This commit is contained in:
usryokousha 2023-08-12 19:07:42 +09:00 committed by GitHub
commit 5d16e572d5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 55 additions and 53 deletions

View File

@ -339,23 +339,13 @@ class Encoder(nn.Module):
):
assert src_tokens is not None or token_embeddings is not None
if encoder_padding_mask is None:
if src_tokens is not None:
encoder_padding_mask = torch.zeros_like(
src_tokens, device=src_tokens.device
).bool()
else:
encoder_padding_mask = torch.zeros(
[token_embeddings.size(0), token_embeddings.size(1)],
device=token_embeddings.device,
).bool()
if multiway_split_position is not None:
assert self.args.multiway
self.apply(set_split_position(multiway_split_position))
x, encoder_embedding = self.forward_embedding(src_tokens, token_embeddings, positions)
x = x * (1 - encoder_padding_mask.unsqueeze(-1).type_as(x))
if encoder_padding_mask is not None:
x = x * (1 - encoder_padding_mask.unsqueeze(-1).type_as(x))
encoder_states = []

View File

@ -2,6 +2,7 @@
# Licensed under The MIT License [see LICENSE for details]
import math
from typing import Optional
import torch
import torch.nn.functional as F
@ -64,12 +65,12 @@ class MultiheadAttention(nn.Module):
def forward(
self,
query,
key,
value,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
incremental_state=None,
key_padding_mask=None,
attn_mask=None,
key_padding_mask: Optional[torch.Tensor] = None,
attn_mask: Optional[torch.Tensor] = None,
rel_pos=None,
is_first_step=False,
):
@ -85,31 +86,26 @@ class MultiheadAttention(nn.Module):
q = self.q_proj(query)
k = self.k_proj(key)
v = self.v_proj(value)
q *= self.scaling
q = q.view(bsz, tgt_len, self.num_heads, self.head_dim).transpose(1, 2)
k = k.view(bsz, src_len, self.num_heads, self.head_dim).transpose(1, 2)
v = v.view(bsz, src_len, self.num_heads, self.head_dim).transpose(1, 2)
q = q.reshape(bsz * self.num_heads, tgt_len, self.head_dim)
k = k.reshape(bsz * self.num_heads, src_len, self.head_dim)
v = v.reshape(bsz * self.num_heads, src_len, self.head_dim)
q = q.reshape(bsz, self.num_heads, tgt_len, self.head_dim)
k = k.reshape(bsz, self.num_heads, src_len, self.head_dim)
v = v.reshape(bsz, self.num_heads, src_len, self.head_dim)
if incremental_state is not None:
if "prev_key" in incremental_state:
prev_key = incremental_state["prev_key"].view(
bsz * self.num_heads, -1, self.head_dim
bsz, self.num_heads, -1, self.head_dim
)
prev_value = incremental_state["prev_value"].view(
bsz * self.num_heads, -1, self.head_dim
bsz, self.num_heads, -1, self.head_dim
)
k = torch.cat([prev_key, k], dim=1)
v = torch.cat([prev_value, v], dim=1)
incremental_state["prev_key"] = k.view(
bsz, self.num_heads, -1, self.head_dim
)
incremental_state["prev_value"] = v.view(
bsz, self.num_heads, -1, self.head_dim
)
incremental_state["prev_key"] = k
incremental_state["prev_value"] = v
src_len = k.size(1)
if self.xpos is not None:
@ -117,42 +113,58 @@ class MultiheadAttention(nn.Module):
offset = src_len - 1
else:
offset = 0
k, q = map(lambda t: t.view(bsz * self.num_heads, -1, self.head_dim), (k, q))
k = self.xpos(k, offset=0, downscale=True)
q = self.xpos(q, offset=offset, downscale=False)
k, q = map(lambda t: t.view(bsz, self.num_heads, -1, self.head_dim), (k, q))
attn_weights = torch.bmm(q, k.transpose(1, 2))
if attn_mask is not None:
attn_weights = torch.nan_to_num(attn_weights)
attn_mask = attn_mask.unsqueeze(0)
attn_weights += attn_mask
if attn_mask is not None and attn_mask.ndim != 4:
# Add batch and heads
attn_mask = attn_mask.reshape(1, 1, *attn_mask.shape).expand(bsz, self.num_heads, -1, -1)
# else:
# attn_mask = torch.zeros(1, tgt_len, src_len, dtype=torch.float32, device=k.device)
if key_padding_mask is not None:
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.masked_fill(
key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool),
float("-inf"),
)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
# Achieve same result with an additive mask
key_padding_mask = torch.where(key_padding_mask, float("-inf"), 0.0)
# Add heads and dst_len
key_padding_mask = key_padding_mask.reshape(bsz, 1, 1, src_len).to(q.dtype).expand(-1, self.num_heads, tgt_len, -1)
if attn_mask is not None:
attn_mask = attn_mask + key_padding_mask
else:
attn_mask = key_padding_mask.expand(-1, self.num_heads, tgt_len, -1)
if rel_pos is not None:
rel_pos = rel_pos.view(attn_weights.size())
attn_weights = attn_weights + rel_pos
if attn_mask is not None:
attn_mask = attn_mask + rel_pos.view(attn_mask.size())
else:
attn_mask = rel_pos.reshape(bsz, self.num_heads, tgt_len, src_len)
attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).type_as(
attn_weights
)
attn_probs = self.dropout_module(attn_weights)
if hasattr(F, "scaled_dot_product_attention"):
attn = F.scaled_dot_product_attention(
q, k, v, attn_mask, self.dropout_module.p
)
# attn: B,H,T,E (Batch, Heads, Tgt_Len, Dim)
# Permute to B,T,H,E, and then flatten to B,T,D
attn = attn.permute(0, 2, 1, 3).flatten(2)
attn_weights = None
else:
q *= self.scaling
q, k, v = map(lambda t: t.view(bsz * self.num_heads, -1, self.head_dim), (q, k, v))
attn_weights = torch.bmm(q, k.transpose(1, 2))
attn = torch.bmm(attn_probs, v)
attn = attn.transpose(0, 1).reshape(tgt_len, bsz, embed_dim).transpose(0, 1)
attn_weights = F.softmax(attn_weights, dim=-1, dtype=torch.float32).type_as(
attn_weights
)
attn_weights = attn_weights.view(
bsz, self.num_heads, tgt_len, src_len).transpose(1, 0)
attn_probs = self.dropout_module(attn_weights)
attn = torch.bmm(attn_probs, v)
attn = attn.transpose(0, 1).reshape(tgt_len, bsz, embed_dim).transpose(0, 1)
if self.inner_attn_ln is not None:
attn = self.inner_attn_ln(attn)
attn = self.out_proj(attn)
attn_weights = attn_weights.view(
bsz, self.num_heads, tgt_len, src_len
).transpose(1, 0)
return attn, attn_weights