layer options moves into create hnet ui

This commit is contained in:
discus0434 2022-10-19 14:30:33 +00:00
parent 7f8670c4ef
commit 42fbda83bb
5 changed files with 48 additions and 43 deletions

View File

@ -19,37 +19,21 @@ from modules.textual_inversion import textual_inversion
from modules.textual_inversion.learn_schedule import LearnRateScheduler from modules.textual_inversion.learn_schedule import LearnRateScheduler
def parse_layer_structure(dim, state_dict):
i = 0
res = [1]
while (key := "linear.{}.weight".format(i)) in state_dict:
weight = state_dict[key]
res.append(len(weight) // dim)
i += 1
return res
class HypernetworkModule(torch.nn.Module): class HypernetworkModule(torch.nn.Module):
multiplier = 1.0 multiplier = 1.0
layer_structure = None
add_layer_norm = False
def __init__(self, dim, state_dict=None): def __init__(self, dim, state_dict=None, layer_structure=None, add_layer_norm=False):
super().__init__() super().__init__()
if (state_dict is None or 'linear.0.weight' not in state_dict) and self.layer_structure is None: if layer_structure is not None:
layer_structure = (1, 2, 1) assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
else: assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"
if self.layer_structure is not None:
assert self.layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
assert self.layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"
layer_structure = self.layer_structure
else: else:
layer_structure = parse_layer_structure(dim, state_dict) layer_structure = parse_layer_structure(dim, state_dict)
linears = [] linears = []
for i in range(len(layer_structure) - 1): for i in range(len(layer_structure) - 1):
linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1]))) linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
if self.add_layer_norm: if add_layer_norm:
linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1]))) linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
self.linear = torch.nn.Sequential(*linears) self.linear = torch.nn.Sequential(*linears)
@ -77,38 +61,47 @@ class HypernetworkModule(torch.nn.Module):
return x + self.linear(x) * self.multiplier return x + self.linear(x) * self.multiplier
def trainables(self): def trainables(self):
res = [] layer_structure = []
for layer in self.linear: for layer in self.linear:
res += [layer.weight, layer.bias] layer_structure += [layer.weight, layer.bias]
return res return layer_structure
def apply_strength(value=None): def apply_strength(value=None):
HypernetworkModule.multiplier = value if value is not None else shared.opts.sd_hypernetwork_strength HypernetworkModule.multiplier = value if value is not None else shared.opts.sd_hypernetwork_strength
def apply_layer_structure(value=None): def parse_layer_structure(dim, state_dict):
HypernetworkModule.layer_structure = value if value is not None else shared.opts.sd_hypernetwork_layer_structure i = 0
layer_structure = [1]
while (key := "linear.{}.weight".format(i)) in state_dict:
weight = state_dict[key]
layer_structure.append(len(weight) // dim)
i += 1
def apply_layer_norm(value=None): return layer_structure
HypernetworkModule.add_layer_norm = value if value is not None else shared.opts.sd_hypernetwork_add_layer_norm
class Hypernetwork: class Hypernetwork:
filename = None filename = None
name = None name = None
def __init__(self, name=None, enable_sizes=None): def __init__(self, name=None, enable_sizes=None, layer_structure=None, add_layer_norm=False):
self.filename = None self.filename = None
self.name = name self.name = name
self.layers = {} self.layers = {}
self.step = 0 self.step = 0
self.sd_checkpoint = None self.sd_checkpoint = None
self.sd_checkpoint_name = None self.sd_checkpoint_name = None
self.layer_structure = layer_structure
self.add_layer_norm = add_layer_norm
for size in enable_sizes or []: for size in enable_sizes or []:
self.layers[size] = (HypernetworkModule(size), HypernetworkModule(size)) self.layers[size] = (
HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm),
HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm),
)
def weights(self): def weights(self):
res = [] res = []
@ -128,6 +121,8 @@ class Hypernetwork:
state_dict['step'] = self.step state_dict['step'] = self.step
state_dict['name'] = self.name state_dict['name'] = self.name
state_dict['layer_structure'] = self.layer_structure
state_dict['is_layer_norm'] = self.add_layer_norm
state_dict['sd_checkpoint'] = self.sd_checkpoint state_dict['sd_checkpoint'] = self.sd_checkpoint
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
@ -142,10 +137,15 @@ class Hypernetwork:
for size, sd in state_dict.items(): for size, sd in state_dict.items():
if type(size) == int: if type(size) == int:
self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1])) self.layers[size] = (
HypernetworkModule(size, sd[0], state_dict["layer_structure"], state_dict["is_layer_norm"]),
HypernetworkModule(size, sd[1], state_dict["layer_structure"], state_dict["is_layer_norm"]),
)
self.name = state_dict.get('name', self.name) self.name = state_dict.get('name', self.name)
self.step = state_dict.get('step', 0) self.step = state_dict.get('step', 0)
self.layer_structure = state_dict.get('layer_structure', None)
self.add_layer_norm = state_dict.get('is_layer_norm', False)
self.sd_checkpoint = state_dict.get('sd_checkpoint', None) self.sd_checkpoint = state_dict.get('sd_checkpoint', None)
self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None) self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None)

View File

@ -9,11 +9,16 @@ from modules import sd_hijack, shared, devices
from modules.hypernetworks import hypernetwork from modules.hypernetworks import hypernetwork
def create_hypernetwork(name, enable_sizes): def create_hypernetwork(name, enable_sizes, layer_structure=None, add_layer_norm=False):
fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt") fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
assert not os.path.exists(fn), f"file {fn} already exists" assert not os.path.exists(fn), f"file {fn} already exists"
hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(name=name, enable_sizes=[int(x) for x in enable_sizes]) hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(
name=name,
enable_sizes=[int(x) for x in enable_sizes],
layer_structure=layer_structure,
add_layer_norm=add_layer_norm,
)
hypernet.save(fn) hypernet.save(fn)
shared.reload_hypernetworks() shared.reload_hypernetworks()

View File

@ -260,8 +260,6 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, refresh=sd_models.list_models), "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, refresh=sd_models.list_models),
"sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}), "sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
"sd_hypernetwork": OptionInfo("None", "Hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks), "sd_hypernetwork": OptionInfo("None", "Hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
"sd_hypernetwork_layer_structure": OptionInfo(None, "Hypernetwork layer structure Default: (1,2,1).", gr.Dropdown, lambda: {"choices": [(1, 2, 1), (1, 2, 2, 1), (1, 2, 4, 2, 1)]}),
"sd_hypernetwork_add_layer_norm": OptionInfo(False, "Add layer normalization to hypernetwork architecture."),
"sd_hypernetwork_strength": OptionInfo(1.0, "Hypernetwork strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.001}), "sd_hypernetwork_strength": OptionInfo(1.0, "Hypernetwork strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.001}),
"img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."), "img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
"save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"), "save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"),

View File

@ -1198,6 +1198,8 @@ def create_ui(wrap_gradio_gpu_call):
with gr.Tab(label="Create hypernetwork"): with gr.Tab(label="Create hypernetwork"):
new_hypernetwork_name = gr.Textbox(label="Name") new_hypernetwork_name = gr.Textbox(label="Name")
new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"]) new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"])
new_hypernetwork_layer_structure = gr.Dropdown(label="Hypernetwork layer structure", choices=[(1, 2, 1), (1, 2, 2, 1), (1, 2, 4, 2, 1)])
new_hypernetwork_add_layer_norm = gr.Checkbox(label="Add layer normalization")
with gr.Row(): with gr.Row():
with gr.Column(scale=3): with gr.Column(scale=3):
@ -1280,6 +1282,8 @@ def create_ui(wrap_gradio_gpu_call):
inputs=[ inputs=[
new_hypernetwork_name, new_hypernetwork_name,
new_hypernetwork_sizes, new_hypernetwork_sizes,
new_hypernetwork_layer_structure,
new_hypernetwork_add_layer_norm,
], ],
outputs=[ outputs=[
train_hypernetwork_name, train_hypernetwork_name,

View File

@ -85,8 +85,6 @@ def initialize():
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model))) shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model)))
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork))) shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength) shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength)
shared.opts.onchange("sd_hypernetwork_layer_structure", modules.hypernetworks.hypernetwork.apply_layer_structure)
shared.opts.onchange("sd_hypernetwork_add_layer_norm", modules.hypernetworks.hypernetwork.apply_layer_norm)
# make the program just exit at ctrl+c without waiting for anything # make the program just exit at ctrl+c without waiting for anything
def sigint_handler(sig, frame): def sigint_handler(sig, frame):