2023-10-11 17:25:31 +00:00
|
|
|
import math
|
|
|
|
import torch
|
|
|
|
import torch.nn.functional as F
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
from torch import Tensor, einsum, nn
|
|
|
|
|
|
|
|
# Simple filter to modify a token's probability if it shows up in the past
|
|
|
|
# `one_time` will only apply the penalty once
|
|
|
|
# `decay` is a factor that will exponentially apply to how far away it is
|
|
|
|
def reptition_penalize( logits, previous, factor=1.0, decay=0.0, one_time=True ):
|
|
|
|
if factor == 1.0 or previous is None:
|
|
|
|
return logits
|
|
|
|
|
|
|
|
unique = set()
|
|
|
|
priors = reversed(previous.tolist())
|
|
|
|
for distance, token in enumerate(priors):
|
|
|
|
# skip if we're only applying the decay once
|
|
|
|
if one_time and token in unique:
|
|
|
|
continue
|
|
|
|
|
|
|
|
distance += 1
|
|
|
|
logits[:, token] /= factor * (distance ** decay)
|
|
|
|
|
|
|
|
# add to set if we care about it
|
|
|
|
if one_time:
|
|
|
|
unique.add(token)
|
|
|
|
|
|
|
|
return logits
|
|
|
|
|
|
|
|
# Simple "filter" that modifies the logit for the stop token, based on the sequence length
|
|
|
|
# `length` is the length of the sequence currently
|
|
|
|
# `factor` is the power the length is raised to, so values > 0 will yield longer sequences, values < 0 will yield shorter sequences
|
|
|
|
# `token` is the stop token.
|
|
|
|
def length_penalize( logits, length, factor=0.0, token=-1 ):
|
|
|
|
if factor == 0.0:
|
|
|
|
return logits
|
|
|
|
|
|
|
|
logits[:, token] /= (length ** factor)
|
|
|
|
return logits
|
|
|
|
|
2024-06-18 03:14:43 +00:00
|
|
|
# Simple way to ban tokens
|
|
|
|
def ban_tokens( logits, tokens ):
|
|
|
|
for token in tokens:
|
2024-07-19 20:33:31 +00:00
|
|
|
# token not in logits
|
|
|
|
if logits.shape[-1] >= token:
|
|
|
|
continue
|
2024-06-18 03:14:43 +00:00
|
|
|
logits[:, token] = -float("inf")
|
|
|
|
return logits
|
|
|
|
|
2023-10-11 17:25:31 +00:00
|
|
|
# Credit to https://github.com/microsoft/unilm/blob/master/xtune/src/transformers/modeling_utils.py#L1145 / https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
|
|
|
|
def top_k_top_p_filtering( logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens=1 ):
|
|
|
|
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
|
|
|
|
Args:
|
|
|
|
logits: logits distribution shape (batch size, vocabulary size)
|
|
|
|
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
|
|
|
|
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
|
|
|
|
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
|
|
|
|
Make sure we keep at least min_tokens per batch example in the output
|
|
|
|
"""
|
|
|
|
if top_k > 0:
|
|
|
|
top_k = min(max(top_k, min_tokens), logits.size(-1)) # Safety check
|
|
|
|
# Remove all tokens with a probability less than the last token of the top-k
|
|
|
|
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
|
|
|
logits[indices_to_remove] = filter_value
|
|
|
|
|
|
|
|
if top_p < 1.0:
|
|
|
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
|
|
|
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
|
|
|
|
|
|
|
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
|
|
|
|
sorted_indices_to_remove = cumulative_probs > top_p
|
|
|
|
if min_tokens > 1:
|
|
|
|
# Keep at least min_tokens (set to min_tokens-1 because we add the first one below)
|
|
|
|
sorted_indices_to_remove[..., :min_tokens] = 0
|
|
|
|
# Shift the indices to the right to keep also the first token above the threshold
|
|
|
|
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
|
|
|
sorted_indices_to_remove[..., 0] = 0
|
|
|
|
|
|
|
|
# scatter sorted tensors to original indexing
|
|
|
|
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
|
|
|
logits[indices_to_remove] = filter_value
|
|
|
|
|
|
|
|
return logits
|
|
|
|
|
|
|
|
# credit to https://github.com/LostRuins/koboldcpp/pull/464 // https://github.com/kalomaze/koboldcpp/tree/dynamic-temp
|
|
|
|
def dynamic_temperature( logits, temperature=1.0, min_temperature = 0.0, k = 10, sigmoidCenterPoint = 0.5 ):
|
|
|
|
# loop over logits[:], as the NAR will have logits.shape[0] > 1
|
|
|
|
for i in range(logits.shape[0]):
|
|
|
|
sum_exp = 0.0
|
|
|
|
maximum = torch.max( logits[i] )
|
|
|
|
for logit in logits[i]:
|
|
|
|
sum_exp += math.exp( logit - maximum )
|
|
|
|
|
|
|
|
prob_max_token_before_temp = 1.0 / sum_exp
|
|
|
|
dynamic_temperature = temperature - (temperature - min_temperature) / (1 + math.exp(-k * (prob_max_token_before_temp - sigmoidCenterPoint)))
|
|
|
|
|
|
|
|
logits[i] /= dynamic_temperature
|
|
|
|
|
|
|
|
return logits
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# picks the top K tokens amongst a batch of logits
|
|
|
|
# logits: [Tensor] list of logits
|
|
|
|
# candidates: [(batch, token)] list, where batch indicates the index of the logits the given token is from
|
|
|
|
def top_k_logits_list( logits_list, k ):
|
|
|
|
# ( batch, tokens ) => ( batch x tokens )
|
|
|
|
logits = torch.cat( logits_list )
|
|
|
|
candidates = list(torch.topk(logits.flatten(), k).indices.tolist()) # perform top-k across all logits
|
|
|
|
for i, index in enumerate(candidates):
|
|
|
|
t = []
|
|
|
|
N = np.prod(logits.size())
|
|
|
|
for n in logits.size():
|
|
|
|
N //= n
|
|
|
|
t.append(index // N)
|
|
|
|
index %= N
|
|
|
|
candidates[i] = tuple(t)
|
|
|
|
return candidates
|
|
|
|
|
|
|
|
|
|
|
|
# Credit to: https://github.com/basusourya/mirostat/
|
|
|
|
# performs mirostat-based sampling
|
|
|
|
# logits: Tensor of logit probabilities
|
|
|
|
# state: the mirostat state
|
|
|
|
def mirostat_sample( logits, state = None ):
|
|
|
|
def compute_k(prob, n, tau):
|
|
|
|
num = 0
|
|
|
|
den = 0
|
|
|
|
for i in range(100):
|
|
|
|
b = prob[i]/prob[i+1]
|
|
|
|
t = (i+2)/(i+1)
|
|
|
|
num += math.log(b)*math.log(t)
|
|
|
|
den += math.log(t)**2
|
|
|
|
|
|
|
|
s = num/den
|
|
|
|
eps = s-1
|
|
|
|
k = ((eps*(2**(tau)))/(1-n**(-eps)))**(1/s)
|
|
|
|
k = round(k)
|
|
|
|
return k
|
|
|
|
|
|
|
|
if "max_surprise" not in state:
|
|
|
|
state["max_surprise"] = state["tau"] * 2
|
|
|
|
|
|
|
|
if "error_surprise" not in state:
|
|
|
|
state["error_surprise"] = 0
|
|
|
|
|
|
|
|
if "running_total_surprise" not in state:
|
|
|
|
state["running_total_surprise"] = 0
|
|
|
|
|
|
|
|
sorted_logits, sorted_indices = torch.sort( logits[-1, :], descending=True )
|
|
|
|
prob_original = torch.softmax( sorted_logits, dim=-1 ).tolist()
|
|
|
|
|
|
|
|
k = compute_k(prob_original, state["n"], state["max_surprise"]) + 1
|
|
|
|
|
|
|
|
sorted_logits = sorted_logits[0:k]
|
|
|
|
sorted_indices = sorted_indices[0:k]
|
|
|
|
prob_topk = torch.softmax(sorted_logits, dim = 0)
|
|
|
|
prev_i = torch.multinomial(prob_topk, num_samples=1, replacement=True)
|
|
|
|
|
|
|
|
state["index_surprise"] = math.log2(1/prob_original[prev_i])
|
|
|
|
state["running_total_surprise"] += state["index_surprise"]
|
|
|
|
state["error_surprise"] = state["index_surprise"] - state["tau"]
|
|
|
|
state["max_surprise"] -= state["eta"] * state["error_surprise"]
|
|
|
|
state["token"] = sorted_indices[prev_i]
|
|
|
|
|
|
|
|
return state
|