459 lines
16 KiB
Python
459 lines
16 KiB
Python
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
# MIT License
|
|
#
|
|
# Copyright (c) 2020 Jungil Kong
|
|
#
|
|
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
# of this software and associated documentation files (the "Software"), to deal
|
|
# in the Software without restriction, including without limitation the rights
|
|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
# copies of the Software, and to permit persons to whom the Software is
|
|
# furnished to do so, subject to the following conditions:
|
|
#
|
|
# The above copyright notice and this permission notice shall be included in all
|
|
# copies or substantial portions of the Software.
|
|
#
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
# SOFTWARE.
|
|
|
|
# The following functions/classes were based on code from https://github.com/jik876/hifi-gan:
|
|
# ResBlock1, ResBlock2, Generator, DiscriminatorP, DiscriminatorS, MultiScaleDiscriminator,
|
|
# MultiPeriodDiscriminator, init_weights, get_padding
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d
|
|
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
|
|
|
|
from nemo.core.classes.common import typecheck
|
|
from nemo.core.classes.module import NeuralModule
|
|
from nemo.core.neural_types.elements import AudioSignal, MelSpectrogramType, VoidType
|
|
from nemo.core.neural_types.neural_type import NeuralType
|
|
|
|
LRELU_SLOPE = 0.1
|
|
|
|
|
|
def init_weights(m, mean=0.0, std=0.01):
|
|
classname = m.__class__.__name__
|
|
if classname.find("Conv") != -1:
|
|
m.weight.data.normal_(mean, std)
|
|
|
|
|
|
def get_padding(kernel_size, dilation=1):
|
|
return int((kernel_size * dilation - dilation) / 2)
|
|
|
|
|
|
class ResBlock1(torch.nn.Module):
|
|
__constants__ = ['lrelu_slope']
|
|
|
|
def __init__(self, channels, kernel_size, dilation):
|
|
super().__init__()
|
|
self.lrelu_slope = LRELU_SLOPE
|
|
self.convs1 = nn.ModuleList(
|
|
[
|
|
weight_norm(
|
|
Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[0],
|
|
padding=get_padding(kernel_size, dilation[0]),
|
|
)
|
|
),
|
|
weight_norm(
|
|
Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[1],
|
|
padding=get_padding(kernel_size, dilation[1]),
|
|
)
|
|
),
|
|
weight_norm(
|
|
Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[2],
|
|
padding=get_padding(kernel_size, dilation[2]),
|
|
)
|
|
),
|
|
]
|
|
)
|
|
self.convs1.apply(init_weights)
|
|
|
|
self.convs2 = nn.ModuleList(
|
|
[
|
|
weight_norm(
|
|
Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))
|
|
),
|
|
weight_norm(
|
|
Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))
|
|
),
|
|
weight_norm(
|
|
Conv1d(channels, channels, kernel_size, 1, dilation=1, padding=get_padding(kernel_size, 1))
|
|
),
|
|
]
|
|
)
|
|
self.convs2.apply(init_weights)
|
|
|
|
def forward(self, x):
|
|
for c1, c2 in zip(self.convs1, self.convs2):
|
|
xt = F.leaky_relu(x, self.lrelu_slope)
|
|
xt = c1(xt)
|
|
xt = F.leaky_relu(xt, self.lrelu_slope)
|
|
xt = c2(xt)
|
|
x = xt + x
|
|
return x
|
|
|
|
def remove_weight_norm(self):
|
|
for l in self.convs1:
|
|
remove_weight_norm(l)
|
|
for l in self.convs2:
|
|
remove_weight_norm(l)
|
|
|
|
|
|
class ResBlock2(torch.nn.Module):
|
|
__constants__ = ['lrelu_slope']
|
|
|
|
def __init__(self, channels, kernel_size, dilation):
|
|
super().__init__()
|
|
self.convs = nn.ModuleList(
|
|
[
|
|
weight_norm(
|
|
Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[0],
|
|
padding=get_padding(kernel_size, dilation[0]),
|
|
)
|
|
),
|
|
weight_norm(
|
|
Conv1d(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
1,
|
|
dilation=dilation[1],
|
|
padding=get_padding(kernel_size, dilation[1]),
|
|
)
|
|
),
|
|
]
|
|
)
|
|
self.convs.apply(init_weights)
|
|
self.lrelu_slope = LRELU_SLOPE
|
|
|
|
def forward(self, x):
|
|
for c in self.convs:
|
|
xt = F.leaky_relu(x, self.lrelu_slope)
|
|
xt = c(xt)
|
|
x = xt + x
|
|
return x
|
|
|
|
def remove_weight_norm(self):
|
|
for l in self.convs:
|
|
remove_weight_norm(l)
|
|
|
|
|
|
class Generator(NeuralModule):
|
|
__constants__ = ['lrelu_slope', 'num_kernels', 'num_upsamples']
|
|
|
|
def __init__(
|
|
self,
|
|
resblock,
|
|
upsample_rates,
|
|
upsample_kernel_sizes,
|
|
upsample_initial_channel,
|
|
resblock_kernel_sizes,
|
|
resblock_dilation_sizes,
|
|
initial_input_size=80,
|
|
apply_weight_init_conv_pre=False,
|
|
):
|
|
super().__init__()
|
|
self.num_kernels = len(resblock_kernel_sizes)
|
|
self.num_upsamples = len(upsample_rates)
|
|
self.conv_pre = weight_norm(Conv1d(initial_input_size, upsample_initial_channel, 7, 1, padding=3))
|
|
self.lrelu_slope = LRELU_SLOPE
|
|
resblock = ResBlock1 if resblock == 1 else ResBlock2
|
|
|
|
self.ups = nn.ModuleList()
|
|
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
|
self.ups.append(
|
|
weight_norm(
|
|
ConvTranspose1d(
|
|
upsample_initial_channel // (2 ** i),
|
|
upsample_initial_channel // (2 ** (i + 1)),
|
|
k,
|
|
u,
|
|
padding=(k - u) // 2,
|
|
)
|
|
)
|
|
)
|
|
|
|
self.resblocks = nn.ModuleList()
|
|
for i in range(len(self.ups)):
|
|
resblock_list = nn.ModuleList()
|
|
ch = upsample_initial_channel // (2 ** (i + 1))
|
|
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
|
resblock_list.append(resblock(ch, k, d))
|
|
self.resblocks.append(resblock_list)
|
|
|
|
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
|
|
self.ups.apply(init_weights)
|
|
self.conv_post.apply(init_weights)
|
|
if apply_weight_init_conv_pre:
|
|
self.conv_pre.apply(init_weights)
|
|
|
|
@property
|
|
def input_types(self):
|
|
return {
|
|
"x": NeuralType(('B', 'D', 'T'), MelSpectrogramType()),
|
|
}
|
|
|
|
@property
|
|
def output_types(self):
|
|
return {
|
|
"audio": NeuralType(('B', 'S', 'T'), AudioSignal()),
|
|
}
|
|
|
|
@typecheck()
|
|
def forward(self, x):
|
|
x = self.conv_pre(x)
|
|
for upsample_layer, resblock_group in zip(self.ups, self.resblocks):
|
|
x = F.leaky_relu(x, self.lrelu_slope)
|
|
x = upsample_layer(x)
|
|
xs = torch.zeros(x.shape, dtype=x.dtype, device=x.device)
|
|
for resblock in resblock_group:
|
|
xs += resblock(x)
|
|
x = xs / self.num_kernels
|
|
x = F.leaky_relu(x)
|
|
x = self.conv_post(x)
|
|
x = torch.tanh(x)
|
|
|
|
return x
|
|
|
|
def remove_weight_norm(self):
|
|
print('Removing weight norm...')
|
|
for l in self.ups:
|
|
remove_weight_norm(l)
|
|
for group in self.resblocks:
|
|
for block in group:
|
|
block.remove_weight_norm()
|
|
remove_weight_norm(self.conv_pre)
|
|
remove_weight_norm(self.conv_post)
|
|
|
|
|
|
class DiscriminatorP(NeuralModule):
|
|
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False, debug=False):
|
|
super().__init__()
|
|
self.period = period
|
|
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
|
conv_ch = [32, 128, 512, 1024] if not debug else [8, 12, 32, 64]
|
|
self.convs = nn.ModuleList(
|
|
[
|
|
norm_f(Conv2d(1, conv_ch[0], (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
|
norm_f(Conv2d(conv_ch[0], conv_ch[1], (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
|
norm_f(Conv2d(conv_ch[1], conv_ch[2], (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
|
norm_f(Conv2d(conv_ch[2], conv_ch[3], (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
|
norm_f(Conv2d(conv_ch[3], conv_ch[3], (kernel_size, 1), 1, padding=(2, 0))),
|
|
]
|
|
)
|
|
self.conv_post = norm_f(Conv2d(conv_ch[3], 1, (3, 1), 1, padding=(1, 0)))
|
|
|
|
@property
|
|
def input_types(self):
|
|
return {
|
|
"x": NeuralType(('B', 'S', 'T'), AudioSignal()),
|
|
}
|
|
|
|
@property
|
|
def output_types(self):
|
|
return {
|
|
"decision": NeuralType(('B', 'T'), VoidType()),
|
|
"feature_maps": [NeuralType(("B", "C", "H", "W"), VoidType())],
|
|
}
|
|
|
|
@typecheck()
|
|
def forward(self, x):
|
|
fmap = []
|
|
|
|
# 1d to 2d
|
|
b, c, t = x.shape
|
|
if t % self.period != 0: # pad first
|
|
n_pad = self.period - (t % self.period)
|
|
x = F.pad(x, (0, n_pad), "reflect")
|
|
t = t + n_pad
|
|
x = x.view(b, c, t // self.period, self.period)
|
|
|
|
for l in self.convs:
|
|
x = l(x)
|
|
x = F.leaky_relu(x, LRELU_SLOPE)
|
|
fmap.append(x)
|
|
x = self.conv_post(x)
|
|
fmap.append(x)
|
|
x = torch.flatten(x, 1, -1)
|
|
|
|
return x, fmap
|
|
|
|
|
|
class MultiPeriodDiscriminator(NeuralModule):
|
|
def __init__(self, debug=False):
|
|
super().__init__()
|
|
self.discriminators = nn.ModuleList(
|
|
[
|
|
DiscriminatorP(2, debug=debug),
|
|
DiscriminatorP(3, debug=debug),
|
|
DiscriminatorP(5, debug=debug),
|
|
DiscriminatorP(7, debug=debug),
|
|
DiscriminatorP(11, debug=debug),
|
|
]
|
|
)
|
|
|
|
@property
|
|
def input_types(self):
|
|
return {
|
|
"y": NeuralType(('B', 'S', 'T'), AudioSignal()),
|
|
"y_hat": NeuralType(('B', 'S', 'T'), AudioSignal()),
|
|
}
|
|
|
|
@property
|
|
def output_types(self):
|
|
return {
|
|
"real_scores": [NeuralType(('B', 'T'), VoidType())],
|
|
"fake_scores": [NeuralType(('B', 'T'), VoidType())],
|
|
"real_feature_maps": [[NeuralType(("B", "C", "H", "W"), VoidType())]],
|
|
"fake_feature_maps": [[NeuralType(("B", "C", "H", "W"), VoidType())]],
|
|
}
|
|
|
|
@typecheck()
|
|
def forward(self, y, y_hat):
|
|
y_d_rs = []
|
|
y_d_gs = []
|
|
fmap_rs = []
|
|
fmap_gs = []
|
|
for i, d in enumerate(self.discriminators):
|
|
y_d_r, fmap_r = d(x=y)
|
|
y_d_g, fmap_g = d(x=y_hat)
|
|
y_d_rs.append(y_d_r)
|
|
fmap_rs.append(fmap_r)
|
|
y_d_gs.append(y_d_g)
|
|
fmap_gs.append(fmap_g)
|
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
|
|
|
|
|
class DiscriminatorS(NeuralModule):
|
|
def __init__(self, use_spectral_norm=False, debug=False):
|
|
super().__init__()
|
|
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
|
conv_ch = [128, 256, 512, 1024] if not debug else [16, 32, 32, 64]
|
|
self.convs = nn.ModuleList(
|
|
[
|
|
norm_f(Conv1d(1, conv_ch[0], 15, 1, padding=7)),
|
|
norm_f(Conv1d(conv_ch[0], conv_ch[0], 41, 2, groups=4, padding=20)),
|
|
norm_f(Conv1d(conv_ch[0], conv_ch[1], 41, 2, groups=16, padding=20)),
|
|
norm_f(Conv1d(conv_ch[1], conv_ch[2], 41, 4, groups=16, padding=20)),
|
|
norm_f(Conv1d(conv_ch[2], conv_ch[3], 41, 4, groups=16, padding=20)),
|
|
norm_f(Conv1d(conv_ch[3], conv_ch[3], 41, 1, groups=16, padding=20)),
|
|
norm_f(Conv1d(conv_ch[3], conv_ch[3], 5, 1, padding=2)),
|
|
]
|
|
)
|
|
self.conv_post = norm_f(Conv1d(conv_ch[3], 1, 3, 1, padding=1))
|
|
|
|
@property
|
|
def input_types(self):
|
|
return {
|
|
"x": NeuralType(('B', 'S', 'T'), AudioSignal()),
|
|
}
|
|
|
|
@property
|
|
def output_types(self):
|
|
return {
|
|
"decision": NeuralType(('B', 'T'), VoidType()),
|
|
"feature_maps": [NeuralType(("B", "C", "T"), VoidType())],
|
|
}
|
|
|
|
@typecheck()
|
|
def forward(self, x):
|
|
fmap = []
|
|
for l in self.convs:
|
|
x = l(x)
|
|
x = F.leaky_relu(x, LRELU_SLOPE)
|
|
fmap.append(x)
|
|
x = self.conv_post(x)
|
|
fmap.append(x)
|
|
x = torch.flatten(x, 1, -1)
|
|
|
|
return x, fmap
|
|
|
|
|
|
class MultiScaleDiscriminator(NeuralModule):
|
|
def __init__(self, debug=False):
|
|
super().__init__()
|
|
self.discriminators = nn.ModuleList(
|
|
[
|
|
DiscriminatorS(use_spectral_norm=True, debug=debug),
|
|
DiscriminatorS(debug=debug),
|
|
DiscriminatorS(debug=debug),
|
|
]
|
|
)
|
|
self.meanpools = nn.ModuleList([AvgPool1d(4, 2, padding=2), AvgPool1d(4, 2, padding=2)])
|
|
|
|
@property
|
|
def input_types(self):
|
|
return {
|
|
"y": NeuralType(('B', 'S', 'T'), AudioSignal()),
|
|
"y_hat": NeuralType(('B', 'S', 'T'), AudioSignal()),
|
|
}
|
|
|
|
@property
|
|
def output_types(self):
|
|
return {
|
|
"real_scores": [NeuralType(('B', 'T'), VoidType())],
|
|
"fake_scores": [NeuralType(('B', 'T'), VoidType())],
|
|
"real_feature_maps": [[NeuralType(("B", "C", "T"), VoidType())]],
|
|
"fake_feature_maps": [[NeuralType(("B", "C", "T"), VoidType())]],
|
|
}
|
|
|
|
@typecheck()
|
|
def forward(self, y, y_hat):
|
|
y_d_rs = []
|
|
y_d_gs = []
|
|
fmap_rs = []
|
|
fmap_gs = []
|
|
for i, d in enumerate(self.discriminators):
|
|
if i != 0:
|
|
y = self.meanpools[i - 1](y)
|
|
y_hat = self.meanpools[i - 1](y_hat)
|
|
y_d_r, fmap_r = d(x=y)
|
|
y_d_g, fmap_g = d(x=y_hat)
|
|
y_d_rs.append(y_d_r)
|
|
fmap_rs.append(fmap_r)
|
|
y_d_gs.append(y_d_g)
|
|
fmap_gs.append(fmap_g)
|
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs |