Rework configs to remove redundant code

This commit is contained in:
Alexander Goryunov 2023-07-10 20:48:20 +03:00
parent 7bfdad13f8
commit a2063b7000
4 changed files with 69 additions and 162 deletions

View File

@ -2,57 +2,72 @@
# Licensed under The MIT License [see LICENSE for details] # Licensed under The MIT License [see LICENSE for details]
class EncoderConfig: class Config:
def __init__(self, **kwargs): def __init__(self, **kwargs):
self.activation_fn = kwargs.pop("activation_fn", "gelu")
self.dropout = kwargs.pop("dropout", 0.0)
self.drop_path_rate = kwargs.pop("drop_path_rate", 0.0)
self.attention_dropout = kwargs.pop("attention_dropout", 0.0)
self.activation_dropout = kwargs.pop("activation_dropout", 0.0)
self.no_scale_embedding = kwargs.pop("no_scale_embedding", True)
self.layernorm_embedding = kwargs.pop("layernorm_embedding", False)
self.moe_freq = kwargs.pop("moe_freq", 0)
self.moe_top1_expert = kwargs.pop("moe_top1_expert", False)
self.moe_expert_count = kwargs.pop("moe_expert_count", 0)
self.moe_gating_use_fp32 = kwargs.pop("moe_gating_use_fp32", True)
self.moe_eval_capacity_token_fraction = kwargs.pop(
"moe_eval_capacity_token_fraction", 0.25
)
self.moe_second_expert_policy = kwargs.pop("moe_second_expert_policy", "random")
self.moe_normalize_gate_prob_before_dropping = kwargs.pop(
"moe_normalize_gate_prob_before_dropping", False
)
self.use_xmoe = kwargs.pop("use_xmoe", False)
self.rel_pos_buckets = kwargs.pop("rel_pos_buckets", 0)
self.max_rel_pos = kwargs.pop("max_rel_pos", 0)
self.deepnorm = kwargs.pop("deepnorm", False)
self.subln = kwargs.pop("subln", True)
self.bert_init = kwargs.pop("bert_init", False)
self.multiway = kwargs.pop("multiway", False)
self.no_output_layer = kwargs.pop("no_output_layer", False)
self.layernorm_eps = kwargs.pop("layernorm_eps", 1e-5)
self.vocab_size = kwargs.pop("vocab_size", -1)
self.checkpoint_activations = kwargs.pop("checkpoint_activations", False)
self.fsdp = kwargs.pop("fsdp", False)
self.ddp_rank = kwargs.pop("ddp_rank", 0)
self.xpos_rel_pos = kwargs.pop("xpos_rel_pos", False)
self.xpos_scale_base = kwargs.pop("xpos_scale_base", 512)
if self.use_xmoe:
self.moe_normalize_gate_prob_before_dropping = True
self.moe_second_expert_policy = "random"
assert self.moe_freq > 0 and self.moe_expert_count > 0
def override(self, args):
for hp in self.__dict__.keys():
if getattr(args, hp, None) is not None:
self.__dict__[hp] = getattr(args, hp, None)
class EncoderConfig(Config):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.encoder_embed_dim = kwargs.pop("encoder_embed_dim", 768) self.encoder_embed_dim = kwargs.pop("encoder_embed_dim", 768)
self.encoder_attention_heads = kwargs.pop("encoder_attention_heads", 12) self.encoder_attention_heads = kwargs.pop("encoder_attention_heads", 12)
self.encoder_ffn_embed_dim = kwargs.pop("encoder_ffn_embed_dim", 3072) self.encoder_ffn_embed_dim = kwargs.pop("encoder_ffn_embed_dim", 3072)
self.encoder_layers = kwargs.pop("encoder_layers", 12) self.encoder_layers = kwargs.pop("encoder_layers", 12)
self.encoder_normalize_before = kwargs.pop("encoder_normalize_before", True) self.encoder_normalize_before = kwargs.pop("encoder_normalize_before", True)
self.normalize_output = kwargs.pop("normalize_output", True) self.normalize_output = kwargs.pop("normalize_output", True)
self.activation_fn = kwargs.pop("activation_fn", "gelu")
self.dropout = kwargs.pop("dropout", 0.0)
self.drop_path_rate = kwargs.pop("drop_path_rate", 0.0)
self.attention_dropout = kwargs.pop("attention_dropout", 0.0)
self.activation_dropout = kwargs.pop("activation_dropout", 0.0)
self.no_scale_embedding = kwargs.pop("no_scale_embedding", True)
self.layernorm_embedding = kwargs.pop("layernorm_embedding", False)
self.moe_freq = kwargs.pop("moe_freq", 0)
self.moe_top1_expert = kwargs.pop("moe_top1_expert", False)
self.moe_expert_count = kwargs.pop("moe_expert_count", 0)
self.moe_gating_use_fp32 = kwargs.pop("moe_gating_use_fp32", True)
self.moe_eval_capacity_token_fraction = kwargs.pop(
"moe_eval_capacity_token_fraction", 0.25
)
self.moe_second_expert_policy = kwargs.pop("moe_second_expert_policy", "random")
self.moe_normalize_gate_prob_before_dropping = kwargs.pop(
"moe_normalize_gate_prob_before_dropping", False
)
self.use_xmoe = kwargs.pop("use_xmoe", False)
self.rel_pos_buckets = kwargs.pop("rel_pos_buckets", 0) self.rel_pos_buckets = kwargs.pop("rel_pos_buckets", 0)
self.max_rel_pos = kwargs.pop("max_rel_pos", 0)
self.deepnorm = kwargs.pop("deepnorm", False)
self.subln = kwargs.pop("subln", True)
self.bert_init = kwargs.pop("bert_init", False)
self.multiway = kwargs.pop("multiway", False)
self.share_encoder_input_output_embed = kwargs.pop( self.share_encoder_input_output_embed = kwargs.pop(
"share_encoder_input_output_embed", False "share_encoder_input_output_embed", False
) )
self.max_source_positions = kwargs.pop("max_source_positions", 1024) self.max_source_positions = kwargs.pop("max_source_positions", 1024)
self.no_output_layer = kwargs.pop("no_output_layer", False)
self.layernorm_eps = kwargs.pop("layernorm_eps", 1e-5)
# Text
self.vocab_size = kwargs.pop("vocab_size", -1)
# Vision # Vision
self.img_size = kwargs.pop("img_size", 224) self.img_size = kwargs.pop("img_size", 224)
self.patch_size = kwargs.pop("patch_size", 16) self.patch_size = kwargs.pop("patch_size", 16)
self.in_chans = kwargs.pop("in_chans", 3) self.in_chans = kwargs.pop("in_chans", 3)
# Fairscale
self.checkpoint_activations = kwargs.pop("checkpoint_activations", False)
self.fsdp = kwargs.pop("fsdp", False)
self.ddp_rank = kwargs.pop("ddp_rank", 0)
self.xpos_rel_pos = kwargs.pop("xpos_rel_pos", False)
self.xpos_scale_base = kwargs.pop("xpos_scale_base", 512)
if self.deepnorm: if self.deepnorm:
self.encoder_normalize_before = False self.encoder_normalize_before = False
@ -60,63 +75,22 @@ class EncoderConfig:
if self.subln: if self.subln:
self.encoder_normalize_before = True self.encoder_normalize_before = True
self.deepnorm = False self.deepnorm = False
if self.use_xmoe:
self.moe_normalize_gate_prob_before_dropping = True
self.moe_second_expert_policy = "random"
assert self.moe_freq > 0 and self.moe_expert_count > 0
def override(self, args):
for hp in self.__dict__.keys():
if getattr(args, hp, None) is not None:
self.__dict__[hp] = getattr(args, hp, None)
class DecoderConfig: class DecoderConfig(Config):
def __init__(self, **kwargs): def __init__(self, **kwargs):
super().__init__(**kwargs)
self.decoder_embed_dim = kwargs.pop("decoder_embed_dim", 768) self.decoder_embed_dim = kwargs.pop("decoder_embed_dim", 768)
self.decoder_attention_heads = kwargs.pop("decoder_attention_heads", 12) self.decoder_attention_heads = kwargs.pop("decoder_attention_heads", 12)
self.decoder_ffn_embed_dim = kwargs.pop("decoder_ffn_embed_dim", 3072) self.decoder_ffn_embed_dim = kwargs.pop("decoder_ffn_embed_dim", 3072)
self.decoder_layers = kwargs.pop("decoder_layers", 12) self.decoder_layers = kwargs.pop("decoder_layers", 12)
self.decoder_normalize_before = kwargs.pop("decoder_normalize_before", True) self.decoder_normalize_before = kwargs.pop("decoder_normalize_before", True)
self.activation_fn = kwargs.pop("activation_fn", "gelu")
self.dropout = kwargs.pop("dropout", 0.0)
self.drop_path_rate = kwargs.pop("drop_path_rate", 0.0)
self.attention_dropout = kwargs.pop("attention_dropout", 0.0)
self.activation_dropout = kwargs.pop("activation_dropout", 0.0)
self.no_scale_embedding = kwargs.pop("no_scale_embedding", True)
self.layernorm_embedding = kwargs.pop("layernorm_embedding", False)
self.moe_freq = kwargs.pop("moe_freq", 0)
self.moe_top1_expert = kwargs.pop("moe_top1_expert", False)
self.moe_expert_count = kwargs.pop("moe_expert_count", 0)
self.moe_gating_use_fp32 = kwargs.pop("moe_gating_use_fp32", True)
self.moe_eval_capacity_token_fraction = kwargs.pop(
"moe_eval_capacity_token_fraction", 0.25
)
self.moe_second_expert_policy = kwargs.pop("moe_second_expert_policy", "random")
self.moe_normalize_gate_prob_before_dropping = kwargs.pop(
"moe_normalize_gate_prob_before_dropping", False
)
self.use_xmoe = kwargs.pop("use_xmoe", False)
self.rel_pos_buckets = kwargs.pop("rel_pos_buckets", 0) self.rel_pos_buckets = kwargs.pop("rel_pos_buckets", 0)
self.max_rel_pos = kwargs.pop("max_rel_pos", 0)
self.deepnorm = kwargs.pop("deepnorm", False)
self.subln = kwargs.pop("subln", True)
self.bert_init = kwargs.pop("bert_init", False)
self.multiway = kwargs.pop("multiway", False)
self.share_decoder_input_output_embed = kwargs.pop( self.share_decoder_input_output_embed = kwargs.pop(
"share_decoder_input_output_embed", False "share_decoder_input_output_embed", False
) )
self.max_target_positions = kwargs.pop("max_target_positions", 1024) self.max_target_positions = kwargs.pop("max_target_positions", 1024)
self.no_output_layer = kwargs.pop("no_output_layer", False)
self.layernorm_eps = kwargs.pop("layernorm_eps", 1e-5)
# Text
self.vocab_size = kwargs.pop("vocab_size", -1)
# Fairscale
self.checkpoint_activations = kwargs.pop("checkpoint_activations", False)
self.fsdp = kwargs.pop("fsdp", False)
self.ddp_rank = kwargs.pop("ddp_rank", 0)
self.xpos_rel_pos = kwargs.pop("xpos_rel_pos", False)
self.xpos_scale_base = kwargs.pop("xpos_scale_base", 512)
if self.deepnorm: if self.deepnorm:
self.decoder_normalize_before = False self.decoder_normalize_before = False
@ -124,85 +98,10 @@ class DecoderConfig:
if self.subln: if self.subln:
self.decoder_normalize_before = True self.decoder_normalize_before = True
self.deepnorm = False self.deepnorm = False
if self.use_xmoe:
self.moe_normalize_gate_prob_before_dropping = True
self.moe_second_expert_policy = "random"
assert self.moe_freq > 0 and self.moe_expert_count > 0
def override(self, args):
for hp in self.__dict__.keys():
if getattr(args, hp, None) is not None:
self.__dict__[hp] = getattr(args, hp, None)
class EncoderDecoderConfig:
class EncoderDecoderConfig(EncoderConfig, DecoderConfig):
def __init__(self, **kwargs): def __init__(self, **kwargs):
self.encoder_embed_dim = kwargs.pop("encoder_embed_dim", 768) super().__init__(**kwargs)
self.encoder_attention_heads = kwargs.pop("encoder_attention_heads", 12)
self.encoder_ffn_embed_dim = kwargs.pop("encoder_ffn_embed_dim", 3072)
self.encoder_layers = kwargs.pop("encoder_layers", 12)
self.encoder_normalize_before = kwargs.pop("encoder_normalize_before", True)
self.decoder_embed_dim = kwargs.pop("decoder_embed_dim", 768)
self.decoder_attention_heads = kwargs.pop("decoder_attention_heads", 12)
self.decoder_ffn_embed_dim = kwargs.pop("decoder_ffn_embed_dim", 3072)
self.decoder_layers = kwargs.pop("decoder_layers", 12)
self.decoder_normalize_before = kwargs.pop("decoder_normalize_before", True)
self.activation_fn = kwargs.pop("activation_fn", "gelu")
self.dropout = kwargs.pop("dropout", 0.0)
self.drop_path_rate = kwargs.pop("drop_path_rate", 0.0)
self.attention_dropout = kwargs.pop("attention_dropout", 0.0)
self.activation_dropout = kwargs.pop("activation_dropout", 0.0)
self.no_scale_embedding = kwargs.pop("no_scale_embedding", True)
self.layernorm_embedding = kwargs.pop("layernorm_embedding", False)
self.moe_freq = kwargs.pop("moe_freq", 0)
self.moe_top1_expert = kwargs.pop("moe_top1_expert", False)
self.moe_expert_count = kwargs.pop("moe_expert_count", 0)
self.moe_gating_use_fp32 = kwargs.pop("moe_gating_use_fp32", True)
self.moe_eval_capacity_token_fraction = kwargs.pop(
"moe_eval_capacity_token_fraction", 0.25
)
self.moe_second_expert_policy = kwargs.pop("moe_second_expert_policy", "random")
self.moe_normalize_gate_prob_before_dropping = kwargs.pop(
"moe_normalize_gate_prob_before_dropping", False
)
self.use_xmoe = kwargs.pop("use_xmoe", False)
self.rel_pos_buckets = kwargs.pop("rel_pos_buckets", 0)
self.max_rel_pos = kwargs.pop("max_rel_pos", 0)
self.deepnorm = kwargs.pop("deepnorm", False)
self.subln = kwargs.pop("subln", True)
self.bert_init = kwargs.pop("bert_init", False)
self.multiway = kwargs.pop("multiway", False)
self.share_all_embeddings = kwargs.pop("share_all_embeddings", False) self.share_all_embeddings = kwargs.pop("share_all_embeddings", False)
self.share_decoder_input_output_embed = kwargs.pop(
"share_decoder_input_output_embed", False
)
self.max_source_positions = kwargs.pop("max_source_positions", 1024)
self.max_target_positions = kwargs.pop("max_target_positions", 1024)
self.no_output_layer = kwargs.pop("no_output_layer", False)
self.layernorm_eps = kwargs.pop("layernorm_eps", 1e-5)
# Text
self.vocab_size = kwargs.pop("vocab_size", -1)
# Fairscale
self.checkpoint_activations = kwargs.pop("checkpoint_activations", False)
self.fsdp = kwargs.pop("fsdp", False)
self.ddp_rank = kwargs.pop("ddp_rank", 0)
self.xpos_rel_pos = kwargs.pop("xpos_rel_pos", False)
self.xpos_scale_base = kwargs.pop("xpos_scale_base", 512)
if self.deepnorm:
self.encoder_normalize_before = False
self.decoder_normalize_before = False
self.subln = False
if self.subln:
self.encoder_normalize_before = True
self.decoder_normalize_before = True
self.deepnorm = False
if self.use_xmoe:
self.moe_normalize_gate_prob_before_dropping = True
self.moe_second_expert_policy = "random"
assert self.moe_freq > 0 and self.moe_expert_count > 0
def override(self, args):
for hp in self.__dict__.keys():
if getattr(args, hp, None) is not None:
self.__dict__[hp] = getattr(args, hp, None)

View File

@ -9,12 +9,14 @@ import torch.nn as nn
from fairscale.nn import checkpoint_wrapper, wrap from fairscale.nn import checkpoint_wrapper, wrap
from torchscale.architecture.utils import init_bert_params from torchscale.architecture.utils import init_bert_params
from torchscale.architecture.config import DecoderConfig, EncoderConfig
from torchscale.component.droppath import DropPath from torchscale.component.droppath import DropPath
from torchscale.component.feedforward_network import FeedForwardNetwork, make_experts from torchscale.component.feedforward_network import FeedForwardNetwork, make_experts
from torchscale.component.multihead_attention import MultiheadAttention from torchscale.component.multihead_attention import MultiheadAttention
from torchscale.component.relative_position_bias import RelativePositionBias from torchscale.component.relative_position_bias import RelativePositionBias
from torchscale.component.xmoe.moe_layer import MOELayer from torchscale.component.xmoe.moe_layer import MOELayer
from torchscale.component.xmoe.routing import Top1Gate, Top2Gate from torchscale.component.xmoe.routing import Top1Gate, Top2Gate
try: try:
from apex.normalization import FusedLayerNorm as LayerNorm from apex.normalization import FusedLayerNorm as LayerNorm
except ModuleNotFoundError: except ModuleNotFoundError:
@ -23,7 +25,7 @@ except ModuleNotFoundError:
class DecoderLayer(nn.Module): class DecoderLayer(nn.Module):
def __init__( def __init__(
self, self,
args, args: DecoderConfig,
depth, depth,
is_moe_layer=False, is_moe_layer=False,
is_encoder_decoder=False, is_encoder_decoder=False,
@ -209,7 +211,7 @@ class DecoderLayer(nn.Module):
class Decoder(nn.Module): class Decoder(nn.Module):
def __init__( def __init__(
self, self,
args, args: DecoderConfig,
embed_tokens=None, embed_tokens=None,
embed_positions=None, embed_positions=None,
output_projection=None, output_projection=None,

View File

@ -13,6 +13,7 @@ except ModuleNotFoundError:
from torch.nn import LayerNorm from torch.nn import LayerNorm
from torchscale.architecture.utils import init_bert_params from torchscale.architecture.utils import init_bert_params
from torchscale.architecture.config import EncoderConfig
from torchscale.component.droppath import DropPath from torchscale.component.droppath import DropPath
from torchscale.component.feedforward_network import FeedForwardNetwork, make_experts from torchscale.component.feedforward_network import FeedForwardNetwork, make_experts
from torchscale.component.multihead_attention import MultiheadAttention from torchscale.component.multihead_attention import MultiheadAttention
@ -23,7 +24,11 @@ from torchscale.component.xmoe.routing import Top1Gate, Top2Gate
class EncoderLayer(nn.Module): class EncoderLayer(nn.Module):
def __init__(self, args, depth, is_moe_layer=False, is_encoder_decoder=False): def __init__(self,
args: EncoderConfig,
depth,
is_moe_layer: bool = False,
is_encoder_decoder: bool = False):
super().__init__() super().__init__()
self.args = args self.args = args
self.embed_dim = args.encoder_embed_dim self.embed_dim = args.encoder_embed_dim
@ -165,11 +170,11 @@ class EncoderLayer(nn.Module):
class Encoder(nn.Module): class Encoder(nn.Module):
def __init__( def __init__(
self, self,
args, args: EncoderConfig,
embed_tokens=None, embed_tokens=None,
embed_positions=None, embed_positions=None,
output_projection=None, output_projection=None,
is_encoder_decoder=False, is_encoder_decoder: bool = False,
**kwargs **kwargs
): ):
self.args = args self.args = args

View File

@ -3,6 +3,7 @@
import torch.nn as nn import torch.nn as nn
from torchscale.architecture.config import EncoderDecoderConfig
from torchscale.architecture.decoder import Decoder from torchscale.architecture.decoder import Decoder
from torchscale.architecture.encoder import Encoder from torchscale.architecture.encoder import Encoder