vall-e/vall_e/inference.py

113 lines
3.2 KiB
Python
Raw Normal View History

2023-08-02 21:53:35 +00:00
import torch
import torchaudio
import soundfile
from einops import rearrange
from .emb import g2p, qnt
from .utils import to_device
from .config import cfg
from .models import get_models
2023-08-16 02:58:16 +00:00
from .train import load_engines
from .data import get_phone_symmap
2023-08-02 21:53:35 +00:00
2023-08-16 02:58:16 +00:00
import random
def trim( qnt, trim_length ):
length = qnt.shape[0]
start = int(length * random.random())
end = start + trim_length
if end >= length:
start = length - trim_length
end = length
return qnt[start:end]
2023-08-02 21:53:35 +00:00
class TTS():
def __init__( self, config=None, ar_ckpt=None, nar_ckpt=None, device="cuda" ):
self.loading = True
self.device = device
self.input_sample_rate = 24000
self.output_sample_rate = 24000
2023-08-14 03:56:28 +00:00
if config:
cfg.load_yaml( config )
2023-08-16 02:58:16 +00:00
cfg.format()
"""
if cfg.trainer.load_state_dict:
for model in cfg.models.get():
path = cfg.ckpt_dir / model.full_name / "fp32.pth"
if model.name.startswith("ar"):
ar_ckpt = path
if model.name.startswith("nar"):
nar_ckpt = path
"""
2023-08-02 21:53:35 +00:00
if ar_ckpt and nar_ckpt:
self.ar_ckpt = ar_ckpt
self.nar_ckpt = nar_ckpt
models = get_models(cfg.models.get())
for name, model in models.items():
if name.startswith("ar"):
self.ar = model.to(self.device, dtype=torch.float32)
state = torch.load(self.ar_ckpt)
if "module" in state:
state = state['module']
self.ar.load_state_dict(state)
elif name.startswith("nar"):
self.nar = model.to(self.device, dtype=torch.float32)
state = torch.load(self.nar_ckpt)
if "module" in state:
state = state['module']
self.nar.load_state_dict(state)
2023-08-02 21:53:35 +00:00
else:
2023-08-14 03:56:28 +00:00
self.load_models()
2023-08-02 21:53:35 +00:00
self.symmap = get_phone_symmap()
self.ar.eval()
self.nar.eval()
2023-08-02 21:53:35 +00:00
self.loading = False
2023-08-14 03:56:28 +00:00
def load_models( self ):
2023-08-16 02:58:16 +00:00
engines = load_engines()
for name, engine in engines.items():
2023-08-02 21:53:35 +00:00
if name[:2] == "ar":
2023-08-16 02:58:16 +00:00
self.ar = engine.module.to(self.device)
2023-08-02 21:53:35 +00:00
elif name[:3] == "nar":
2023-08-16 02:58:16 +00:00
self.nar = engine.module.to(self.device)
2023-08-02 21:53:35 +00:00
def encode_text( self, text, lang_marker="en" ):
text = g2p.encode(text)
phones = [f"<{lang_marker}>"] + [ " " if not p else p for p in text ] + [f"</{lang_marker}>"]
mapped = [self.symmap[p] for p in phones if p in self.symmap]
return torch.tensor( mapped )
def encode_audio( self, path ):
enc = qnt.encode_from_file( path )
2023-08-16 02:58:16 +00:00
res = enc[0].t().to(torch.int16)
if trim:
res = trim( res, int( 75 * cfg.dataset.duration_range[1] ) )
return res
2023-08-02 21:53:35 +00:00
def inference( self, text, reference, mode="both", max_ar_steps=6 * 75, ar_temp=1.0, nar_temp=1.0, out_path="./.tmp.wav" ):
prom = self.encode_audio( reference )
phns = self.encode_text( text )
2023-08-02 21:53:35 +00:00
prom = to_device(prom, self.device).to(torch.int16)
phns = to_device(phns, self.device).to(torch.uint8 if len(self.symmap) < 256 else torch.int16)
2023-08-04 01:26:36 +00:00
resps_list = self.ar(text_list=[phns], proms_list=[prom], max_steps=max_ar_steps, sampling_temperature=ar_temp)
resps_list = [r.unsqueeze(-1) for r in resps_list]
2023-08-02 21:53:35 +00:00
resps_list = self.nar(text_list=[phns], proms_list=[prom], resps_list=resps_list, sampling_temperature=nar_temp)
wav, sr = qnt.decode_to_file(resps_list[0], out_path)
return (wav, sr)