vall-e/scripts/cleanup_dataset.py

99 lines
2.8 KiB
Python
Raw Normal View History

2024-04-29 03:28:29 +00:00
import os
import json
import torch
import torchaudio
from tqdm.auto import tqdm
from pathlib import Path
2024-05-05 02:03:46 +00:00
input_dataset = "training/metadata"
output_dataset = "training/metadata-cleaned"
2024-04-29 03:28:29 +00:00
def pad(num, zeroes):
return str(num).zfill(zeroes+1)
for dataset_name in os.listdir(f'./{input_dataset}/'):
if not os.path.isdir(f'./{input_dataset}/{dataset_name}/'):
print("Is not dir:", f'./{input_dataset}/{dataset_name}/')
continue
for speaker_id in tqdm(os.listdir(f'./{input_dataset}/{dataset_name}/'), desc=f"Processing speaker: {dataset_name}"):
if not os.path.isdir(f'./{input_dataset}/{dataset_name}/{speaker_id}'):
print("Is not dir:", f'./{input_dataset}/{dataset_name}/{speaker_id}')
continue
inpath = Path(f'./{input_dataset}/{dataset_name}/{speaker_id}/whisper.json')
outpath = Path(f'./{output_dataset}/{dataset_name}/{speaker_id}/whisper.json')
if not inpath.exists():
continue
if outpath.exists():
continue
os.makedirs(f'./{output_dataset}/{dataset_name}/{speaker_id}/', exist_ok=True)
try:
in_metadata = json.loads(open(inpath, 'r', encoding='utf-8').read())
except Exception as e:
print("Failed to open metadata file:", inpath)
continue
out_metadata = {}
speaker_metadatas = {}
for filename, result in in_metadata.items():
language = result["language"] if "language" in result else "en"
out_metadata[filename] = {
"segments": [],
"language": language,
"text": "",
"start": 0,
"end": 0,
}
segments = []
text = []
start = 0
end = 0
diarized = False
for segment in result["segments"]:
# diarize split
if "speaker" in segment:
diarized = True
speaker_id = segment["speaker"]
if speaker_id not in speaker_metadatas:
speaker_metadatas[speaker_id] = {}
if filename not in speaker_metadatas[speaker_id]:
speaker_metadatas[speaker_id][filename] = {
"segments": [],
"language": language,
"text": "",
"start": 0,
"end": 0,
}
speaker_metadatas[speaker_id][filename]["segments"].append( segment )
else:
segments.append( segment )
text.append( segment["text"] )
start = min( start, segment["start"] )
end = max( end, segment["end"] )
out_metadata[filename]["segments"] = segments
out_metadata[filename]["text"] = " ".join(text).strip()
out_metadata[filename]["start"] = start
out_metadata[filename]["end"] = end
if len(segments) == 0:
del out_metadata[filename]
open(outpath, 'w', encoding='utf-8').write(json.dumps(out_metadata))
for speaker_id, out_metadata in speaker_metadatas.items():
os.makedirs(f'./{output_dataset}/{dataset_name}/{speaker_id}/', exist_ok=True)
outpath = Path(f'./{output_dataset}/{dataset_name}/{speaker_id}/whisper.json')
open(outpath, 'w', encoding='utf-8').write(json.dumps(out_metadata))