fixed issues that may rise from updating transformers with attention, added nvidia/audio-codec-44khz backend support (by gutting everything necessary because I do NOT want to install more dependencies
This commit is contained in:
parent
0841f366e8
commit
bb2ebe1ca2
|
@ -216,6 +216,9 @@ class Dataset:
|
|||
if cfg.sample_rate == 16_000:
|
||||
return 50
|
||||
|
||||
if cfg.audio_backend == "nemo":
|
||||
return 86.1
|
||||
|
||||
# 24Khz Encodec / Vocos and incidentally DAC are all at 75Hz
|
||||
return 75
|
||||
|
||||
|
@ -815,6 +818,11 @@ class Config(BaseConfig):
|
|||
audio_extension = ".dec"
|
||||
sample_rate = 48_000
|
||||
cfg.model.resp_levels = 8 # ?
|
||||
elif cfg.audio_backend == "nemo":
|
||||
audio_extension = ".nem"
|
||||
sample_rate = 44_100
|
||||
cfg.model.resp_levels = 8
|
||||
cfg.model.audio_tokens = 1000
|
||||
else:
|
||||
raise Exception(f"Unknown audio backend: {audio_backend}")
|
||||
|
||||
|
@ -827,6 +835,8 @@ class Config(BaseConfig):
|
|||
audio_extension = ".dac"
|
||||
elif self.audio_backend == "audiodec":
|
||||
audio_extension = ".dec"
|
||||
elif self.audio_backend == "nemo":
|
||||
audio_extension = ".nem"
|
||||
return audio_extension
|
||||
|
||||
@property
|
||||
|
|
175
vall_e/emb/codecs/dac.py
Normal file
175
vall_e/emb/codecs/dac.py
Normal file
|
@ -0,0 +1,175 @@
|
|||
import torch
|
||||
|
||||
from dac import DACFile
|
||||
from audiotools import AudioSignal
|
||||
from dac.utils import load_model as __load_dac_model
|
||||
|
||||
"""
|
||||
Patch decode to skip things related to the metadata (namely the waveform trimming)
|
||||
So far it seems the raw waveform can just be returned without any post-processing
|
||||
A smart implementation would just reuse the values from the input prompt
|
||||
"""
|
||||
from dac.model.base import CodecMixin
|
||||
|
||||
@torch.no_grad()
|
||||
def CodecMixin_compress(
|
||||
self,
|
||||
audio_path_or_signal: Union[str, Path, AudioSignal],
|
||||
win_duration: float = 1.0,
|
||||
verbose: bool = False,
|
||||
normalize_db: float = -16,
|
||||
n_quantizers: int = None,
|
||||
) -> DACFile:
|
||||
"""Processes an audio signal from a file or AudioSignal object into
|
||||
discrete codes. This function processes the signal in short windows,
|
||||
using constant GPU memory.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
audio_path_or_signal : Union[str, Path, AudioSignal]
|
||||
audio signal to reconstruct
|
||||
win_duration : float, optional
|
||||
window duration in seconds, by default 5.0
|
||||
verbose : bool, optional
|
||||
by default False
|
||||
normalize_db : float, optional
|
||||
normalize db, by default -16
|
||||
|
||||
Returns
|
||||
-------
|
||||
DACFile
|
||||
Object containing compressed codes and metadata
|
||||
required for decompression
|
||||
"""
|
||||
audio_signal = audio_path_or_signal
|
||||
if isinstance(audio_signal, (str, Path)):
|
||||
audio_signal = AudioSignal.load_from_file_with_ffmpeg(str(audio_signal))
|
||||
|
||||
self.eval()
|
||||
original_padding = self.padding
|
||||
original_device = audio_signal.device
|
||||
|
||||
audio_signal = audio_signal.clone()
|
||||
original_sr = audio_signal.sample_rate
|
||||
|
||||
resample_fn = audio_signal.resample
|
||||
loudness_fn = audio_signal.loudness
|
||||
|
||||
# If audio is > 10 minutes long, use the ffmpeg versions
|
||||
if audio_signal.signal_duration >= 10 * 60 * 60:
|
||||
resample_fn = audio_signal.ffmpeg_resample
|
||||
loudness_fn = audio_signal.ffmpeg_loudness
|
||||
|
||||
original_length = audio_signal.signal_length
|
||||
resample_fn(self.sample_rate)
|
||||
input_db = loudness_fn()
|
||||
|
||||
if normalize_db is not None:
|
||||
audio_signal.normalize(normalize_db)
|
||||
audio_signal.ensure_max_of_audio()
|
||||
|
||||
nb, nac, nt = audio_signal.audio_data.shape
|
||||
audio_signal.audio_data = audio_signal.audio_data.reshape(nb * nac, 1, nt)
|
||||
win_duration = (
|
||||
audio_signal.signal_duration if win_duration is None else win_duration
|
||||
)
|
||||
|
||||
if audio_signal.signal_duration <= win_duration:
|
||||
# Unchunked compression (used if signal length < win duration)
|
||||
self.padding = True
|
||||
n_samples = nt
|
||||
hop = nt
|
||||
else:
|
||||
# Chunked inference
|
||||
self.padding = False
|
||||
# Zero-pad signal on either side by the delay
|
||||
audio_signal.zero_pad(self.delay, self.delay)
|
||||
n_samples = int(win_duration * self.sample_rate)
|
||||
# Round n_samples to nearest hop length multiple
|
||||
n_samples = int(math.ceil(n_samples / self.hop_length) * self.hop_length)
|
||||
hop = self.get_output_length(n_samples)
|
||||
|
||||
codes = []
|
||||
range_fn = range if not verbose else tqdm.trange
|
||||
|
||||
for i in range_fn(0, nt, hop):
|
||||
x = audio_signal[..., i : i + n_samples]
|
||||
x = x.zero_pad(0, max(0, n_samples - x.shape[-1]))
|
||||
|
||||
audio_data = x.audio_data.to(self.device)
|
||||
audio_data = self.preprocess(audio_data, self.sample_rate)
|
||||
with torch.autocast("cuda", dtype=cfg.inference.dtype, enabled=cfg.inference.amp):
|
||||
_, c, _, _, _ = self.encode(audio_data, n_quantizers)
|
||||
codes.append(c.to(original_device))
|
||||
chunk_length = c.shape[-1]
|
||||
|
||||
codes = torch.cat(codes, dim=-1)
|
||||
|
||||
dac_file = DACFile(
|
||||
codes=codes,
|
||||
chunk_length=chunk_length,
|
||||
original_length=original_length,
|
||||
input_db=input_db,
|
||||
channels=nac,
|
||||
sample_rate=original_sr,
|
||||
padding=self.padding,
|
||||
dac_version="1.0.0",
|
||||
#dac_version=SUPPORTED_VERSIONS[-1],
|
||||
)
|
||||
|
||||
if n_quantizers is not None:
|
||||
codes = codes[:, :n_quantizers, :]
|
||||
|
||||
self.padding = original_padding
|
||||
return dac_file
|
||||
|
||||
@torch.no_grad()
|
||||
def CodecMixin_decompress(
|
||||
self,
|
||||
obj: Union[str, Path, DACFile],
|
||||
verbose: bool = False,
|
||||
) -> AudioSignal:
|
||||
self.eval()
|
||||
if isinstance(obj, (str, Path)):
|
||||
obj = DACFile.load(obj)
|
||||
|
||||
original_padding = self.padding
|
||||
self.padding = obj.padding
|
||||
|
||||
range_fn = range if not verbose else tqdm.trange
|
||||
codes = obj.codes
|
||||
original_device = codes.device
|
||||
chunk_length = obj.chunk_length
|
||||
recons = []
|
||||
|
||||
for i in range_fn(0, codes.shape[-1], chunk_length):
|
||||
c = codes[..., i : i + chunk_length].to(self.device)
|
||||
z = self.quantizer.from_codes(c)[0]
|
||||
r = self.decode(z)
|
||||
recons.append(r.to(original_device))
|
||||
|
||||
recons = torch.cat(recons, dim=-1)
|
||||
recons = AudioSignal(recons, self.sample_rate)
|
||||
|
||||
# to-do, original implementation
|
||||
if not hasattr(obj, "dummy") or not obj.dummy:
|
||||
resample_fn = recons.resample
|
||||
loudness_fn = recons.loudness
|
||||
|
||||
# If audio is > 10 minutes long, use the ffmpeg versions
|
||||
if recons.signal_duration >= 10 * 60 * 60:
|
||||
resample_fn = recons.ffmpeg_resample
|
||||
loudness_fn = recons.ffmpeg_loudness
|
||||
|
||||
recons.normalize(obj.input_db)
|
||||
resample_fn(obj.sample_rate)
|
||||
recons = recons[..., : obj.original_length]
|
||||
loudness_fn()
|
||||
recons.audio_data = recons.audio_data.reshape(
|
||||
-1, obj.channels, obj.original_length
|
||||
)
|
||||
self.padding = original_padding
|
||||
return recons
|
||||
|
||||
CodecMixin.compress = CodecMixin_compress
|
||||
CodecMixin.decompress = CodecMixin_decompress
|
2
vall_e/emb/codecs/encodec.py
Normal file
2
vall_e/emb/codecs/encodec.py
Normal file
|
@ -0,0 +1,2 @@
|
|||
from encodec import EncodecModel
|
||||
from encodec.utils import convert_audio
|
459
vall_e/emb/codecs/hifigan.py
Normal file
459
vall_e/emb/codecs/hifigan.py
Normal file
|
@ -0,0 +1,459 @@
|
|||
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# MIT License
|
||||
#
|
||||
# Copyright (c) 2020 Jungil Kong
|
||||
#
|
||||
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
# of this software and associated documentation files (the "Software"), to deal
|
||||
# in the Software without restriction, including without limitation the rights
|
||||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
# copies of the Software, and to permit persons to whom the Software is
|
||||
# furnished to do so, subject to the following conditions:
|
||||
#
|
||||
# The above copyright notice and this permission notice shall be included in all
|
||||
# copies or substantial portions of the Software.
|
||||
#
|
||||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
# SOFTWARE.
|
||||
|
||||
# The following functions/classes were based on code from https://github.com/jik876/hifi-gan:
|
||||
# ResBlock1, ResBlock2, Generator, DiscriminatorP, DiscriminatorS, MultiScaleDiscriminator,
|
||||
# MultiPeriodDiscriminator, init_weights, get_padding
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d
|
||||
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
|
||||
|
||||
from nemo.core.classes.common import typecheck
|
||||
from nemo.core.classes.module import NeuralModule
|
||||
from nemo.core.neural_types.elements import AudioSignal, MelSpectrogramType, VoidType
|
||||
from nemo.core.neural_types.neural_type import NeuralType
|
||||
|
||||
LRELU_SLOPE = 0.1
|
||||
|
||||
|
||||
def init_weights(m, mean=0.0, std=0.01):
|
||||
classname = m.__class__.__name__
|
||||
if classname.find("Conv") != -1:
|
||||
m.weight.data.normal_(mean, std)
|
||||
|
||||
|
||||
def get_padding(kernel_size, dilation=1):
|
||||
return int((kernel_size * dilation - dilation) / 2)
|
||||
|
||||
|
||||
class ResBlock1(torch.nn.Module):
|
||||
__constants__ = ['lrelu_slope']
|
||||
|
||||
def __init__(self, channels, kernel_size, dilation):
|
||||
super().__init__()
|
||||
self.lrelu_slope = LRELU_SLOPE
|
||||
self.convs1 = nn.ModuleList(
|
||||
[
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[0],
|
||||
padding=get_padding(kernel_size, dilation[0]),
|
||||
)
|
||||
),
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[1],
|
||||
padding=get_padding(kernel_size, dilation[1]),
|
||||
)
|
||||
),
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[2],
|
||||
padding=get_padding(kernel_size, dilation[2]),
|
||||
)
|
||||
),
|
||||
]
|
||||
)
|
||||
self.convs1.apply(init_weights)
|
||||
|
||||
self.convs2 = nn.ModuleList(
|
||||
[
|
||||
weight_norm(
|
||||
Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))
|
||||
),
|
||||
weight_norm(
|
||||
Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))
|
||||
),
|
||||
weight_norm(
|
||||
Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))
|
||||
),
|
||||
]
|
||||
)
|
||||
self.convs2.apply(init_weights)
|
||||
|
||||
def forward(self, x):
|
||||
for c1, c2 in zip(self.convs1, self.convs2):
|
||||
xt = F.leaky_relu(x, self.lrelu_slope)
|
||||
xt = c1(xt)
|
||||
xt = F.leaky_relu(xt, self.lrelu_slope)
|
||||
xt = c2(xt)
|
||||
x = xt + x
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.convs1:
|
||||
remove_weight_norm(l)
|
||||
for l in self.convs2:
|
||||
remove_weight_norm(l)
|
||||
|
||||
|
||||
class ResBlock2(torch.nn.Module):
|
||||
__constants__ = ['lrelu_slope']
|
||||
|
||||
def __init__(self, channels, kernel_size, dilation):
|
||||
super().__init__()
|
||||
self.convs = nn.ModuleList(
|
||||
[
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[0],
|
||||
padding=get_padding(kernel_size, dilation[0]),
|
||||
)
|
||||
),
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[1],
|
||||
padding=get_padding(kernel_size, dilation[1]),
|
||||
)
|
||||
),
|
||||
]
|
||||
)
|
||||
self.convs.apply(init_weights)
|
||||
self.lrelu_slope = LRELU_SLOPE
|
||||
|
||||
def forward(self, x):
|
||||
for c in self.convs:
|
||||
xt = F.leaky_relu(x, self.lrelu_slope)
|
||||
xt = c(xt)
|
||||
x = xt + x
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.convs:
|
||||
remove_weight_norm(l)
|
||||
|
||||
|
||||
class Generator(NeuralModule):
|
||||
__constants__ = ['lrelu_slope', 'num_kernels', 'num_upsamples']
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
resblock,
|
||||
upsample_rates,
|
||||
upsample_kernel_sizes,
|
||||
upsample_initial_channel,
|
||||
resblock_kernel_sizes,
|
||||
resblock_dilation_sizes,
|
||||
initial_input_size=80,
|
||||
apply_weight_init_conv_pre=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.num_kernels = len(resblock_kernel_sizes)
|
||||
self.num_upsamples = len(upsample_rates)
|
||||
self.conv_pre = weight_norm(Conv1d(initial_input_size, upsample_initial_channel, 7, 1, padding=3))
|
||||
self.lrelu_slope = LRELU_SLOPE
|
||||
resblock = ResBlock1 if resblock == 1 else ResBlock2
|
||||
|
||||
self.ups = nn.ModuleList()
|
||||
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
||||
self.ups.append(
|
||||
weight_norm(
|
||||
ConvTranspose1d(
|
||||
upsample_initial_channel // (2 ** i),
|
||||
upsample_initial_channel // (2 ** (i + 1)),
|
||||
k,
|
||||
u,
|
||||
padding=(k - u) // 2,
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
self.resblocks = nn.ModuleList()
|
||||
for i in range(len(self.ups)):
|
||||
resblock_list = nn.ModuleList()
|
||||
ch = upsample_initial_channel // (2 ** (i + 1))
|
||||
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
||||
resblock_list.append(resblock(ch, k, d))
|
||||
self.resblocks.append(resblock_list)
|
||||
|
||||
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
|
||||
self.ups.apply(init_weights)
|
||||
self.conv_post.apply(init_weights)
|
||||
if apply_weight_init_conv_pre:
|
||||
self.conv_pre.apply(init_weights)
|
||||
|
||||
@property
|
||||
def input_types(self):
|
||||
return {
|
||||
"x": NeuralType(('B', 'D', 'T'), MelSpectrogramType()),
|
||||
}
|
||||
|
||||
@property
|
||||
def output_types(self):
|
||||
return {
|
||||
"audio": NeuralType(('B', 'S', 'T'), AudioSignal()),
|
||||
}
|
||||
|
||||
@typecheck()
|
||||
def forward(self, x):
|
||||
x = self.conv_pre(x)
|
||||
for upsample_layer, resblock_group in zip(self.ups, self.resblocks):
|
||||
x = F.leaky_relu(x, self.lrelu_slope)
|
||||
x = upsample_layer(x)
|
||||
xs = torch.zeros(x.shape, dtype=x.dtype, device=x.device)
|
||||
for resblock in resblock_group:
|
||||
xs += resblock(x)
|
||||
x = xs / self.num_kernels
|
||||
x = F.leaky_relu(x)
|
||||
x = self.conv_post(x)
|
||||
x = torch.tanh(x)
|
||||
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
print('Removing weight norm...')
|
||||
for l in self.ups:
|
||||
remove_weight_norm(l)
|
||||
for group in self.resblocks:
|
||||
for block in group:
|
||||
block.remove_weight_norm()
|
||||
remove_weight_norm(self.conv_pre)
|
||||
remove_weight_norm(self.conv_post)
|
||||
|
||||
|
||||
class DiscriminatorP(NeuralModule):
|
||||
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False, debug=False):
|
||||
super().__init__()
|
||||
self.period = period
|
||||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
||||
conv_ch = [32, 128, 512, 1024] if not debug else [8, 12, 32, 64]
|
||||
self.convs = nn.ModuleList(
|
||||
[
|
||||
norm_f(Conv2d(1, conv_ch[0], (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
||||
norm_f(Conv2d(conv_ch[0], conv_ch[1], (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
||||
norm_f(Conv2d(conv_ch[1], conv_ch[2], (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
||||
norm_f(Conv2d(conv_ch[2], conv_ch[3], (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
||||
norm_f(Conv2d(conv_ch[3], conv_ch[3], (kernel_size, 1), 1, padding=(2, 0))),
|
||||
]
|
||||
)
|
||||
self.conv_post = norm_f(Conv2d(conv_ch[3], 1, (3, 1), 1, padding=(1, 0)))
|
||||
|
||||
@property
|
||||
def input_types(self):
|
||||
return {
|
||||
"x": NeuralType(('B', 'S', 'T'), AudioSignal()),
|
||||
}
|
||||
|
||||
@property
|
||||
def output_types(self):
|
||||
return {
|
||||
"decision": NeuralType(('B', 'T'), VoidType()),
|
||||
"feature_maps": [NeuralType(("B", "C", "H", "W"), VoidType())],
|
||||
}
|
||||
|
||||
@typecheck()
|
||||
def forward(self, x):
|
||||
fmap = []
|
||||
|
||||
# 1d to 2d
|
||||
b, c, t = x.shape
|
||||
if t % self.period != 0: # pad first
|
||||
n_pad = self.period - (t % self.period)
|
||||
x = F.pad(x, (0, n_pad), "reflect")
|
||||
t = t + n_pad
|
||||
x = x.view(b, c, t // self.period, self.period)
|
||||
|
||||
for l in self.convs:
|
||||
x = l(x)
|
||||
x = F.leaky_relu(x, LRELU_SLOPE)
|
||||
fmap.append(x)
|
||||
x = self.conv_post(x)
|
||||
fmap.append(x)
|
||||
x = torch.flatten(x, 1, -1)
|
||||
|
||||
return x, fmap
|
||||
|
||||
|
||||
class MultiPeriodDiscriminator(NeuralModule):
|
||||
def __init__(self, debug=False):
|
||||
super().__init__()
|
||||
self.discriminators = nn.ModuleList(
|
||||
[
|
||||
DiscriminatorP(2, debug=debug),
|
||||
DiscriminatorP(3, debug=debug),
|
||||
DiscriminatorP(5, debug=debug),
|
||||
DiscriminatorP(7, debug=debug),
|
||||
DiscriminatorP(11, debug=debug),
|
||||
]
|
||||
)
|
||||
|
||||
@property
|
||||
def input_types(self):
|
||||
return {
|
||||
"y": NeuralType(('B', 'S', 'T'), AudioSignal()),
|
||||
"y_hat": NeuralType(('B', 'S', 'T'), AudioSignal()),
|
||||
}
|
||||
|
||||
@property
|
||||
def output_types(self):
|
||||
return {
|
||||
"real_scores": [NeuralType(('B', 'T'), VoidType())],
|
||||
"fake_scores": [NeuralType(('B', 'T'), VoidType())],
|
||||
"real_feature_maps": [[NeuralType(("B", "C", "H", "W"), VoidType())]],
|
||||
"fake_feature_maps": [[NeuralType(("B", "C", "H", "W"), VoidType())]],
|
||||
}
|
||||
|
||||
@typecheck()
|
||||
def forward(self, y, y_hat):
|
||||
y_d_rs = []
|
||||
y_d_gs = []
|
||||
fmap_rs = []
|
||||
fmap_gs = []
|
||||
for i, d in enumerate(self.discriminators):
|
||||
y_d_r, fmap_r = d(x=y)
|
||||
y_d_g, fmap_g = d(x=y_hat)
|
||||
y_d_rs.append(y_d_r)
|
||||
fmap_rs.append(fmap_r)
|
||||
y_d_gs.append(y_d_g)
|
||||
fmap_gs.append(fmap_g)
|
||||
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||
|
||||
|
||||
class DiscriminatorS(NeuralModule):
|
||||
def __init__(self, use_spectral_norm=False, debug=False):
|
||||
super().__init__()
|
||||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
||||
conv_ch = [128, 256, 512, 1024] if not debug else [16, 32, 32, 64]
|
||||
self.convs = nn.ModuleList(
|
||||
[
|
||||
norm_f(Conv1d(1, conv_ch[0], 15, 1, padding=7)),
|
||||
norm_f(Conv1d(conv_ch[0], conv_ch[0], 41, 2, groups=4, padding=20)),
|
||||
norm_f(Conv1d(conv_ch[0], conv_ch[1], 41, 2, groups=16, padding=20)),
|
||||
norm_f(Conv1d(conv_ch[1], conv_ch[2], 41, 4, groups=16, padding=20)),
|
||||
norm_f(Conv1d(conv_ch[2], conv_ch[3], 41, 4, groups=16, padding=20)),
|
||||
norm_f(Conv1d(conv_ch[3], conv_ch[3], 41, 1, groups=16, padding=20)),
|
||||
norm_f(Conv1d(conv_ch[3], conv_ch[3], 5, 1, padding=2)),
|
||||
]
|
||||
)
|
||||
self.conv_post = norm_f(Conv1d(conv_ch[3], 1, 3, 1, padding=1))
|
||||
|
||||
@property
|
||||
def input_types(self):
|
||||
return {
|
||||
"x": NeuralType(('B', 'S', 'T'), AudioSignal()),
|
||||
}
|
||||
|
||||
@property
|
||||
def output_types(self):
|
||||
return {
|
||||
"decision": NeuralType(('B', 'T'), VoidType()),
|
||||
"feature_maps": [NeuralType(("B", "C", "T"), VoidType())],
|
||||
}
|
||||
|
||||
@typecheck()
|
||||
def forward(self, x):
|
||||
fmap = []
|
||||
for l in self.convs:
|
||||
x = l(x)
|
||||
x = F.leaky_relu(x, LRELU_SLOPE)
|
||||
fmap.append(x)
|
||||
x = self.conv_post(x)
|
||||
fmap.append(x)
|
||||
x = torch.flatten(x, 1, -1)
|
||||
|
||||
return x, fmap
|
||||
|
||||
|
||||
class MultiScaleDiscriminator(NeuralModule):
|
||||
def __init__(self, debug=False):
|
||||
super().__init__()
|
||||
self.discriminators = nn.ModuleList(
|
||||
[
|
||||
DiscriminatorS(use_spectral_norm=True, debug=debug),
|
||||
DiscriminatorS(debug=debug),
|
||||
DiscriminatorS(debug=debug),
|
||||
]
|
||||
)
|
||||
self.meanpools = nn.ModuleList([AvgPool1d(4, 2, padding=2), AvgPool1d(4, 2, padding=2)])
|
||||
|
||||
@property
|
||||
def input_types(self):
|
||||
return {
|
||||
"y": NeuralType(('B', 'S', 'T'), AudioSignal()),
|
||||
"y_hat": NeuralType(('B', 'S', 'T'), AudioSignal()),
|
||||
}
|
||||
|
||||
@property
|
||||
def output_types(self):
|
||||
return {
|
||||
"real_scores": [NeuralType(('B', 'T'), VoidType())],
|
||||
"fake_scores": [NeuralType(('B', 'T'), VoidType())],
|
||||
"real_feature_maps": [[NeuralType(("B", "C", "T"), VoidType())]],
|
||||
"fake_feature_maps": [[NeuralType(("B", "C", "T"), VoidType())]],
|
||||
}
|
||||
|
||||
@typecheck()
|
||||
def forward(self, y, y_hat):
|
||||
y_d_rs = []
|
||||
y_d_gs = []
|
||||
fmap_rs = []
|
||||
fmap_gs = []
|
||||
for i, d in enumerate(self.discriminators):
|
||||
if i != 0:
|
||||
y = self.meanpools[i - 1](y)
|
||||
y_hat = self.meanpools[i - 1](y_hat)
|
||||
y_d_r, fmap_r = d(x=y)
|
||||
y_d_g, fmap_g = d(x=y_hat)
|
||||
y_d_rs.append(y_d_r)
|
||||
fmap_rs.append(fmap_r)
|
||||
y_d_gs.append(y_d_g)
|
||||
fmap_gs.append(fmap_g)
|
||||
|
||||
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
2771
vall_e/emb/codecs/nemo.py
Normal file
2771
vall_e/emb/codecs/nemo.py
Normal file
File diff suppressed because it is too large
Load Diff
1
vall_e/emb/codecs/vocos.py
Normal file
1
vall_e/emb/codecs/vocos.py
Normal file
|
@ -0,0 +1 @@
|
|||
from vocos import Vocos
|
|
@ -19,205 +19,27 @@ from torch import Tensor
|
|||
from tqdm import tqdm
|
||||
|
||||
try:
|
||||
from encodec import EncodecModel
|
||||
from encodec.utils import convert_audio
|
||||
from .codecs.encodec import *
|
||||
except Exception as e:
|
||||
cfg.inference.use_encodec = False
|
||||
_logger.warning(str(e))
|
||||
|
||||
try:
|
||||
from vocos import Vocos
|
||||
from .codecs.vocos import *
|
||||
except Exception as e:
|
||||
cfg.inference.use_vocos = False
|
||||
_logger.warning(str(e))
|
||||
|
||||
try:
|
||||
from dac import DACFile
|
||||
from audiotools import AudioSignal
|
||||
from dac.utils import load_model as __load_dac_model
|
||||
|
||||
"""
|
||||
Patch decode to skip things related to the metadata (namely the waveform trimming)
|
||||
So far it seems the raw waveform can just be returned without any post-processing
|
||||
A smart implementation would just reuse the values from the input prompt
|
||||
"""
|
||||
from dac.model.base import CodecMixin
|
||||
|
||||
@torch.no_grad()
|
||||
def CodecMixin_compress(
|
||||
self,
|
||||
audio_path_or_signal: Union[str, Path, AudioSignal],
|
||||
win_duration: float = 1.0,
|
||||
verbose: bool = False,
|
||||
normalize_db: float = -16,
|
||||
n_quantizers: int = None,
|
||||
) -> DACFile:
|
||||
"""Processes an audio signal from a file or AudioSignal object into
|
||||
discrete codes. This function processes the signal in short windows,
|
||||
using constant GPU memory.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
audio_path_or_signal : Union[str, Path, AudioSignal]
|
||||
audio signal to reconstruct
|
||||
win_duration : float, optional
|
||||
window duration in seconds, by default 5.0
|
||||
verbose : bool, optional
|
||||
by default False
|
||||
normalize_db : float, optional
|
||||
normalize db, by default -16
|
||||
|
||||
Returns
|
||||
-------
|
||||
DACFile
|
||||
Object containing compressed codes and metadata
|
||||
required for decompression
|
||||
"""
|
||||
audio_signal = audio_path_or_signal
|
||||
if isinstance(audio_signal, (str, Path)):
|
||||
audio_signal = AudioSignal.load_from_file_with_ffmpeg(str(audio_signal))
|
||||
|
||||
self.eval()
|
||||
original_padding = self.padding
|
||||
original_device = audio_signal.device
|
||||
|
||||
audio_signal = audio_signal.clone()
|
||||
original_sr = audio_signal.sample_rate
|
||||
|
||||
resample_fn = audio_signal.resample
|
||||
loudness_fn = audio_signal.loudness
|
||||
|
||||
# If audio is > 10 minutes long, use the ffmpeg versions
|
||||
if audio_signal.signal_duration >= 10 * 60 * 60:
|
||||
resample_fn = audio_signal.ffmpeg_resample
|
||||
loudness_fn = audio_signal.ffmpeg_loudness
|
||||
|
||||
original_length = audio_signal.signal_length
|
||||
resample_fn(self.sample_rate)
|
||||
input_db = loudness_fn()
|
||||
|
||||
if normalize_db is not None:
|
||||
audio_signal.normalize(normalize_db)
|
||||
audio_signal.ensure_max_of_audio()
|
||||
|
||||
nb, nac, nt = audio_signal.audio_data.shape
|
||||
audio_signal.audio_data = audio_signal.audio_data.reshape(nb * nac, 1, nt)
|
||||
win_duration = (
|
||||
audio_signal.signal_duration if win_duration is None else win_duration
|
||||
)
|
||||
|
||||
if audio_signal.signal_duration <= win_duration:
|
||||
# Unchunked compression (used if signal length < win duration)
|
||||
self.padding = True
|
||||
n_samples = nt
|
||||
hop = nt
|
||||
else:
|
||||
# Chunked inference
|
||||
self.padding = False
|
||||
# Zero-pad signal on either side by the delay
|
||||
audio_signal.zero_pad(self.delay, self.delay)
|
||||
n_samples = int(win_duration * self.sample_rate)
|
||||
# Round n_samples to nearest hop length multiple
|
||||
n_samples = int(math.ceil(n_samples / self.hop_length) * self.hop_length)
|
||||
hop = self.get_output_length(n_samples)
|
||||
|
||||
codes = []
|
||||
range_fn = range if not verbose else tqdm.trange
|
||||
|
||||
for i in range_fn(0, nt, hop):
|
||||
x = audio_signal[..., i : i + n_samples]
|
||||
x = x.zero_pad(0, max(0, n_samples - x.shape[-1]))
|
||||
|
||||
audio_data = x.audio_data.to(self.device)
|
||||
audio_data = self.preprocess(audio_data, self.sample_rate)
|
||||
with torch.autocast("cuda", dtype=cfg.inference.dtype, enabled=cfg.inference.amp):
|
||||
_, c, _, _, _ = self.encode(audio_data, n_quantizers)
|
||||
codes.append(c.to(original_device))
|
||||
chunk_length = c.shape[-1]
|
||||
|
||||
codes = torch.cat(codes, dim=-1)
|
||||
|
||||
dac_file = DACFile(
|
||||
codes=codes,
|
||||
chunk_length=chunk_length,
|
||||
original_length=original_length,
|
||||
input_db=input_db,
|
||||
channels=nac,
|
||||
sample_rate=original_sr,
|
||||
padding=self.padding,
|
||||
dac_version="1.0.0",
|
||||
#dac_version=SUPPORTED_VERSIONS[-1],
|
||||
)
|
||||
|
||||
if n_quantizers is not None:
|
||||
codes = codes[:, :n_quantizers, :]
|
||||
|
||||
self.padding = original_padding
|
||||
return dac_file
|
||||
|
||||
@torch.no_grad()
|
||||
def CodecMixin_decompress(
|
||||
self,
|
||||
obj: Union[str, Path, DACFile],
|
||||
verbose: bool = False,
|
||||
) -> AudioSignal:
|
||||
self.eval()
|
||||
if isinstance(obj, (str, Path)):
|
||||
obj = DACFile.load(obj)
|
||||
|
||||
original_padding = self.padding
|
||||
self.padding = obj.padding
|
||||
|
||||
range_fn = range if not verbose else tqdm.trange
|
||||
codes = obj.codes
|
||||
original_device = codes.device
|
||||
chunk_length = obj.chunk_length
|
||||
recons = []
|
||||
|
||||
for i in range_fn(0, codes.shape[-1], chunk_length):
|
||||
c = codes[..., i : i + chunk_length].to(self.device)
|
||||
z = self.quantizer.from_codes(c)[0]
|
||||
r = self.decode(z)
|
||||
recons.append(r.to(original_device))
|
||||
|
||||
recons = torch.cat(recons, dim=-1)
|
||||
recons = AudioSignal(recons, self.sample_rate)
|
||||
|
||||
# to-do, original implementation
|
||||
if not hasattr(obj, "dummy") or not obj.dummy:
|
||||
resample_fn = recons.resample
|
||||
loudness_fn = recons.loudness
|
||||
|
||||
# If audio is > 10 minutes long, use the ffmpeg versions
|
||||
if recons.signal_duration >= 10 * 60 * 60:
|
||||
resample_fn = recons.ffmpeg_resample
|
||||
loudness_fn = recons.ffmpeg_loudness
|
||||
|
||||
recons.normalize(obj.input_db)
|
||||
resample_fn(obj.sample_rate)
|
||||
recons = recons[..., : obj.original_length]
|
||||
loudness_fn()
|
||||
recons.audio_data = recons.audio_data.reshape(
|
||||
-1, obj.channels, obj.original_length
|
||||
)
|
||||
self.padding = original_padding
|
||||
return recons
|
||||
|
||||
CodecMixin.compress = CodecMixin_compress
|
||||
CodecMixin.decompress = CodecMixin_decompress
|
||||
|
||||
from .codecs.dac import *
|
||||
except Exception as e:
|
||||
cfg.inference.use_dac = False
|
||||
_logger.warning(str(e))
|
||||
|
||||
# uses https://github.com/facebookresearch/AudioDec/
|
||||
# I have set up a pip-ify'd version with the caveat of having to manually handle downloading the checkpoints with a wget + unzip
|
||||
# I was not happy with testing, it sounded rather mediocre.
|
||||
"""
|
||||
try:
|
||||
from audiodec.utils.audiodec import AudioDec, assign_model as _audiodec_assign_model
|
||||
except Exception as e:
|
||||
cfg.inference.use_audiodec = False
|
||||
from .codecs.nemo import *
|
||||
cfg.inference.use_nemo = False
|
||||
_logger.warning(str(e))
|
||||
"""
|
||||
|
||||
@cache
|
||||
def _load_encodec_model(device="cuda", levels=0):
|
||||
|
@ -306,7 +128,7 @@ def _load_audiodec_model(device="cuda", model_name=None):
|
|||
model_name = "libritts_v1" if cfg.sample_rate == 24_000 else "vctk_v1"
|
||||
sample_rate, encoder_checkpoint, decoder_checkpoint = _audiodec_assign_model(model_name)
|
||||
|
||||
model = AudioDec(tx_device=device , rx_device=device )
|
||||
model = AudioDec(tx_device=device, rx_device=device)
|
||||
model.load_transmitter(encoder_checkpoint)
|
||||
model.load_receiver(encoder_checkpoint, decoder_checkpoint)
|
||||
|
||||
|
@ -316,11 +138,27 @@ def _load_audiodec_model(device="cuda", model_name=None):
|
|||
|
||||
return model
|
||||
|
||||
@cache
|
||||
def _load_nemo_model(device="cuda", model_name=None):
|
||||
if not model_name:
|
||||
model_name = "nvidia/audio-codec-44khz"
|
||||
|
||||
model = AudioCodecModel.from_pretrained(model_name).to(device).eval()
|
||||
|
||||
model.backend = "nemo"
|
||||
model.sample_rate = 44_100
|
||||
#model.device = device
|
||||
|
||||
return model
|
||||
|
||||
|
||||
@cache
|
||||
def _load_model(device="cuda", backend=None):
|
||||
if not backend:
|
||||
backend = cfg.audio_backend
|
||||
|
||||
if backend == "nemo":
|
||||
return _load_nemo_model(device)
|
||||
if backend == "audiodec":
|
||||
return _load_audiodec_model(device)
|
||||
if backend == "dac":
|
||||
|
@ -354,6 +192,15 @@ def decode(codes: Tensor, device="cuda", metadata=None, window_duration=None):
|
|||
# load the model
|
||||
model = _load_model(device)
|
||||
|
||||
# NeMo uses a different pathway
|
||||
if model.backend == "nemo":
|
||||
# ugh
|
||||
codes = rearrange( codes, "b q t -> b t q")
|
||||
codes = codes.to( device=device )
|
||||
l = torch.tensor([codes.shape[-1]], device=device, dtype=torch.int32)
|
||||
wav, _ = model.decode(tokens=codes, tokens_len=l)
|
||||
return wav, model.sample_rate
|
||||
|
||||
# AudioDec uses a different pathway
|
||||
if model.backend == "audiodec":
|
||||
codes = codes.to( device=device )[0]
|
||||
|
@ -483,6 +330,23 @@ def encode_as_embedding(codes: Tensor, quant_level: int = 0, sums=False, device=
|
|||
|
||||
@torch.inference_mode()
|
||||
def encode(wav: Tensor, sr: int = cfg.sample_rate, device="cuda", return_metadata=True, window_duration=None):
|
||||
# NeMo uses a different pathway
|
||||
if cfg.audio_backend == "nemo":
|
||||
model = _load_nemo_model( device )
|
||||
# reshape (channel, samples) => (batch, channel, samples)
|
||||
if wav.dim() < 3:
|
||||
wav = wav.unsqueeze(0)
|
||||
# skip unnecessary resample
|
||||
if sr != model.sample_rate or wav.shape[1] != 1:
|
||||
wav = convert_audio(wav, sr, model.sample_rate, 1)
|
||||
|
||||
wav = wav.to(device)[0, :, :]
|
||||
l = torch.tensor([wav[0].shape[0]]).to(device)
|
||||
|
||||
codes, _ = model.encode(audio=wav, audio_len=l)
|
||||
# ( batch, level, frame )
|
||||
return codes[0]
|
||||
|
||||
# DAC uses a different pathway
|
||||
if cfg.audio_backend == "dac":
|
||||
model = _load_dac_model( device )
|
||||
|
|
|
@ -32,6 +32,8 @@ class LlamaAttention_Adapted(LlamaAttention):
|
|||
self.mode = torch.nn.attention.SDPBackend.FLASH_ATTENTION
|
||||
elif self.mode == "cudnn":
|
||||
self.mode = torch.nn.attention.SDPBackend.CUDNN_ATTENTION
|
||||
elif self.mode == "sdpa":
|
||||
self.mode = torch.nn.attention.SDPBackend.MATH
|
||||
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
|
@ -393,6 +395,11 @@ class LlamaDecoderLayer_Adapted(LlamaDecoderLayer):
|
|||
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
hidden_states = self.weigh_by_timestep( hidden_states, timesteps )
|
||||
|
||||
# ugh
|
||||
if isinstance( is_causal, list ) and len(is_causal) == 1:
|
||||
is_causal = is_causal[0]
|
||||
|
||||
# Self Attention
|
||||
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
||||
hidden_states=hidden_states,
|
||||
|
|
|
@ -671,9 +671,12 @@ class Base(nn.Module):
|
|||
#gradient_checkpointing=self.gradient_checkpointing,
|
||||
))
|
||||
|
||||
self.model = ml.replace_attention( self.model, klass=LlamaAttention_Adapted, target=LlamaAttention, mode=attention_backend )
|
||||
"""
|
||||
# replace with desired attention
|
||||
if attention_backend not in HF_ATTENTIONS:
|
||||
self.model = ml.replace_attention( self.model, klass=LlamaAttention_Adapted, target=LlamaAttention, mode=attention_backend )
|
||||
"""
|
||||
else:
|
||||
self.model = MixtralModel_Adapted(MixtralConfig(
|
||||
vocab_size =n_resp_tokens,
|
||||
|
@ -694,8 +697,11 @@ class Base(nn.Module):
|
|||
attn_implementation=hf_attention,
|
||||
#gradient_checkpointing=self.gradient_checkpointing,
|
||||
))
|
||||
self.model = ml.replace_attention( self.model, klass=MixtralAttention_Adapted, target=MixtralAttention, mode=attention_backend )
|
||||
"""
|
||||
if attention_backend not in HF_ATTENTIONS:
|
||||
self.model = ml.replace_attention( self.model, klass=MixtralAttention_Adapted, target=MixtralAttention, mode=attention_backend )
|
||||
"""
|
||||
|
||||
if self.layerskip:
|
||||
self.model.layer_dropout_p = layerskip_p_max
|
||||
|
|
Loading…
Reference in New Issue
Block a user