348 lines
13 KiB
C++
348 lines
13 KiB
C++
/********************************************************************************
|
||
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
|
||
* Copyright (c) 2010-2016 Daniel Chappuis *
|
||
*********************************************************************************
|
||
* *
|
||
* This software is provided 'as-is', without any express or implied warranty. *
|
||
* In no event will the authors be held liable for any damages arising from the *
|
||
* use of this software. *
|
||
* *
|
||
* Permission is granted to anyone to use this software for any purpose, *
|
||
* including commercial applications, and to alter it and redistribute it *
|
||
* freely, subject to the following restrictions: *
|
||
* *
|
||
* 1. The origin of this software must not be misrepresented; you must not claim *
|
||
* that you wrote the original software. If you use this software in a *
|
||
* product, an acknowledgment in the product documentation would be *
|
||
* appreciated but is not required. *
|
||
* *
|
||
* 2. Altered source versions must be plainly marked as such, and must not be *
|
||
* misrepresented as being the original software. *
|
||
* *
|
||
* 3. This notice may not be removed or altered from any source distribution. *
|
||
* *
|
||
********************************************************************************/
|
||
|
||
// Libraries
|
||
#include "mathematics_functions.h"
|
||
#include "Vector3.h"
|
||
#include <cassert>
|
||
#include <vector>
|
||
|
||
using namespace reactphysics3d;
|
||
|
||
/// Compute the barycentric coordinates u, v, w of a point p inside the triangle (a, b, c)
|
||
/// This method uses the technique described in the book Real-Time collision detection by
|
||
/// Christer Ericson.
|
||
void reactphysics3d::computeBarycentricCoordinatesInTriangle(const Vector3& a, const Vector3& b, const Vector3& c,
|
||
const Vector3& p, decimal& u, decimal& v, decimal& w) {
|
||
const Vector3 v0 = b - a;
|
||
const Vector3 v1 = c - a;
|
||
const Vector3 v2 = p - a;
|
||
|
||
decimal d00 = v0.dot(v0);
|
||
decimal d01 = v0.dot(v1);
|
||
decimal d11 = v1.dot(v1);
|
||
decimal d20 = v2.dot(v0);
|
||
decimal d21 = v2.dot(v1);
|
||
|
||
decimal denom = d00 * d11 - d01 * d01;
|
||
v = (d11 * d20 - d01 * d21) / denom;
|
||
w = (d00 * d21 - d01 * d20) / denom;
|
||
u = decimal(1.0) - v - w;
|
||
}
|
||
|
||
/// Clamp a vector such that it is no longer than a given maximum length
|
||
Vector3 reactphysics3d::clamp(const Vector3& vector, decimal maxLength) {
|
||
if (vector.lengthSquare() > maxLength * maxLength) {
|
||
return vector.getUnit() * maxLength;
|
||
}
|
||
return vector;
|
||
}
|
||
|
||
/// Compute and return a point on segment from "segPointA" and "segPointB" that is closest to point "pointC"
|
||
Vector3 reactphysics3d::computeClosestPointOnSegment(const Vector3& segPointA, const Vector3& segPointB, const Vector3& pointC) {
|
||
|
||
const Vector3 ab = segPointB - segPointA;
|
||
|
||
decimal abLengthSquare = ab.lengthSquare();
|
||
|
||
// If the segment has almost zero length
|
||
if (abLengthSquare < MACHINE_EPSILON) {
|
||
|
||
// Return one end-point of the segment as the closest point
|
||
return segPointA;
|
||
}
|
||
|
||
// Project point C onto "AB" line
|
||
decimal t = (pointC - segPointA).dot(ab) / abLengthSquare;
|
||
|
||
// If projected point onto the line is outside the segment, clamp it to the segment
|
||
if (t < decimal(0.0)) t = decimal(0.0);
|
||
if (t > decimal(1.0)) t = decimal(1.0);
|
||
|
||
// Return the closest point on the segment
|
||
return segPointA + t * ab;
|
||
}
|
||
|
||
/// Compute the closest points between two segments
|
||
/// This method uses the technique described in the book Real-Time
|
||
/// collision detection by Christer Ericson.
|
||
void reactphysics3d::computeClosestPointBetweenTwoSegments(const Vector3& seg1PointA, const Vector3& seg1PointB,
|
||
const Vector3& seg2PointA, const Vector3& seg2PointB,
|
||
Vector3& closestPointSeg1, Vector3& closestPointSeg2) {
|
||
|
||
const Vector3 d1 = seg1PointB - seg1PointA;
|
||
const Vector3 d2 = seg2PointB - seg2PointA;
|
||
const Vector3 r = seg1PointA - seg2PointA;
|
||
decimal a = d1.lengthSquare();
|
||
decimal e = d2.lengthSquare();
|
||
decimal f = d2.dot(r);
|
||
decimal s, t;
|
||
|
||
// If both segments degenerate into points
|
||
if (a <= MACHINE_EPSILON && e <= MACHINE_EPSILON) {
|
||
|
||
closestPointSeg1 = seg1PointA;
|
||
closestPointSeg2 = seg2PointA;
|
||
return;
|
||
}
|
||
if (a <= MACHINE_EPSILON) { // If first segment degenerates into a point
|
||
|
||
s = decimal(0.0);
|
||
|
||
// Compute the closest point on second segment
|
||
t = clamp(f / e, decimal(0.0), decimal(1.0));
|
||
}
|
||
else {
|
||
|
||
decimal c = d1.dot(r);
|
||
|
||
// If the second segment degenerates into a point
|
||
if (e <= MACHINE_EPSILON) {
|
||
|
||
t = decimal(0.0);
|
||
s = clamp(-c / a, decimal(0.0), decimal(1.0));
|
||
}
|
||
else {
|
||
|
||
decimal b = d1.dot(d2);
|
||
decimal denom = a * e - b * b;
|
||
|
||
// If the segments are not parallel
|
||
if (denom != decimal(0.0)) {
|
||
|
||
// Compute the closest point on line 1 to line 2 and
|
||
// clamp to first segment.
|
||
s = clamp((b * f - c * e) / denom, decimal(0.0), decimal(1.0));
|
||
}
|
||
else {
|
||
|
||
// Pick an arbitrary point on first segment
|
||
s = decimal(0.0);
|
||
}
|
||
|
||
// Compute the point on line 2 closest to the closest point
|
||
// we have just found
|
||
t = (b * s + f) / e;
|
||
|
||
// If this closest point is inside second segment (t in [0, 1]), we are done.
|
||
// Otherwise, we clamp the point to the second segment and compute again the
|
||
// closest point on segment 1
|
||
if (t < decimal(0.0)) {
|
||
t = decimal(0.0);
|
||
s = clamp(-c / a, decimal(0.0), decimal(1.0));
|
||
}
|
||
else if (t > decimal(1.0)) {
|
||
t = decimal(1.0);
|
||
s = clamp((b - c) / a, decimal(0.0), decimal(1.0));
|
||
}
|
||
}
|
||
}
|
||
|
||
// Compute the closest points on both segments
|
||
closestPointSeg1 = seg1PointA + d1 * s;
|
||
closestPointSeg2 = seg2PointA + d2 * t;
|
||
}
|
||
|
||
/// Compute the intersection between a plane and a segment
|
||
// Let the plane define by the equation planeNormal.dot(X) = planeD with X a point on the plane and "planeNormal" the plane normal. This method
|
||
// computes the intersection P between the plane and the segment (segA, segB). The method returns the value "t" such
|
||
// that P = segA + t * (segB - segA). Note that it only returns a value in [0, 1] if there is an intersection. Otherwise,
|
||
// there is no intersection between the plane and the segment.
|
||
decimal reactphysics3d::computePlaneSegmentIntersection(const Vector3& segA, const Vector3& segB, const decimal planeD, const Vector3& planeNormal) {
|
||
|
||
const decimal parallelEpsilon = decimal(0.0001);
|
||
decimal t = decimal(-1);
|
||
|
||
// Segment AB
|
||
const Vector3 ab = segB - segA;
|
||
|
||
decimal nDotAB = planeNormal.dot(ab);
|
||
|
||
// If the segment is not parallel to the plane
|
||
if (std::abs(nDotAB) > parallelEpsilon) {
|
||
t = (planeD - planeNormal.dot(segA)) / nDotAB;
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
// Compute the distance between a point "point" and a line given by the points "linePointA" and "linePointB"
|
||
decimal reactphysics3d::computeDistancePointToLineDistance(const Vector3& linePointA, const Vector3& linePointB, const Vector3& point) {
|
||
|
||
decimal distAB = (linePointB - linePointA).length();
|
||
|
||
if (distAB < MACHINE_EPSILON) {
|
||
return (point - linePointA).length();
|
||
}
|
||
|
||
return ((point - linePointA).cross(point - linePointB)).length() / distAB;
|
||
}
|
||
|
||
// Clip a segment against multiple planes and return the clipped segment vertices
|
||
// This method implements the Sutherland–Hodgman clipping algorithm
|
||
std::vector<Vector3> reactphysics3d::clipSegmentWithPlanes(const Vector3& segA, const Vector3& segB,
|
||
const std::vector<Vector3>& planesPoints,
|
||
const std::vector<Vector3>& planesNormals) {
|
||
|
||
assert(planesPoints.size() == planesNormals.size());
|
||
|
||
std::vector<Vector3> inputVertices = {segA, segB};
|
||
std::vector<Vector3> outputVertices;
|
||
|
||
// For each clipping plane
|
||
for (uint p=0; p<planesPoints.size(); p++) {
|
||
|
||
// If there is no more vertices, stop
|
||
if (inputVertices.empty()) return inputVertices;
|
||
|
||
assert(inputVertices.size() == 2);
|
||
|
||
outputVertices.clear();
|
||
|
||
Vector3& v1 = inputVertices[0];
|
||
Vector3& v2 = inputVertices[1];
|
||
|
||
decimal v1DotN = (v1 - planesPoints[p]).dot(planesNormals[p]);
|
||
decimal v2DotN = (v2 - planesPoints[p]).dot(planesNormals[p]);
|
||
|
||
// If the second vertex is in front of the clippling plane
|
||
if (v2DotN >= decimal(0.0)) {
|
||
|
||
// If the first vertex is not in front of the clippling plane
|
||
if (v1DotN < decimal(0.0)) {
|
||
|
||
// The second point we keep is the intersection between the segment v1, v2 and the clipping plane
|
||
decimal t = computePlaneSegmentIntersection(v1, v2, planesNormals[p].dot(planesPoints[p]), planesNormals[p]);
|
||
|
||
if (t >= decimal(0) && t <= decimal(1.0)) {
|
||
outputVertices.push_back(v1 + t * (v2 - v1));
|
||
}
|
||
else {
|
||
outputVertices.push_back(v2);
|
||
}
|
||
}
|
||
else {
|
||
outputVertices.push_back(v1);
|
||
}
|
||
|
||
// Add the second vertex
|
||
outputVertices.push_back(v2);
|
||
}
|
||
else { // If the second vertex is behind the clipping plane
|
||
|
||
// If the first vertex is in front of the clippling plane
|
||
if (v1DotN >= decimal(0.0)) {
|
||
|
||
outputVertices.push_back(v1);
|
||
|
||
// The first point we keep is the intersection between the segment v1, v2 and the clipping plane
|
||
decimal t = computePlaneSegmentIntersection(v1, v2, -planesNormals[p].dot(planesPoints[p]), -planesNormals[p]);
|
||
|
||
if (t >= decimal(0.0) && t <= decimal(1.0)) {
|
||
outputVertices.push_back(v1 + t * (v2 - v1));
|
||
}
|
||
}
|
||
}
|
||
|
||
inputVertices = outputVertices;
|
||
}
|
||
|
||
return outputVertices;
|
||
}
|
||
|
||
/// Clip a polygon against multiple planes and return the clipped polygon vertices
|
||
/// This method implements the Sutherland–Hodgman clipping algorithm
|
||
std::vector<Vector3> reactphysics3d::clipPolygonWithPlanes(const std::vector<Vector3>& polygonVertices, const std::vector<Vector3>& planesPoints,
|
||
const std::vector<Vector3>& planesNormals) {
|
||
|
||
assert(planesPoints.size() == planesNormals.size());
|
||
|
||
std::vector<Vector3> inputVertices(polygonVertices);
|
||
std::vector<Vector3> outputVertices;
|
||
|
||
// For each clipping plane
|
||
for (uint p=0; p<planesPoints.size(); p++) {
|
||
|
||
outputVertices.clear();
|
||
|
||
uint vStart = inputVertices.size() - 1;
|
||
|
||
// For each edge of the polygon
|
||
for (uint vEnd = 0; vEnd<inputVertices.size(); vEnd++) {
|
||
|
||
Vector3& v1 = inputVertices[vStart];
|
||
Vector3& v2 = inputVertices[vEnd];
|
||
|
||
decimal v1DotN = (v1 - planesPoints[p]).dot(planesNormals[p]);
|
||
decimal v2DotN = (v2 - planesPoints[p]).dot(planesNormals[p]);
|
||
|
||
// If the second vertex is in front of the clippling plane
|
||
if (v2DotN >= decimal(0.0)) {
|
||
|
||
// If the first vertex is not in front of the clippling plane
|
||
if (v1DotN < decimal(0.0)) {
|
||
|
||
// The second point we keep is the intersection between the segment v1, v2 and the clipping plane
|
||
decimal t = computePlaneSegmentIntersection(v1, v2, planesNormals[p].dot(planesPoints[p]), planesNormals[p]);
|
||
|
||
if (t >= decimal(0) && t <= decimal(1.0)) {
|
||
outputVertices.push_back(v1 + t * (v2 - v1));
|
||
}
|
||
else {
|
||
outputVertices.push_back(v2);
|
||
}
|
||
}
|
||
|
||
// Add the second vertex
|
||
outputVertices.push_back(v2);
|
||
}
|
||
else { // If the second vertex is behind the clipping plane
|
||
|
||
// If the first vertex is in front of the clippling plane
|
||
if (v1DotN >= decimal(0.0)) {
|
||
|
||
// The first point we keep is the intersection between the segment v1, v2 and the clipping plane
|
||
decimal t = computePlaneSegmentIntersection(v1, v2, -planesNormals[p].dot(planesPoints[p]), -planesNormals[p]);
|
||
|
||
if (t >= decimal(0.0) && t <= decimal(1.0)) {
|
||
outputVertices.push_back(v1 + t * (v2 - v1));
|
||
}
|
||
else {
|
||
outputVertices.push_back(v1);
|
||
}
|
||
}
|
||
}
|
||
|
||
vStart = vEnd;
|
||
}
|
||
|
||
inputVertices = outputVertices;
|
||
}
|
||
|
||
return outputVertices;
|
||
}
|
||
|
||
|