work on an interleaved AR (spoiler: it does not work)
This commit is contained in:
parent
8a6c203277
commit
c56ce033d9
2
vall_e/ext/interleaver.py
Normal file
2
vall_e/ext/interleaver.py
Normal file
|
@ -0,0 +1,2 @@
|
|||
# From: https://github.com/facebookresearch/audiocraft/blob/main/audiocraft/modules/codebooks_patterns.py
|
||||
# audiocraft has heavy dependencies, so it doesn't make sense to depend on it just for this file.
|
599
vall_e/models/interleaved_ar.py
Normal file
599
vall_e/models/interleaved_ar.py
Normal file
|
@ -0,0 +1,599 @@
|
|||
import math
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import traceback
|
||||
|
||||
from typing import Literal, overload
|
||||
from functools import partial
|
||||
from einops import rearrange
|
||||
|
||||
from torch import Tensor, einsum, nn
|
||||
from torch.distributions import Categorical
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
from torchmetrics.classification import BinaryAccuracy, MulticlassAccuracy, MulticlassPrecision
|
||||
|
||||
from .retnet import RetNetDecoder, RetNetConfig
|
||||
from .transformer import SinusoidalEmbedding, Block as TransformerBlock
|
||||
|
||||
from ..ext.interleaver import (
|
||||
CodebooksPatternProvider,
|
||||
DelayedPatternProvider,
|
||||
MusicLMPattern,
|
||||
ParallelPatternProvider,
|
||||
UnrolledPatternProvider,
|
||||
VALLEPattern,
|
||||
)
|
||||
|
||||
from ..config import cfg
|
||||
|
||||
def _get_pattern_provider( name ):
|
||||
return {
|
||||
'parallel': ParallelPatternProvider,
|
||||
'delay': DelayedPatternProvider,
|
||||
'unroll': UnrolledPatternProvider,
|
||||
'valle': VALLEPattern,
|
||||
'musiclm': MusicLMPattern,
|
||||
}[name]
|
||||
|
||||
def _create_mask(l, device):
|
||||
"""1 is valid region and 0 is invalid."""
|
||||
seq = torch.arange(max(l), device=device).unsqueeze(0) # (1 t)
|
||||
stop = torch.tensor(l, device=device).unsqueeze(1) # (b 1)
|
||||
return (seq < stop).float() # (b t)
|
||||
|
||||
def _join(x: tuple[Tensor], sep: Tensor):
|
||||
"""
|
||||
Args:
|
||||
x: (k t d)
|
||||
sep: (d)
|
||||
"""
|
||||
ret = x[0]
|
||||
for i in range(1, len(x)):
|
||||
ret = torch.cat((ret, sep[None], x[i]), dim=0)
|
||||
return ret
|
||||
|
||||
def list_to_tensor(x_list: list[Tensor], pattern="t b c -> b t c"):
|
||||
"""
|
||||
Args:
|
||||
x_list: [(t d)]
|
||||
Returns:
|
||||
x: (? ? ?)
|
||||
m: (? ? ?), same as x
|
||||
"""
|
||||
l = list(map(len, x_list))
|
||||
x = rearrange(pad_sequence(x_list), pattern)
|
||||
m = _create_mask(l, x_list[0].device)
|
||||
m = m.t().unsqueeze(-1) # (t b 1)
|
||||
m = rearrange(m, pattern)
|
||||
m = m.to(x)
|
||||
return x, m
|
||||
|
||||
class Embedding(nn.Embedding):
|
||||
def forward(self, x_list: list[Tensor]) -> list[Tensor]:
|
||||
if len(x_list) == 0:
|
||||
return []
|
||||
|
||||
return super().forward(torch.cat(x_list)).split([*map(len, x_list)])
|
||||
|
||||
|
||||
class MultiEmbedding(nn.Embedding):
|
||||
"""
|
||||
This embedding sums embeddings on different levels.
|
||||
"""
|
||||
|
||||
def __init__(self, max_n_levels, n_tokens, token_dim):
|
||||
super().__init__(max_n_levels, token_dim)
|
||||
self.max_n_levels = max_n_levels
|
||||
self.n_tokens = n_tokens
|
||||
self.weight = nn.Parameter(torch.randn(max_n_levels, n_tokens, token_dim))
|
||||
|
||||
def forward(self, x_list: list[Tensor]) -> list[Tensor]:
|
||||
if len(x_list) == 0:
|
||||
return []
|
||||
|
||||
w = self.weight
|
||||
|
||||
padded_x_list = []
|
||||
|
||||
for xi in x_list:
|
||||
xi = F.one_hot(xi.to(torch.int64), num_classes=self.n_tokens) # t l' k
|
||||
xi = F.pad(xi, (0, 0, 0, w.shape[0] - xi.shape[1])) # t l k
|
||||
padded_x_list.append(xi.to(w))
|
||||
|
||||
x = torch.cat(padded_x_list) # n l k
|
||||
x = einsum("l k d, n l k -> n d", w, x)
|
||||
|
||||
x_list = x.split([*map(len, x_list)])
|
||||
|
||||
return x_list
|
||||
|
||||
|
||||
class Base(nn.Module):
|
||||
@property
|
||||
def causal(self):
|
||||
return True
|
||||
|
||||
@property
|
||||
def use_stop_token(self):
|
||||
return True
|
||||
|
||||
@property
|
||||
def norm_type(self):
|
||||
return "ln"
|
||||
|
||||
@property
|
||||
def arch_type(self) -> str:
|
||||
return "retnet"
|
||||
|
||||
@property
|
||||
def n_prom_levels(self) -> int:
|
||||
return 4
|
||||
|
||||
@property
|
||||
def n_resp_levels(self) -> int:
|
||||
return 4
|
||||
|
||||
@property
|
||||
def n_max_levels(self) -> int:
|
||||
return 4
|
||||
|
||||
@property
|
||||
def n_tasks(self) -> int:
|
||||
return 16
|
||||
|
||||
@property
|
||||
def resp_loss_only(self) -> bool:
|
||||
return False
|
||||
|
||||
@property
|
||||
def recurrent_chunk_size(self) -> int:
|
||||
return 0
|
||||
|
||||
@property
|
||||
def interleave_pattern(self) -> str | None:
|
||||
return "musiclm"
|
||||
|
||||
@property
|
||||
def stop_token(self):
|
||||
return self.n_tokens + 0
|
||||
|
||||
@property
|
||||
def interleaved_token(self):
|
||||
return self.n_tokens + 1
|
||||
|
||||
@property
|
||||
def ignore_index(self):
|
||||
return -100 # self.interleaved_token
|
||||
|
||||
def _prune(self, l: Tensor):
|
||||
indices = (l == self.stop_token).nonzero()
|
||||
if len(indices) == 0:
|
||||
return l
|
||||
return l[: indices.min().item()]
|
||||
|
||||
@staticmethod
|
||||
def _unsqueeze_list(x_list, axis=-1):
|
||||
return [x.unsqueeze(dim=axis) for x in x_list]
|
||||
|
||||
@staticmethod
|
||||
def _samplewise_merge_tensors(*l, sep: Tensor | None):
|
||||
if sep is None:
|
||||
cat = torch.cat
|
||||
else:
|
||||
cat = partial(_join, sep=sep)
|
||||
return [*map(cat, zip(*l))]
|
||||
|
||||
def _interleave( self, codes ):
|
||||
if not self.interleave_pattern:
|
||||
return codes
|
||||
|
||||
return codes.flatten()
|
||||
"""
|
||||
pattern_provider = _get_pattern_provider( self.interleave_pattern )( self.n_resp_levels )
|
||||
pattern = pattern_provider.get_pattern( codes.shape[0] )
|
||||
res, _, _ = pattern.build_pattern_sequence( codes.t()[None, :, :], self.interleaved_token, keep_only_valid_steps=True )
|
||||
return res[0].t().flatten()
|
||||
"""
|
||||
|
||||
def _deinterleave( self, codes ):
|
||||
if not self.interleave_pattern:
|
||||
return codes
|
||||
|
||||
return torch.unflatten( codes[:codes.shape[0] // self.n_resp_levels * self.n_resp_levels], 0, ( codes.shape[0] // self.n_resp_levels, self.n_resp_levels ) )
|
||||
"""
|
||||
if codes.dim() == 1:
|
||||
codes = torch.unflatten( codes[:codes.shape[0] // self.n_resp_levels * self.n_resp_levels], 0, ( codes.shape[0] // self.n_resp_levels, self.n_resp_levels ) )
|
||||
|
||||
pattern_provider = _get_pattern_provider( self.interleave_pattern )( self.n_resp_levels )
|
||||
pattern = pattern_provider.get_pattern( codes.shape[0] )
|
||||
res, _, _ = pattern.revert_pattern_sequence( codes, special_token=self.interleaved_token)
|
||||
return res[0].t()
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
n_tokens: int = 1024,
|
||||
d_model: int = 512,
|
||||
n_heads: int = 8,
|
||||
n_layers: int = 12,
|
||||
p_dropout: float = 0.1,
|
||||
|
||||
config: dict | None = None
|
||||
):
|
||||
super().__init__()
|
||||
self._cfg = config
|
||||
self.n_tokens = n_tokens
|
||||
self.d_model = d_model
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
|
||||
# + tasks for each token they represent in the prom
|
||||
n_prom_tokens = n_tokens + (self.n_tasks - 1) + (1 if self.interleave_pattern else 0) # - 1 because tts is an inherent task
|
||||
# +1 to include the stop token + 1 to include interleave token
|
||||
n_resp_tokens = n_tokens + (1 if self.use_stop_token else 0) + (1 if self.interleave_pattern else 0) # AR requires a stop token to... know when to stop
|
||||
|
||||
self.text_emb = Embedding(n_tokens, d_model)
|
||||
self.proms_emb = MultiEmbedding(self.n_prom_levels, n_prom_tokens, d_model)
|
||||
self.resps_emb = MultiEmbedding(1, n_resp_tokens, d_model)
|
||||
|
||||
self.sep = nn.Parameter(torch.randn(d_model))
|
||||
|
||||
if self.arch_type == "transformer":
|
||||
self.sin_emb = SinusoidalEmbedding(d_model)
|
||||
self.blocks = nn.ModuleList([TransformerBlock(
|
||||
d_model=d_model,
|
||||
n_heads=n_heads,
|
||||
p_dropout=p_dropout,
|
||||
causal=self.causal,
|
||||
norm_type=self.norm_type,
|
||||
n_levels=1,
|
||||
) for _ in range(n_layers) ])
|
||||
|
||||
elif self.arch_type == "retnet":
|
||||
self.retnet = RetNetDecoder(RetNetConfig(
|
||||
vocab_size=n_tokens,
|
||||
decoder_embed_dim=d_model,
|
||||
decoder_retention_heads=n_heads,
|
||||
decoder_ffn_embed_dim=d_model * 4,
|
||||
decoder_layers=n_layers,
|
||||
dropout=p_dropout,
|
||||
checkpoint_activations=True,
|
||||
|
||||
chunkwise_recurrent=self.causal and self.recurrent_chunk_size > 0,
|
||||
recurrent_chunkwise_size=self.recurrent_chunk_size if self.causal else 0,
|
||||
no_output_layer=True,
|
||||
decoder_normalize_before=True,
|
||||
))
|
||||
|
||||
# I imagine because each step returns `resp_level`s tokens at once, so we need to have a classifier for each level
|
||||
#self.classifier = nn.ModuleList([ nn.Linear(d_model, n_resp_tokens) for _ in range(self.n_resp_levels) ]) if self.interleave_pattern else nn.Linear(d_model, n_resp_tokens)
|
||||
self.classifier = nn.Linear(d_model, n_resp_tokens)
|
||||
|
||||
self.accuracy_metric = MulticlassAccuracy(
|
||||
n_resp_tokens,
|
||||
top_k=10,
|
||||
average="micro",
|
||||
multidim_average="global",
|
||||
ignore_index=self.ignore_index,
|
||||
)
|
||||
|
||||
self.precision_metric = MulticlassPrecision(
|
||||
n_resp_tokens,
|
||||
top_k=10,
|
||||
average="micro",
|
||||
multidim_average="global",
|
||||
ignore_index=self.ignore_index,
|
||||
)
|
||||
|
||||
@overload
|
||||
def forward(
|
||||
self,
|
||||
text_list: list[Tensor],
|
||||
proms_list: list[Tensor],
|
||||
resps_list: list[Tensor],
|
||||
targ_list: list[Tensor] | None = None,
|
||||
quant_levels: Tensor | None = None,
|
||||
shift_targ_list: bool = False,
|
||||
return_all: Literal[False] = False,
|
||||
return_all_resp: Literal[False] = False,
|
||||
sampling_temperature: float = 1.0,
|
||||
) -> Tensor:
|
||||
...
|
||||
|
||||
@overload
|
||||
def forward(
|
||||
self,
|
||||
text_list: list[Tensor],
|
||||
proms_list: list[Tensor],
|
||||
resps_list: list[Tensor],
|
||||
targ_list: list[Tensor] | None = None,
|
||||
quant_levels: Tensor | None = None,
|
||||
shift_targ_list: bool = False,
|
||||
return_all: Literal[True] = True,
|
||||
return_all_resp: Literal[True] = True,
|
||||
sampling_temperature: float = 1.0,
|
||||
) -> list[Tensor]:
|
||||
...
|
||||
|
||||
def _forward(
|
||||
self,
|
||||
text_list: list[Tensor],
|
||||
proms_list: list[Tensor],
|
||||
resps_list: list[Tensor],
|
||||
targ_list: list[Tensor] | None = None,
|
||||
quant_levels: Tensor | None = None,
|
||||
shift_targ_list: bool = False,
|
||||
return_all: bool = False,
|
||||
return_all_resp: bool = False,
|
||||
sampling_temperature: float = 1.0,
|
||||
|
||||
state: dict | None = None,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
text_list: [t] * b
|
||||
proms_list: [t' l] * b, l quantization levels.
|
||||
resps_list: [t'' l] * b, l quantization levels.
|
||||
targ_list: [t''] * b, one quantization level only; when given, loss will be computed
|
||||
quant_levels: specify which quant_levels to feed forward, used in NAR mode.
|
||||
shift_targ_list: whether to shift target list when computing loss. True if AR.
|
||||
return_all_resp: True if NAR.
|
||||
sampling_temperature: a lower temperature makes the result more robust but less diverse.
|
||||
Returns:
|
||||
y: sampled tokens
|
||||
"""
|
||||
|
||||
batch_size = len(text_list)
|
||||
|
||||
x_list = self._samplewise_merge_tensors(
|
||||
self.text_emb(text_list),
|
||||
self.proms_emb(proms_list),
|
||||
self.resps_emb(resps_list),
|
||||
sep=self.sep,
|
||||
)
|
||||
|
||||
x, m = list_to_tensor(x_list)
|
||||
device = x.device
|
||||
|
||||
if state is not None:
|
||||
# prefill
|
||||
prefill_size = x.shape[1]
|
||||
|
||||
# run the initial prompt to fill the KV cache
|
||||
if len(state) == 0:
|
||||
for n in range(prefill_size):
|
||||
xi = x[:, n, :].unsqueeze(1)
|
||||
self.retnet(xi, incremental_state=state, token_embeddings=xi, features_only=True)
|
||||
|
||||
# grab last token(s)
|
||||
x = x[:, -1, :].unsqueeze(1)
|
||||
|
||||
if self.arch_type == "transformer":
|
||||
x = self.sin_emb.add_pe(x)
|
||||
for block in self.blocks:
|
||||
x = block(x, m, quant_levels)
|
||||
elif self.arch_type == "retnet":
|
||||
# to-do: actually make this work and verify it works with recurrent_forward / chunkwise_forward
|
||||
x, _ = self.retnet(x, incremental_state=state, token_embeddings=x, features_only=True)
|
||||
|
||||
x = self.classifier(x) * m
|
||||
|
||||
# Remove padding
|
||||
h_list = [hi[:li] for hi, li in zip(x, map(len, x_list))]
|
||||
|
||||
if True:
|
||||
logits = [hi[:] for hi, li in zip(h_list, map(len, resps_list))]
|
||||
ret = [ Categorical(logits=hi / sampling_temperature).sample() for hi in logits ]
|
||||
print( [ r for r in ret ] )
|
||||
|
||||
# compute loss if the target is given
|
||||
if targ_list is not None:
|
||||
if any([l == 0 for l in map(len, targ_list)]):
|
||||
raise ValueError("Cannot compute loss given empty targ_list.")
|
||||
|
||||
ignore_sep = torch.tensor(self.ignore_index, device=device)
|
||||
|
||||
# ignore the prompt when computing loss
|
||||
prom_list = [
|
||||
torch.full_like(t[..., 0], self.ignore_index) for t in proms_list
|
||||
]
|
||||
# remake input with ignored input prompt
|
||||
text_prom_list = self._samplewise_merge_tensors(
|
||||
text_list, prom_list, sep=ignore_sep
|
||||
)
|
||||
|
||||
for i in range(len(text_prom_list)):
|
||||
# ignore computing loss against text/prompt portion of input
|
||||
# the NAR doesn't need to compute the loss for it
|
||||
if self.resp_loss_only:
|
||||
text_prom_list[i][:] = self.ignore_index
|
||||
|
||||
# roll the text/prompt for loss computing
|
||||
# the AR benefits from this, for some reason I'll figure out later
|
||||
else:
|
||||
text_prom_list[i] = text_prom_list[i].roll(-1, dims=0)
|
||||
text_prom_list[i][-1] = self.ignore_index
|
||||
|
||||
# for the AR, roll by one and mark the ending with a stop token
|
||||
# this coerces the model into properly inferencing causally
|
||||
|
||||
# why we don't just append a stop token in the dataloader, who knows
|
||||
if shift_targ_list:
|
||||
targ_list = [*targ_list]
|
||||
for i in range(len(targ_list)):
|
||||
targ_list[i] = targ_list[i].roll(-self.n_resp_levels, dims=0)
|
||||
for j in range(self.n_resp_levels):
|
||||
targ_list[i][-j-1] = self.stop_token
|
||||
|
||||
# create the new target sequence to compute the loss against
|
||||
y_list = self._samplewise_merge_tensors( text_prom_list, targ_list, sep=ignore_sep )
|
||||
|
||||
self.loss = dict(
|
||||
nll=F.cross_entropy(
|
||||
torch.cat(h_list), # input / predicted logits
|
||||
torch.cat(y_list), # target / ground truth
|
||||
ignore_index=self.ignore_index,
|
||||
)
|
||||
)
|
||||
self.stats = dict(
|
||||
acc = self.accuracy_metric( torch.cat(h_list), torch.cat(y_list) ),
|
||||
precision = self.precision_metric( torch.cat(h_list), torch.cat(y_list) ),
|
||||
)
|
||||
|
||||
# return the entire generated token string
|
||||
if return_all:
|
||||
logits = [hi[:] for hi, li in zip(h_list, map(len, resps_list))]
|
||||
# return the entire generated response
|
||||
elif return_all_resp:
|
||||
logits = [hi[-li:] for hi, li in zip(h_list, map(len, resps_list))]
|
||||
# return the last chunkwise piece
|
||||
elif self.causal and self.recurrent_chunk_size > 0:
|
||||
logits = [hi[-self.recurrent_chunk_size:] for hi, li in zip(h_list, map(len, resps_list))]
|
||||
# return just the last code
|
||||
else:
|
||||
logits = [ hi[-1:] for hi in h_list ]
|
||||
|
||||
return [ Categorical(logits=hi / sampling_temperature).sample() for hi in logits ]
|
||||
|
||||
def forward(
|
||||
self,
|
||||
text_list: list[Tensor],
|
||||
proms_list: list[Tensor],
|
||||
resps_list: list[Tensor] | None = None,
|
||||
max_steps: int = 1000,
|
||||
sampling_temperature: float = 1.0,
|
||||
):
|
||||
if resps_list is not None:
|
||||
resps_list = [self._interleave(r) for r in resps_list] # guarantees we only have the first levels
|
||||
|
||||
return self._forward(
|
||||
text_list=text_list,
|
||||
proms_list=proms_list,
|
||||
resps_list=self._unsqueeze_list(resps_list),
|
||||
targ_list=resps_list,
|
||||
quant_levels=None,
|
||||
shift_targ_list=True,
|
||||
return_all_resp=False,
|
||||
)
|
||||
|
||||
device = text_list[0].device
|
||||
batch_size = len(text_list)
|
||||
|
||||
resps_list: list[Tensor] = [ torch.zeros(0, device=device).to(torch.int16) for _ in text_list ]
|
||||
stopped = torch.zeros(batch_size, device=device).bool()
|
||||
|
||||
state = {} if cfg.inference.recurrent_forward else None
|
||||
|
||||
for n in range(max_steps // max(1, self.recurrent_chunk_size)):
|
||||
# get next in sequence
|
||||
|
||||
r = self._forward(
|
||||
text_list,
|
||||
proms_list,
|
||||
self._unsqueeze_list(resps_list),
|
||||
sampling_temperature=sampling_temperature,
|
||||
state=state
|
||||
)
|
||||
|
||||
# append tokens
|
||||
for i, ri in enumerate(r):
|
||||
if self.stop_token in ri:
|
||||
stopped[i] = True
|
||||
resps_list[i] = torch.cat([resps_list[i], ri])
|
||||
|
||||
# stop token found
|
||||
stopped |= r == self.stop_token
|
||||
if stopped.all().item():
|
||||
break
|
||||
|
||||
|
||||
pruned = [self._prune(r) for r in resps_list]
|
||||
print( [ r for r in pruned ] )
|
||||
deinterleaved = [ self._deinterleave(r) for r in pruned ]
|
||||
print( [ r for r in deinterleaved ] )
|
||||
return deinterleaved
|
||||
|
||||
def example_usage():
|
||||
from ..config import cfg
|
||||
cfg.trainer.backend = "local"
|
||||
cfg.trainer.check_for_oom = False
|
||||
|
||||
from functools import partial
|
||||
|
||||
from einops import repeat
|
||||
|
||||
from ..emb.qnt import decode_to_file
|
||||
from ..engines import Engine, Engines
|
||||
from tqdm import tqdm, trange
|
||||
|
||||
device = "cuda"
|
||||
x8 = partial(repeat, pattern="t -> t l", l=cfg.models.prom_levels)
|
||||
symmap = {'<s>': 1, '</s>': 2, ' ': 3, '.': 4, ',': 5, '!': 6, '?': 7, 'p': 7, 'iː': 8, 'ɚ': 9, 'ˌ': 10, 'dˌ': 11, 'mˌ': 12, 'd': 13, 'ɹ': 14, 'tˈ': 15, 'pˌ': 16, 'uː': 17, 'l': 18, 'æ': 19, 'ɛ': 20, 'ɪ': 21, 'j': 22, 'ʊ': 23, 't': 24, 'n': 25, 'v': 26, 'a': 27, 'o': 28, 'ŋ': 29, 'w': 30, 'ʌ': 31, 'hˈ': 32, 'ɡˈ': 33, 'ə': 34, 'θˈ': 35, 'dˈ': 36, 'wˌ': 37, 'h': 38, 'z': 39, 'k': 40, 'ð': 41, 'ɡˌ': 42, 'ˈ': 43, 'fˈ': 44, 'i': 45, 's': 46, 'ʃ': 47, 'wˈ': 48, 'ðˈ': 49, 'ɹˈ': 50, 'lˈ': 51, 'ɡ': 52, 'oː': 53, 'mˈ': 54, 'e': 55, 'ɑː': 56, 'nˈ': 57, 'm': 58, 'θˌ': 59, 'sˈ': 60, 'f': 61, 'ɔː': 62, 'hˌ': 63, 'b': 64, 'jˈ': 65, 'ɐ': 66, 'ʒˈ': 67, 'θ': 68, 'bˈ': 69, 'ɾ': 70, 'ɜː': 71, 'ʌˈ': 72, 'ʃˌ': 73, 'bˌ': 74, 'kˈ': 75, 'ɔ': 76, 'zˈ': 77, 'ᵻ': 78, 'kˌ': 79, 'vˈ': 80, 'fˌ': 81, 'ʒ': 82, 'ʃˈ': 83, 'ɹˌ': 84, 'tˌ': 85, 'pˈ': 86, 'ðˌ': 87, 'sˌ': 88, 'nˌ': 89, 'lˌ': 90, '̩': 91, 'ʔ': 92, 'vˌ': 93, 'ɪˈ': 94, '"': 95, 'ɪˌ': 96, 'ʒˌ': 97, 'uːˌ': 98, 'ʊˈ': 99, 'jˌ': 100, 'uːˈ': 101, 'iːˈ': 102, 'zˌ': 103, '.ˈ': 104, '…': 105, 'ŋˌ': 106, 'ɐˌ': 107, '—ˈ': 108, 'iˌ': 109, 'iːˌ': 110, 'ɛː': 111, ')': 112, ')ˈ': 113, '(': 114, 'u': 115, '-': 116, 'ɖˈ': 117, 'iˈ': 118, 'ʰˈ': 119, 'ɟˈ': 120, '̃': 121, 'eː': 122, 'ɾˈ': 123, 'r': 124, 'ʰ': 125, '-ˌ': 126, 'ɫ': 127, 'q': 128, '—': 129, 'ʊˌ': 130, 'aː': 131, 'cˈ': 132, '…ˈ': 133, 'c': 134, 'ɳ': 135, 'ɐˈ': 136, 'x': 137, 'ʔˌ': 138, '.ˌ': 139, 'ɑ': 140, '?ˈ': 141, '̩ˈ': 142, '"ˈ': 143, ',ˈ': 144, 'ŋˈ': 145, 'əˌ': 146, '!ˈ': 147, '"ˌ': 148, '?ˌ': 149, ',ˌ': 150, '—ˌ': 151, '̩ˌ': 152, 'əˈ': 153, '!ˌ': 154, 'ɬ': 155, 'ʲ': 156, '¡': 157, 'ɯ': 158, 'qˌ': 159, 'ʑ': 160, 'ʑˈ': 161, '¿': 162, 'ɑːˈ': 163, 'iːː': 164, 'ɛˈ': 165, '¡ˈ': 166, 'æˈ': 167, 'ç': 168, 'ɾˌ': 169, 'ᵻˈ': 170, 'xˈ': 171, 'ɔːˈ': 172, ';': 173, 'ɬˌ': 174, ':': 175, 'ʔˈ': 176, 'ɑːˌ': 177, 'ɬˈ': 178}
|
||||
def tokenize(content, lang_marker="en"):
|
||||
split = content.split(" ")
|
||||
phones = [f"<s>"] + [ " " if not p else p for p in split ] + [f"</s>"]
|
||||
return torch.tensor([*map(symmap.get, phones)]).to()
|
||||
|
||||
kwargs = {
|
||||
'n_tokens': 1024,
|
||||
'd_model': 1024,
|
||||
'n_heads': 16,
|
||||
'n_layers': 12,
|
||||
}
|
||||
models = { "ar": Base(**kwargs).to(device) }
|
||||
|
||||
for name, model in models.items():
|
||||
print(f"{name} parameter count: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
|
||||
|
||||
engines = Engines({ name: Engine(model=model, optimizer=torch.optim.AdamW(model.parameters(), lr=1e-4)) for name, model in models.items() })
|
||||
|
||||
train = True
|
||||
|
||||
qnt = torch.load("data/qnt.pt")[0].t()[:, :cfg.models.prom_levels].to(device)
|
||||
text_list = [
|
||||
tokenize("ˈ a ɪ w ɪ l nˌ ɑː t ˈ æ s k ɐ sˈ ɛ k ə n d tˈ a ɪ m").to(device),
|
||||
#tokenize("ˌ ɔ n ɡˌ o ʊ ɪ ŋ hˈ o ʊ m ð ə tˈ uː f ɹˈ ɛ n d z fˈ a ʊ n d ɐ lˈ ɛ ɾ ɚ f ɹ ʌ m ˈ æ θ o ʊ z , hˌ uː d ɪ zˈ a ɪ ɚ d ðˌ ɛ m t ə mˈ iː t hˌ ɪ m æ t ð ə ɡ ɹˈ æ n d t ʃˈ ɑː ɹ l ɪ mˌ æ ɡ n i ɔ n ð ə fˈ ɑː l o ʊ ɪ ŋ dˈ e ɪ .").to(device),
|
||||
]
|
||||
|
||||
proms_list = [
|
||||
qnt.to(device),
|
||||
]
|
||||
resps_list = [
|
||||
qnt.to(device),
|
||||
]
|
||||
|
||||
def sample( filename, steps=400 ):
|
||||
AR = None
|
||||
|
||||
engines.eval()
|
||||
for name, engine in engines.items():
|
||||
if name[:2] == "ar":
|
||||
AR = engine
|
||||
|
||||
resps_list = AR(text_list, proms_list, max_steps=steps, sampling_temperature=1.0)
|
||||
|
||||
decode_to_file(resps_list[0].cpu(), f"./data/{filename}.wav", device="cpu")
|
||||
|
||||
if train:
|
||||
sample("init", 15)
|
||||
|
||||
engines.train()
|
||||
t = trange(100)
|
||||
for i in t:
|
||||
stats = {"step": i}
|
||||
"""
|
||||
for name, engine in engines.items():
|
||||
stats |= engine.traverse(text_list=text_list, proms_list=proms_list, resps_list=resps_list)
|
||||
"""
|
||||
stats = engines.step({"text_list": text_list, "proms_list": proms_list, "resps_list": resps_list})
|
||||
tqdm.write(f"{stats}")
|
||||
else:
|
||||
for name, engine in engines.items():
|
||||
engine.module.load_state_dict(torch.load(f"./data/{name}.pth"))
|
||||
|
||||
sample("final")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
example_usage()
|
Loading…
Reference in New Issue
Block a user