torchscale/examples/fairseq
2023-09-29 03:50:24 +00:00
..
criterions Fix MoE sample size 2023-03-08 01:19:36 -08:00
models fix fairseq example 2023-09-29 03:50:24 +00:00
tasks fx bert moe 2023-03-05 07:43:58 +00:00
utils Code reformatting 2022-11-26 09:01:02 -08:00
__init__.py flake8 lint checks 2022-11-26 08:10:15 -08:00
generate.py Fix Bert MoE 2023-03-07 21:11:05 -08:00
interactive.py Fix Bert MoE 2023-03-07 21:11:05 -08:00
README.md Update vocab links 2023-08-11 16:46:37 +08:00
train.py Fix Bert MoE 2023-03-07 21:11:05 -08:00

Example: Integration with FairSeq

Setup

# Install the repo as a package:
git clone https://github.com/microsoft/torchscale.git
cd torchscale
pip install -e .
pip install git+https://github.com/shumingma/fairseq.git@moe
pip install git+https://github.com/shumingma/infinibatch.git
pip install iopath
pip install numpy==1.23.0

Example: BERT Pretraining

Data Format

We use a streaming dataloader to read the data on-the-fly from the disk. It requires the data sharded into multiple small files (e.g. 10K lines per file), as well as a JSON file to contain some meta data and the paths to these files.

The overall data directory should be organized as follows:

Data/
├── json/
│   ├── train.json
│   └── valid.json
├── shard/
│   ├── train/
│   │   ├── 00000.txt
│   │   ├── 00001.txt
│   │   └── ...
│   └── valid/
│       ├── 00000.txt
│       ├── 00001.txt
│       └── ...
├── dict.txt
└── sentencepiece.bpe.model

We recommend that each sharded data files contains no more than 10K lines with one sentence per line, and two documents should be separated with an empty line.

Document 1 Line 1
Document 1 Line 2
Document 1 Line 3

Document 2 Line 1
Document 2 Line 2

...

Also, the JSON file should be in the format like this:

[
    {
        "source": [
            "shard/train/00000.txt",
            "shard/train/00001.txt",
            ...
        ],
        "source_lang": "en",
        "weight": 1.0
    }
]

You can quickly get started with our processed vocabulary files: sentencepiece.bpe.model and dict.txt. Note that this vocabulary is English-only with 64K tokens. To train a new sentencepiece.bpe.model on your own data, please refer to the SentencePiece repo. With the sentecepiece model and the installed sentencepiece library, you can extract the dict.txt file from it by

spm_export_vocab --model=sentencepiece.bpe.model | sed 's/\t/ /g' | tail -n +4 > dict.txt

Dense Model

cd examples/fairseq/
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=8 train.py ${PATH_TO_DATA} \
        --task pretraining  \
        --tokens-per-sample 512  \
        --mask-prob 0.15  \
        --span-length 3.0  \
        --leave-unmasked-prob 0.0  \
        --random-token-prob 0.0 \
        --criterion masked_lm  \
        --arch mlm_base  \
        --share-encoder-input-output-embed \
        --required-batch-size-multiple 8 \
        --spm-model ${PATH_TO_DATA}/sentencepiece.bpe.model \
        --dict-file ${PATH_TO_DATA}/dict.txt \
        --optimizer adam  \
        --adam-betas '(0.9,0.98)'  \
        --adam-eps 1e-6  \
        --clip-norm 2.0 \
        --lr-scheduler polynomial_decay  \
        --lr 0.0005  \
        --warmup-updates 10000  \
        --total-num-update 125000 \
        --max-update 125000 \
        --max-sentences 32  \
        --update-freq 1 \
        --log-format simple  \
        --log-interval 100 \
        --disable-validation \
        --save-interval-updates 5000 \
        --no-epoch-checkpoints \
        --fp16 \
        --fp16-init-scale 4 \
        --fp16-scale-window 256 \
        --min-loss-scale 0.0001 \
        --seed 1 \
        --save-dir ${PATH_TO_CKPT} \
        --ddp-backend=no_c10d \
        --distributed-no-spawn \
        --reset-dataloader \
        --batch-read-ahead 10000 \
        --rel-pos-buckets 32 \
        --max-rel-pos 128 \
        --deepnorm

Sparse (MoE) Model

cd examples/fairseq/
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=8 train.py ${PATH_TO_DATA} \
        --task pretraining  \
        --tokens-per-sample 512  \
        --mask-prob 0.15  \
        --span-length 3.0  \
        --leave-unmasked-prob 0.0  \
        --random-token-prob 0.0 \
        --arch mlm_base  \
        --share-encoder-input-output-embed \
        --required-batch-size-multiple 8 \
        --spm-model ${PATH_TO_DATA}/sentencepiece.bpe.model \
        --dict-file ${PATH_TO_DATA}/dict.txt \
        --optimizer adam  \
        --adam-betas '(0.9,0.98)'  \
        --adam-eps 1e-6  \
        --clip-norm 2.0 \
        --lr-scheduler polynomial_decay  \
        --lr 0.0005  \
        --warmup-updates 10000  \
        --total-num-update 125000 \
        --max-update 125000 \
        --max-sentences 32  \
        --update-freq 1 \
        --log-format simple  \
        --log-interval 100 \
        --disable-validation \
        --save-interval-updates 5000 \
        --no-epoch-checkpoints \
        --fp16 \
        --fp16-init-scale 4 \
        --fp16-scale-window 256 \
        --min-loss-scale 0.0001 \
        --seed 1 \
        --save-dir ${PATH_TO_CKPT} \
        --ddp-backend=no_c10d \
        --distributed-no-spawn \
        --reset-dataloader \
        --batch-read-ahead 10000 \
        --rel-pos-buckets 32 \
        --max-rel-pos 128 \
        --deepnorm \
        --moe-expert-count 64 --moe-freq 2 \
        --moe-gating-use-fp32 --moe-second-expert-policy random --moe-normalize-gate-prob-before-dropping \
        --moe-eval-capacity-token-fraction -1.0 \
        --criterion masked_lm_moe_cross_entropy --moe-gate-loss-wt 0.01 --moe-gate-loss-combine-method sum \
        --use-xmoe --pad-to-max-length

Example: GPT Pretraining

Data Format

We use the format as in the FairSeq's language modeling example.

Dense Model

cd examples/fairseq/
python -m torch.distributed.launch --nproc_per_node=2 --nnodes=1 train.py \
    ${PATH_TO_DATA} \
    --num-workers 2 \
    --activation-fn gelu \
    --share-decoder-input-output-embed \
    --validate-interval-updates 1000 \
    --save-interval-updates 1000 \
    --no-epoch-checkpoints \
    --memory-efficient-fp16 \
    --fp16-init-scale 4 \
    --arch lm_base \
    --task language_modeling \
    --sample-break-mode none \
    --tokens-per-sample 128 \
    --optimizer adam --adam-betas "(0.9, 0.98)" \
    --adam-eps 1e-08 \
    --clip-norm 0.0 \
    --lr 5e-4 \
    --lr-scheduler polynomial_decay \
    --warmup-updates 750 \
    --dropout 0.1 \
    --attention-dropout 0.1 \
    --weight-decay 0.01 \
    --batch-size 4 \
    --update-freq 1 \
    --required-batch-size-multiple 1 \
    --total-num-update 50000 \
    --max-update 50000 \
    --seed 1 \
    --ddp-backend=c10d

Sparse (MoE) Model

cd examples/fairseq/
python -m torch.distributed.launch --nproc_per_node=2 --nnodes=1 train.py \
    ${PATH_TO_DATA} \
    --num-workers 2 \
    --activation-fn gelu \
    --share-decoder-input-output-embed \
    --validate-interval-updates 1000 \
    --save-interval-updates 1000 \
    --no-epoch-checkpoints \
    --memory-efficient-fp16 \
    --fp16-init-scale 4 \
    --arch lm_base \
    --task language_modeling \
    --sample-break-mode none \
    --tokens-per-sample 128 \
    --optimizer adam --adam-betas "(0.9, 0.98)" \
    --adam-eps 1e-08 \
    --clip-norm 0.0 \
    --lr 5e-4 \
    --lr-scheduler polynomial_decay \
    --warmup-updates 750 \
    --dropout 0.1 \
    --attention-dropout 0.1 \
    --weight-decay 0.01 \
    --batch-size 4 \
    --update-freq 1 \
    --required-batch-size-multiple 1 \
    --total-num-update 50000 \
    --max-update 50000 \
    --seed 1 \
    --ddp-backend=no_c10d \
    --moe-expert-count 2 --moe-freq 2 \
    --moe-gating-use-fp32 --moe-second-expert-policy random --moe-normalize-gate-prob-before-dropping \
    --moe-eval-capacity-token-fraction -1.0 \
    --criterion moe_cross_entropy --moe-gate-loss-wt 0.01 --moe-gate-loss-combine-method sum \
    --use-xmoe

Example: Machine Translation

Data Format

We follow the FairSeq's neural machine translation example to preprocess the data.

Dense Model

cd examples/fairseq/
python -m torch.distributed.launch --nproc_per_node=2 --nnodes=1 train.py \
    ${PATH_TO_DATA} \
    --arch mt_base --share-decoder-input-output-embed \
    --optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \
    --lr 5e-4 --lr-scheduler inverse_sqrt --warmup-updates 4000 \
    --dropout 0.3 --weight-decay 0.0001 \
    --max-tokens 4096 --fp16

Sparse (MoE) Model

cd examples/fairseq/
python -m torch.distributed.launch --nproc_per_node=2 --nnodes=1 train.py \
    ${PATH_TO_DATA} \
    --arch mt_base --share-decoder-input-output-embed \
    --optimizer adam --adam-betas '(0.9, 0.98)' --clip-norm 0.0 \
    --lr 5e-4 --lr-scheduler inverse_sqrt --warmup-updates 4000 \
    --dropout 0.3 --weight-decay 0.0001 \
    --moe-expert-count 2 --moe-freq 2 \
    --moe-gating-use-fp32 --moe-second-expert-policy random --moe-normalize-gate-prob-before-dropping \
    --moe-eval-capacity-token-fraction -1.0 \
    --criterion moe_cross_entropy --moe-gate-loss-wt 0.01 --moe-gate-loss-combine-method sum \
    --use-xmoe \
    --max-tokens 4096 --fp16