Update XPos

This commit is contained in:
shumingma 2023-01-03 22:54:24 -08:00
parent f9d98f4b68
commit 9d968a24ed
5 changed files with 21 additions and 9 deletions

View File

@ -84,6 +84,9 @@ We also support the `Decoder` architecture and the `EncoderDecoder` architecture
* enabled by *multiway=True*. * enabled by *multiway=True*.
* It provides a pool of Transformer's parameters used for different modalities. * It provides a pool of Transformer's parameters used for different modalities.
- [Extrapolatable position embedding (Xpos)](https://arxiv.org/abs/2212.10554)
* enabled by *xpos_rel_pos=True*.
- [Relative position bias](https://arxiv.org/abs/1910.10683) - [Relative position bias](https://arxiv.org/abs/1910.10683)
* enabled by adjusting *rel_pos_buckets* and *max_rel_pos*. * enabled by adjusting *rel_pos_buckets* and *max_rel_pos*.

View File

@ -190,6 +190,12 @@ class LanguageConfig(FairseqDataclass):
max_rel_pos: Optional[int] = field( max_rel_pos: Optional[int] = field(
default=0, default=0,
) )
xpos_rel_pos: Optional[bool] = field(
default=False,
)
xpos_scale_base: Optional[int] = field(
default=512,
)
@register_model("lm", dataclass=LanguageConfig) @register_model("lm", dataclass=LanguageConfig)

View File

@ -49,7 +49,8 @@ class EncoderConfig(object):
self.checkpoint_activations = kwargs.pop("checkpoint_activations", False) self.checkpoint_activations = kwargs.pop("checkpoint_activations", False)
self.fsdp = kwargs.pop("fsdp", False) self.fsdp = kwargs.pop("fsdp", False)
self.ddp_rank = kwargs.pop("ddp_rank", 0) self.ddp_rank = kwargs.pop("ddp_rank", 0)
self.xpos = kwargs.pop("xpos", False) self.xpos_rel_pos = kwargs.pop("xpos_rel_pos", False)
self.xpos_scale_base = kwargs.pop("xpos_scale_base", 512)
if self.deepnorm: if self.deepnorm:
self.encoder_normalize_before = False self.encoder_normalize_before = False
@ -111,7 +112,8 @@ class DecoderConfig(object):
self.checkpoint_activations = kwargs.pop("checkpoint_activations", False) self.checkpoint_activations = kwargs.pop("checkpoint_activations", False)
self.fsdp = kwargs.pop("fsdp", False) self.fsdp = kwargs.pop("fsdp", False)
self.ddp_rank = kwargs.pop("ddp_rank", 0) self.ddp_rank = kwargs.pop("ddp_rank", 0)
self.xpos = kwargs.pop("xpos", False) self.xpos_rel_pos = kwargs.pop("xpos_rel_pos", False)
self.xpos_scale_base = kwargs.pop("xpos_scale_base", 512)
if self.deepnorm: if self.deepnorm:
self.decoder_normalize_before = False self.decoder_normalize_before = False
@ -180,7 +182,8 @@ class EncoderDecoderConfig(object):
self.checkpoint_activations = kwargs.pop("checkpoint_activations", False) self.checkpoint_activations = kwargs.pop("checkpoint_activations", False)
self.fsdp = kwargs.pop("fsdp", False) self.fsdp = kwargs.pop("fsdp", False)
self.ddp_rank = kwargs.pop("ddp_rank", 0) self.ddp_rank = kwargs.pop("ddp_rank", 0)
self.xpos = kwargs.pop("xpos", False) self.xpos_rel_pos = kwargs.pop("xpos_rel_pos", False)
self.xpos_scale_base = kwargs.pop("xpos_scale_base", 512)
if self.deepnorm: if self.deepnorm:
self.encoder_normalize_before = False self.encoder_normalize_before = False

View File

@ -9,7 +9,7 @@ from apex.normalization import FusedLayerNorm as LayerNorm
from torch import nn from torch import nn
from .multiway_network import MultiwayWrapper from .multiway_network import MultiwayWrapper
from .xpos import XPOS from .xpos_relative_position import XPOS
class MultiheadAttention(nn.Module): class MultiheadAttention(nn.Module):
@ -46,8 +46,8 @@ class MultiheadAttention(nn.Module):
) )
self.dropout_module = torch.nn.Dropout(dropout, inplace=True) self.dropout_module = torch.nn.Dropout(dropout, inplace=True)
self.xpos = ( self.xpos = (
XPOS(self.head_dim) XPOS(self.head_dim, args.xpos_scale_base)
if args.xpos and self.self_attention if args.xpos_rel_pos and self.self_attention
else None else None
) )
@ -110,8 +110,8 @@ class MultiheadAttention(nn.Module):
offset = src_len - 1 offset = src_len - 1
else: else:
offset = 0 offset = 0
k = self.xpos(k, downscale=True) k = self.xpos(k, offset=0, downscale=True)
q = self.xpos(q, offset=offset) q = self.xpos(q, offset=offset, downscale=False)
attn_weights = torch.bmm(q, k.transpose(1, 2)) attn_weights = torch.bmm(q, k.transpose(1, 2))

View File

@ -49,7 +49,7 @@ class XPOS(nn.Module):
def forward(self, x, offset=0, downscale=False): def forward(self, x, offset=0, downscale=False):
length = x.shape[1] length = x.shape[1]
min_pos = -(length + offset) // 2 min_pos = -(length + offset) // 2
max_pos = length + offset - min_pos max_pos = length + offset + min_pos
scale = self.scale ** torch.arange(min_pos, max_pos, 1).to(self.scale).div(self.scale_base)[:, None] scale = self.scale ** torch.arange(min_pos, max_pos, 1).to(self.scale).div(self.scale_base)[:, None]
sin, cos = fixed_pos_embedding(scale) sin, cos = fixed_pos_embedding(scale)