torchscale/tests/test_decoder.py
2022-11-26 09:01:02 -08:00

39 lines
1.1 KiB
Python

# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
import pytest
import torch
from torchscale.architecture.config import DecoderConfig
from torchscale.architecture.decoder import Decoder
testcases = [
{},
{"vocab_size": 64000},
{"activation_fn": "relu"},
{"drop_path_rate": 0.1},
{"decoder_normalize_before": False},
{"no_scale_embedding": False},
{"layernorm_embedding": True},
{"rel_pos_buckets": 32, "max_rel_pos": 256},
{"deepnorm": True, "subln": False, "decoder_normalize_before": False},
{"bert_init": True},
{"multiway": True},
{"share_decoder_input_output_embed": True},
{"checkpoint_activations": True},
{"fsdp": True},
]
@pytest.mark.parametrize("args", testcases)
def test_decoder(args):
config = DecoderConfig(**args)
model = Decoder(config)
prev_output_tokens = torch.ones(2, 10)
token_embeddings = torch.rand(2, 10, config.decoder_embed_dim)
model(
prev_output_tokens=prev_output_tokens,
token_embeddings=token_embeddings,
features_only=True,
)