vall-e/vall_e/train.py

258 lines
8.4 KiB
Python
Raw Normal View History

2023-08-02 21:53:35 +00:00
# todo: clean this mess up
from .config import cfg
from .data import create_train_val_dataloader
from .emb import qnt
from .utils import setup_logging, to_device, trainer, flatten_dict, do_gc
2024-06-04 02:28:49 +00:00
from .data import fold_inputs, unfold_outputs
2024-06-09 16:39:43 +00:00
from .utils.distributed import is_global_leader
2023-08-02 21:53:35 +00:00
import auraloss
import json
import logging
import random
import torch
import torch.nn.functional as F
import traceback
import shutil
2023-08-02 21:53:35 +00:00
from collections import defaultdict
from tqdm import tqdm
import argparse
2023-08-02 21:53:35 +00:00
_logger = logging.getLogger(__name__)
2023-08-04 01:26:36 +00:00
mel_stft_loss = auraloss.freq.MelSTFTLoss(cfg.sample_rate, device="cpu")
2023-08-04 01:26:36 +00:00
def train_feeder(engine, batch):
with torch.autocast("cuda", dtype=cfg.trainer.dtype, enabled=cfg.trainer.amp):
batch_size = len(batch["text"])
engine.current_batch_size = batch_size
if engine.hyper_config.experimental.hf:
if engine.hyper_config.experimental.interleave:
quant_levels = 0
resps_list = [ resp for resp in batch["resps"] ]
else:
quant_levels = [ random.randint( 0 if "ar" in cfg.model.capabilities else 1, cfg.model.max_levels) for _ in range(batch_size) ]
resps_list = [ [] if l == 0 else resp for l, resp in zip(quant_levels, batch["resps"]) ]
2024-06-04 02:28:49 +00:00
input_ids, attention_mask = fold_inputs(
text_list=batch["text"],
prom_list=batch["proms"],
resp_list=resps_list,
targ_list=batch["resps"],
quant_levels=quant_levels,
2024-06-04 02:28:49 +00:00
)
target_ids, target_attention_mask = fold_inputs(
text_list=batch["text"],
prom_list=batch["proms"],
resp_list=resps_list,
targ_list=batch["resps"],
quant_levels=quant_levels,
2024-06-04 02:28:49 +00:00
ignore_index=-100
)
engine(
input_ids=input_ids,
labels=target_ids,
2024-06-04 02:28:49 +00:00
)
else:
engine(
text_list=batch["text"],
2024-06-07 02:57:11 +00:00
proms_list=batch["proms"],
2024-06-04 02:28:49 +00:00
resps_list=batch["resps"],
lang_list=batch["lang"],
training=True,
2024-06-04 02:28:49 +00:00
)
2023-08-04 01:26:36 +00:00
losses = engine.gather_attribute("loss")
stat = engine.gather_attribute("stats")
2023-08-04 01:26:36 +00:00
loss = torch.stack([*losses.values()]).sum()
2023-08-04 01:26:36 +00:00
stats = {}
stats |= {k: v.item() for k, v in losses.items()}
stats |= {k: v.item() for k, v in stat.items()}
2023-08-04 01:26:36 +00:00
engine.tokens_processed += sum([ text.shape[0] for text in batch["text"] ])
engine.tokens_processed += sum([ resps.shape[0] for resps in batch["resps"] ])
2023-08-04 01:26:36 +00:00
return loss, stats
@torch.inference_mode()
def run_eval(engines, eval_name, dl):
2023-08-04 01:26:36 +00:00
stats = defaultdict(list)
stats['loss'] = []
def process( name, batch, resps_list ):
for speaker, path, ref, hyp, prom, task in zip(batch["spkr_name"], batch["path"], batch["resps"], resps_list, batch["proms"], batch["task"]):
2023-08-04 01:26:36 +00:00
if len(hyp) == 0:
continue
filename = f'{speaker}_{path.parts[-1]}'
if task != "tts":
filename = f"{filename}_{task}"
2023-08-04 01:26:36 +00:00
# to-do, refine the output dir to be sane-er
ref_path = (cfg.log_dir / str(engines.global_step) / "ref" / filename).with_suffix(".wav")
hyp_path = (cfg.log_dir / str(engines.global_step) / name / eval_name / filename).with_suffix(".wav")
prom_path = (cfg.log_dir / str(engines.global_step) / name / "prom" / filename).with_suffix(".wav")
hyp_path.parent.mkdir(parents=True, exist_ok=True)
ref_path.parent.mkdir(parents=True, exist_ok=True)
prom_path.parent.mkdir(parents=True, exist_ok=True)
ref_audio, sr = qnt.decode_to_file(ref, ref_path)
hyp_audio, sr = qnt.decode_to_file(hyp, hyp_path)
prom_audio, sr = qnt.decode_to_file(prom, prom_path)
# pseudo loss calculation since we don't get the logits during eval
min_length = min( ref_audio.shape[-1], hyp_audio.shape[-1] )
ref_audio = ref_audio[..., 0:min_length]
hyp_audio = hyp_audio[..., 0:min_length]
stats['loss'].append(mel_stft_loss(hyp_audio[None, :, :], ref_audio[None, :, :]).item())
2023-08-04 01:26:36 +00:00
processed = 0
while processed < cfg.evaluation.size:
batch = to_device(next(iter(dl)), cfg.device)
# limit to eval batch size in the event we somehow have a weird dataloader
for key in batch.keys():
batch[key] = batch[key][:cfg.evaluation.batch_size]
processed += len(batch["text"])
2023-08-04 01:26:36 +00:00
2024-06-04 02:28:49 +00:00
for name in engines:
engine = engines[name]
if engine.hyper_config.experimental.hf:
if engine.hyper_config.experimental.interleave:
input_ids, attention_mask = fold_inputs(
text_list=batch["text"],
prom_list=batch["proms"],
)
output = engine.module.generate(input_ids=input_ids, attention_mask=attention_mask, max_length=cfg.evaluation.steps, eos_token_id=3, do_sample=False)
resps_list = unfold_outputs( output )["resp_list"]
else:
steps = cfg.evaluation.steps
resps_list = [ [] for _ in range(len(text_list)) ]
for l in range(cfg.model.max_levels):
quant_levels = [ [ l ] for _ in range(len(text_list)) ]
input_ids, attention_mask = fold_inputs(text_list=batch["text"], prom_list=batch["proms"], resp_list=resps_list, quant_levels=quant_levels, experimental=True)
min_length = 1
for batch in input_ids:
2024-06-04 23:50:48 +00:00
min_length = max( min_length, batch.shape[0] + 1 )
output = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
min_length=min_length,
max_length=min_length+steps*(2 if l > 0 else 1),
eos_token_id=3,
do_sample=False
)
unfolded = unfold_outputs( output, quant_levels=quant_levels )
if l == 0:
steps = 0
for batch, resp in enumerate(unfolded["resp_list"]):
length = resp.shape[-1]
# store length
if l == 0:
steps = max( steps, length )
# pad
else:
resp = resp[:steps]
if length < steps:
resp = torch.cat([ resp, torch.Tensor([ 0 for _ in range(steps-length) ]).to(resp) ])
resps_list[batch].append( resp )
for i, resp in enumerate( resps_list ):
resps_list[i] = torch.stack( resp ).t()
2024-06-04 02:28:49 +00:00
else:
2024-06-08 21:01:34 +00:00
if "len" in engine.hyper_config.capabilities:
2024-06-08 21:14:57 +00:00
len_list = engine(text_list=batch["text"], proms_list=batch["proms"], max_steps=10 ) # don't need more than that
2024-06-08 21:01:34 +00:00
resps_list = engine( text_list=batch["text"], proms_list=batch["proms"], len_list=len_list )
2024-06-05 15:30:04 +00:00
else:
2024-06-08 21:01:34 +00:00
if "ar" in engine.hyper_config.capabilities:
resps_list = engine(text_list=batch["text"], proms_list=batch["proms"], lang_list=batch["lang"], max_steps=cfg.evaluation.steps, sampling_temperature=cfg.evaluation.ar_temperature)
else:
resps_list = [ resp[:, 0] for resp in batch["resps"] ]
2024-06-05 15:30:04 +00:00
2024-06-08 21:01:34 +00:00
if "nar" in engine.hyper_config.capabilities:
resps_list = engine(text_list=batch["text"], proms_list=batch["proms"], lang_list=batch["lang"], resps_list=resps_list, sampling_temperature=cfg.evaluation.nar_temperature)
2023-08-04 01:26:36 +00:00
process( name, batch, resps_list )
2023-08-04 01:26:36 +00:00
stats = {k: sum(v) / len(v) for k, v in stats.items()}
engines_stats = {
f'{name}.{eval_name}': stats,
"it": engines.global_step,
}
2023-08-19 01:58:07 +00:00
#engines_stats['epoch'] = iteration * cfg.hyperparameters.gradient_accumulation_steps / len(dl)
2023-08-04 01:26:36 +00:00
if cfg.trainer.no_logger:
tqdm.write(f"Validation Metrics: {json.dumps(engines_stats)}.")
else:
_logger.info(f"Validation Metrics: {json.dumps(engines_stats)}.")
2023-08-04 01:26:36 +00:00
2023-08-02 21:53:35 +00:00
def train():
parser = argparse.ArgumentParser("VALL-E TTS")
parser.add_argument("--eval", action="store_true", default=None)
2024-06-04 03:35:55 +00:00
args, unknown = parser.parse_known_args()
# create log folder
setup_logging(cfg.log_dir)
# copy config yaml to backup
2024-06-09 16:39:43 +00:00
if cfg.yaml_path is not None and is_global_leader():
shutil.copy( cfg.yaml_path, cfg.log_dir / "config.yaml" )
2023-08-02 21:53:35 +00:00
train_dl, subtrain_dl, val_dl = create_train_val_dataloader()
2023-08-04 01:26:36 +00:00
2023-08-02 21:53:35 +00:00
def eval_fn(engines):
2024-05-25 22:46:52 +00:00
do_gc()
engines.eval()
# wrapped in a try block because it's sometimes prone to breaking
2023-08-02 21:53:35 +00:00
try:
run_eval(engines, "subtrain", subtrain_dl)
run_eval(engines, "val", val_dl)
2023-08-02 21:53:35 +00:00
except Exception as e:
print("Error occurred while performing eval:", str(e))
print(traceback.format_exc())
2024-05-25 22:46:52 +00:00
engines.train()
2023-08-02 21:53:35 +00:00
qnt.unload_model()
do_gc()
qnt.unload_model()
if args.eval:
return eval_fn(engines=trainer.load_engines())
"""
if cfg.trainer.load_webui:
from .webui import start
start(lock=False)
"""
2023-08-02 21:53:35 +00:00
trainer.train(
train_dl=train_dl,
train_feeder=train_feeder,
eval_fn=eval_fn,
)
if __name__ == "__main__":
# to-do: for DDP, spawn multiprocess instead of requiring `torchrun --nnodes=1 --nproc-per-node=4 -m vall_e.train yaml="./data/config.yaml"`
train()