1) * q1 * decimal(0.5);
q1.normalize();
// Compute the pseudo velocity of body 2
w2 = mFixedJointComponents.mI2[i] * lambdaRotation;
// Update the body position/orientation of body 2
q2 += Quaternion(0, w2) * q2 * decimal(0.5);
q2.normalize();
}
}